Introducción a la Mecánica Cuántica

Clase nº 3 de Computación Cuántica

J. P. Paz, C. Cormick

Depto. de Física, FCEyN, UBA

1er cuatrimestre 2006

La tercera clase se trató de:

- La notación de Dirac: kets, bras, brackets
- Álgebra lineal: cambios de base, proyectores, autovalores y autovectores, etc
- Los postulados de la mecánica cuántica

Notación de Dirac

- Los estados son vectores en un espacio vectorial complejo \mathcal{H} . A los vectores los escribimos $|v\rangle$ y les decimos "kets".
- Cada ket tiene asociado un "bra", que es una funcional lineal $\langle v|: \mathcal{H} \to \mathbb{C}$ definida por:

$$\langle v|(|w\rangle) = \langle v|w\rangle = (|v\rangle, |w\rangle)$$

(el producto interno es un "bracket").

■ Con bras y kets también podemos armar operadores lineales, de la forma: $|v\rangle\langle w|:\mathcal{H}\to\mathcal{H}$ que actúan según:

$$|v\rangle\langle w|(|x\rangle) = |v\rangle\langle w|x\rangle$$

Operadores lineales

■ Si tenemos una base ortonormal $B = \{|\phi_1\rangle, \dots, |\phi_n\rangle\}$, escribimos un operador como:

$$\hat{O} = \sum_{j,k} O_{jk} |\phi_j\rangle \langle \phi_k|$$

Los coeficientes O_{jk} forman la representación matricial del operador en esta base.

- Algunos tipos de operadores lineales importantes son:
 - Los proyectores: $\hat{P}^2 = \hat{P}$
 - Los unitarios: $\hat{U}^{\dagger} = \hat{U}^{-1}$ (asociados a cambios de base)
 - Los hermíticos: $\hat{H}^{\dagger} = \hat{H}$ (asociados a observables)

Postulados de la Mecánica Cuántica

- 1 Un estado es un vector $|\psi\rangle$ de norma 1 en un espacio vectorial complejo ${\mathcal H}.$
- 2 Un observable es un operador hermítico

$$\hat{A} = \sum_{j} a_{j} |\phi_{j}\rangle\langle\phi_{j}|$$

donde los $|\phi_j\rangle$ forman una base ortonormal de autovectores de \hat{A} : $\hat{A}|\phi_j\rangle=a_j|\phi_j\rangle$.

Los resultados posibles al medir \hat{A} son los autovalores a_j .

Postulados de la Mecánica Cuántica

3 Si el estado inicial es $|\psi\rangle$, la probabilidad de obtener el resultado a_i es

$$P(a_j) = |\langle \phi_j | \psi \rangle|^2$$

4 Luego de obtener el resultado a_j , el estado es $|\phi_j\rangle$.

(esta versión de los postulados 3 y 4 vale si todos los a_i son distintos)

5 El estado evoluciona en el tiempo de acuerdo a un operador unitario $U(t, t_0)$:

$$|\psi(t)\rangle = \hat{U}(t,t_0)|\psi(t_0)\rangle$$