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COMPUTATIONAL SCIENCES



Sciences

Natural sciences:
• Physics
• Biology
• Astronomy
• Chemistry
• Medicine

Abstract sciences:
• Mathematical sciences
• Data sciences
• Computer science
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Numbers in Science

Greeks:
• Numbers and formulas to describe the world (geometry, algebra)

Newton & Co.:
• Functions not numbers!  (differential equations)

Modern sciences:
• Return of the numbers (numerical solutions)
• Computational sciences (numerical models)



Themes of Computational Sciences

• Modeling and Simulation
• Numerical Methods
• Data Analysis
• Databases / Data mining
• Visualization
• High Performance Computing



Computer simulations

Mathematical Model

Numerical Model

Visualization

Data Analysis

Physical Model



Example

• Aerodynamics problem: 
need to know the forces acting on the wing of an 
airplane in order to create a better design

• Analytic solutions available only for simple geometries 

• Experiments possible but expensive 
=> would like to perform only a few

• Perform computational experiments to gain knowledge 
and to guide the experimental work



Physical Model

Continuous hypothesis
• Air is a continuous medium
• Valid for scales large compared to molecules mean free path

Inviscid fluid
• Air has no friction
• Valid for high Reynolds number: Re=L.u/υ

Incompressible flow 
• Propagation of information is instantaneous
• Valid for low Mach number: Ma=v/c

Irrotational flow
• No vorticity (rotation of fluid elements)
• Valid for inviscid fluid far from solid walls



Mathematical Model

• Incompressible fluid:

• Irrotational flow:

• Laplace’s equation :

• Bernoulli’s equation:

• Two dimensions: 
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Problem Specification

Geometrical Model (2D) Boundary Conditions

inflow

outflow
rigid walls



Numerical Model
Spatial discretization
• Unstructured grid
• Values at the nodes
• Grid generation

Numerical solution
• Finite elements
• Matrix solver
• Algorithm:

– Solve Laplace’s eq.    ⇒ φ
– Calc gradient              ⇒ v
– Calc pressure Bernoulli’s eq. ⇒ p
– Calc force                   ⇒

Triangular mesh
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Visualization & Data Analysis

Pressure field Velocity field

=>  Analyze forces on wing and try new design



Transforming Observational Sciences

• Computational sciences allow to transform an 
observational science into a predictive science

• Example: astrophysics
– Create models of galactic collisions
– Perform simulations predicting shapes of merging galaxies 
– Compare with observations
– Predict future evolution



Computational Scientists

This type of research requires computational scientists:

• Requires knowledge of the science
• Requires knowledge of computational methods
• Highly multi-disciplinary: requires scientists who speak 

“many languages”

What is important is the science (e.g. medicine) 
not just the computational technology per se



SOFTWARE DEVELOPMENT



Software Development

Design

Implementation

Testing

Maintenance



Some Design Criteria

• Speed: language, datastructures, optimization, parallel
• Extensibility: generality, formats
• Software reusability: language, encapsulation, libraries
• Portability: language, compilers, libraries
• Libraries: low level, high level
• Layering
• Graphical user interface: need?, language, OS



Libraries

Numerical
• Lapack / Blas
• PetSc
• IMSL
• itk
• Numerical recipes

Graphics / visualization
• OpenGL
• vtk 
• Performer
• Inventor

Parallel computing
• pvm
• mpi
• pthreads
• OpenMP

GUI
• Motif
• Qt
• Gtk
• Tcl / Tk
• MFC



Layering

• Encapsulate library or external code dependencies
• Allows easy replacement of libraries or external codes
• Enhances extensibility
• Enhances portability
• Example:

commLib
send(), receive()

pvmLib
pvm_send()
pvm_receive()

mpiLib
mpi_send()
mpi_receive()

socketLib
socket_send()
socket_receive()

application



Designing a GUI

• Simple
• Intuitive
• Few windows
• Customizable
• Fast



Code execution
• Serial / Wizard: Each stage of the code is executed sequentially

main() {
stage1();
stage2();
stage3();

}

• Event driven: Execution depends on user demands

main() {
loop() {
wait_for_event();
switch( event ) {
1: stage1();
2: stage2();
3: stage3();

}
} 

}



Extreme testing concept

• For each routine, write a test code
• Each time the software is updated:

– All pieces are recompiled
– All tests are re-run

• This is done automatically on:
– Different architectures
– Different compilers
– Different targets (optimized vs debug mode)



Programming languages & paradigms

Programming Paradigms
• Generic programming
• Object-oriented programming

• Sequential execution
• Event-driven execution

• Serial execution
• Parallel execution

• Recursive codes
• Unrolled codes

Generic languages
• Loops + conditionals + jumps
• Functions

Object-oriented languages
• Abstraction
• Inheritance
• Polymorphism



Programming Languages
Compiled languages
• assembly
• C
• C++
• fortran
• fortran90
• basic
• pascal

Scripting languages
• sh / csh / bash
• perl
• python
• awk
• tcl / tk

Interpreted languages
• IDL
• Matlab
• S / R
• Lisp

Database languages
• Oracle
• SQL

Symbolic computing languages
• Mathematica
• Maple

The choice of programming language
depends on the application



Developing software under linux

• Compilers:
– C: gcc
– C++: g++
– Fortran: gfortran

• Editors
– vi / gvim
– emacs / xemacs

• Building:
– Make

• Remote connections:
– ssh
– scp

• Freeware software

• Available on most unix systems

• Can be installed under Windows
(cygwin)

• Can use on remote computer 
without graphic environment

• Documentation available through 
man pages or online



Some basic Linux commands
Account management
• . : current directory
• .. : parent directory
• bash / csh / tcsh: shells
• ./xxx : execute xxx command
• alias: rename command
• passwd: change password
• man: print command manual page
• xman: GUI version of man

Environment variables:
• HOME: home dir
• setenv/unsetenv: csh / tcsh
• export: bash
• PATH: command search path
• .bashrc / .csh : shell config files

File manipulation
• cp: copy file
• mv: move / rename file / dir
• rm: remove file / dir
• scp: secure shell copy (transfer)
• ssh: secure shell connection
• find: fine file / directory
• tar: archive (combine) files
• gzip/gunzip: compress files
• zip/unzip: archive & compress files
• chmod: change file/dir permissions
• chown: change file/dir ownership
• ln –s : make soft link



More Linux Commands

Directory manipulation
• cd: change directory
• pwd: print current (working) dir
• mkdir: make directoy
• ls: list directory contents
• ~: home directory

ASCII file manipulation
• cat: print file contents
• more/less: browse file contents
• head: print beginning of file
• tail: print ending of file
• wc: count lines/words in file
• grep: search expression in file
• awk/gawk: search/process files
• diff: print differences between 2 files
• mgdiff: GUI version of diff
• vi/vim: edit file with vi/vim
• gvim: GUI version of vim
• emacs: edit file with emacs
• xemacs: GUI version of emacs
• zcat / zgrep / zless / zdiff / zmore:

operations on compressed files



More Linux Commands

Compiling
• gcc: C compiler
• g++: C++ compiler
• gfortran: fortran / fortran90 compiler
• make: build code using Makefile

Process control
• ps: list processes
• jobs: list running or stopped jobs
• top: display running processes
• kill: terminate process
• ctrl+C: kill process
• ctrl+Z: suspend process
• bg: send process to background
• fg: send process to foreground
• time: time a command

Commands
• ./xxx : execute xxx command
• xxx ; yyy: execute xxx then yyy
• xxx & : execute xxx in background
• xxx > out : redirect stdout
• xxx >> out: redirect stdout (append)
• xxx >& err : redirect stderr
• ((xxx < inp) > out ) >& err & : redirect 

and exec in background
• xxx < inp : redirect stdin
• xxx | yyy : pipe xxx into yyy
• x* : file names starting with x
• x?: file names starting with x and one 

extra character
• x[0-5]: file names x0, x1, …, x5



Unix programming

Script files:
• Set variables
• Set environment variables
• Execute shell commands
• Manipulate files
• Manipulate processes
• Loops / conditional statements
• …

Syntaxis depends on shell:
• sh 
• ksh
• csh / tcsh
• bash

Other scripting languages:
• python
• perl
• awk / gawk
• tcl / tk
• …



Example Makefile
EXE = run
OBJ = main.o  file.o   calc.o
LIB   = -llapack –lblas –lm –lgfortran
CMP = gcc –g –c --pedantic
LNK  = gcc

$(EXE): $(OBJ)
$(LNK) –o $@ $(OBJ) $(LIB)

clean:
rm –f *.o

%.o: %.c
$(CMP) $?



BASIC DATA STRUCTURES



Data structures

• Data structure are containers for storing data into the 
computer’s memory in an organized manner

• Data structures allow logical and efficient archival and 
retrieval of data items



Algorithms

• Algorithms are procedures to perform a specific task

• Data structures usually have associated algorithms for 
efficient access to the data stored in the data structures



Arrays

• An array is a fixed number of data items that are stored 
contiguously and that are accessible by an index

• Arrays are defined as primitive in most programming 
languages (C, C++, Fortran, …)

• Arrays can be statically (size given when declaring the 
variable) or dynamically allocated (malloc…)

• We refer to the ith element of an array a as: 
C/C++: a[i] Fortran: a(i)

a 0       1       2       3        4        5       6        7



Arrays

• Traversing and array:

for(i=0; i<n; i++) a[i]=b[i];

do i=1,n
a(i)=b(i)

enddo

• The basic operation of an array is to access a given 
element in the array: a[i]  a(i)

• Arrays are static data structures (they must to be 
reallocated if one needs to expand or shrink an array)



double a[100];
double *ptr;

ptr=a;
ptr=&a[0];
ptr=malloc(100*sizeof(double));

ptr+=10;
ptr=&a[10];

a[10]=5.0;
*(ptr+10)=5.0;
ptr[10]=5.0;

Pointers in C/C++

• A pointer is a variable that contains a memory location
• A pointer can be made to point to different positions in 

the computer’s memory
• Through a pointer one can access the data stored at the 

location pointed to by the pointer

a
0       1       2       3        4        5       6        7

ptr



Casting Pointers

• The pointer arithmetics takes into account the type of 
data being pointed to (jumps in steps of sizeof(*ptr) )

• Pointers can be ‘cast’ to access the memory in a 
different manner:

float  fptr[1000];
char  *cptr;

cptr=(char*) dptr;
0       1       2       3        4        5       6        7

fptr

float 1             float 2



Linked lists

• A linked list is a set of items organized sequentially

• In arrays the sequential ordering is provided implicitly by 
the position in the array (index)

• Linked lists use an explicit arrangement in which each 
item is part of a “node” that also contains a “link” to the 
next node

A B C D E



Linked Lists

• Linked lists are defined as a primitive in some languages 
(Lisp, Logo) but not in most commonly used languages

• Main advantages of linked lists:
– Dynamic data structure: can grow and shrink in size
– Flexible in allowing items to be rearranged efficiently

• Disadvantages:
– Slower than arrays
– Need to traverse the list to find an item



Linked lists: basic operations

• Linked list with dummy nodes

• Adding an item

• Deleting an item

A B C D Ehead tail

A B C D Ehead tail

X

Delete link:

A B C D Ehead tailXAdd links:

A B C D Ehead tailX



Linked lists: pointer implementation (C) 

Node data structure:

typedef struct {
int    item;
nodeT *next;

} nodeT;
nodeT *head, *tail;

Initialization function:

void init() {
head=(nodeT*)malloc(sizeof(nodeT));
tail=(nodeT*)malloc(sizeof(nodeT));
head->next=tail; tail->next=tail;

}

A B C D Ehead tail



Linked lists: pointer implementation (C) 

Deletion operation:

void deleteNext(struct node *n) {
n->next=n->next->next;

}

Insertion operation:

nodeT *insertAfter(int item,struct node *n) {
nodeT *x=(nodeT*)malloc(sizeof(*x));
x->item=item;
x->next=n->next;
n->next=x;
return x;

}

A B C D Ehead tail
X

A B C D Ehead tail
X

A B C D Ehead
tail

X



Linked lists: array implementation (C)

Data structure:

int item[max+2], next[max+2]; // parallel arrays
int head=0, tail=1, x=2;  // x: next unused position

Initialization function:

void init() {
next[head]=tail; next[tail]=tail;

}



Linked lists: array implementation (C)

Deletion operation:

void deleteNext(int n) {
next[n]=next[next[n]];

}

Insertion operation:

int insertAfter(int i,int n) {
item[x]=i; next[x]=next[n];
next[n]=x;
return x++;

}



Stacks

• Restricted access data structure: LIFO (last in first out)
• Can push an element to the top of the stack:

• Can pop an element from the top of the stack:

A B C D Ehead tail

X

A B C D Ehead tailX



Stacks: pointer implementation (C)

typedef struct {
int    item; 
nodeT *next;

} nodeT;
nodeT *head,*tail;

void init() {
head=(nodeT*)malloc(sizeof(nodeT));
tail=(nodeT*)malloc(sizeof(nodeT));
head->next=tail; head->item=0;
tail->next=tail;

}



Stacks: pointer implementation (C)

void push(int i) {
nodeT *n=(nodeT*)malloc(sizeof(nodeT));
n->item=i; n->next=head->next;
head->next=n;

}

int pop() {
int x;
nodeT *first=head->next;
head->next=first->next;
x=first->item;
free(first);
return x;

}



Stacks: array implementation (C)

int stack[max+1],p=0;

void init(int i) {
stack[p++]=i;

}

void push(int i) {
stack[p++]=i;

}

int pop() {
return stack[--p];

} p

stack max

pop push



Queues

• Restricted access data structure: FIFO (first in first out)
• Can put or insert an element at the beginning of the 

queue:

• Can get or extract and element from the end of the 
queue:

A B C D Ehead tail

X

A B C D Ehead tailX



Queues: array implementation
int queue[max+1],first=0,last=0;

void put(int i) {
queue[last++]=i;
if( last>max ) tail=0;

}

int get() {
int i=queue[first++];
if( first>max ) first=0;
return i;

}

int empty() {return first==last;}

first last

queue max



FLOATING POINT NUMBER 
REPRESENTATION



Floating point arithmetic

• Representing real numbers with the IEEE 754 Standard

• Sign bit: 0=positive, 1=negative
• Exponent: stored in bias form, bias is usually 127
• Mantissa: an implicit 1 is included in the mantissa, which 

are usually between  1 and 2, with the implied 1. The 
implicit leading 1 is dropped for very small numbers (0 
exponent)

Sign Exponent Mantissa 

Single precision 1 bit 8 bits 23 bits

Double precision 1 bit 10 bits 53 bits



Binary numbers

0 0.00000

1 1.00000

2 10.00000

3 11.00000

4 100.00000

5 101.00000

8 1000.00000

16 10000.00000

32 100000.00000

37 100101.00000

0.5 0.10000

0.25 0.01000

0.125 0.00100

0.0625 0.00010

0.03125 0.00001

0.65625 0.10101



More binary numbers

• We can express 83.65625 as 83 + 0.65625. 
• In binary this becomes: 1010011.00 + 0.10101=1010011.10101
• We can also express this as:

1010011.10101 x 20

101001.110101 x 21

…
10.1001110101 x 25

1.01001110101 x 26

• Of course in binary this would be: 1.01001110101 x 10110

• In the IEEE standard, the bias is 127, so the exponent becomes: 
127+6=133, and the leading 1 is dropped from the mantissa, so we 
have:

Number Sign Exponent Mantissa 

83.65625 0 1000 0101 0100 1110 1001 0000 0000 0000



Examples



Special numbers



Errors in representation

• 0.78000= 0 0111 1110 1000 1111 0101 1100 0010 100
• 0.78=0.7799999713898

• 0.95000= 0 0111 1110 1110 0110 0110 0110 0110 0110 
011

• 0.95=0.9499999880791



Floating Point Math

1e6: 0 1001 0011 0010 0100 1111 1000 0000 000
1.0:  0 0111 1111 0000 0000 0000 0000 0000 000

Addition: 
1e6 = 1.0010 0100 1111 1000 0000 x 220

+ 1.0 = 1.0000 0000 0000 0000 0000 x 20

Alignment / round-off:
1e6 = 1 0010 0100 1111 1000 0000. 000 

+ 1.0 = 0 0000 0000 0000 0000 0001. 000

=> 1e6+1.0 = 1 0010 0100 1111 1000 0001. 000 
= 1,000,001.000



Smaller numbers

Addition: 
1e6     = 1.0010 0100 1111 1000 0000 x 220

+ 0.125 = 1.0000 0000 0000 0000 0000 x 2-3

Alignment / round-off:
1e6     = 1 0010 0100 1111 1000 0000. 000 

+ 0.125 = 0 0000 0000 0000 0000 0000. 001

=> 1e6+0.125 = 1 0010 0100 1111 1000 0000. 001 
= 1,000,000.125



Even smaller numbers

Addition: 
1e6       = 1.0010 0100 1111 1000 0000 x 220

+ 0.0625 = 1.0000 0000 0000 0000 0000 x 2-4

Alignment / round-off:
1e6       = 1 0010 0100 1111 1000 0000. 000 

+ 0.0625 = 0 0000 0000 0000 0000 0000. 000

=> 1e6+0.0625 = 1 0010 0100 1111 1000 0000. 000 
= 1,000,000.000 

• There is no difference before and after the addition !



Other fractions

Addition: 
1e6 = 1.0010 0100 1111 1000 0000 x 220

+ 0.9 = 1.100 1100 1100 1100 1100 x 2-1

Alignment / round-off:
1e6 = 1 0010 0100 1111 1000 0000. 000 

+ 0.9 = 0 0000 0000 0000 0000 0000. 110 (011 001100)

=> 1e6+0.9 = 1 0010 0100 1111 1000 0000. 110
= 1,000,000.750



Storing multi-byte data in memory

Big Endian
• Most significant byte has lowest memory address
• Used in SGI (IRIX) / SUN processors

Little Endian
• Least significant byte has lowest memory address
• Used in Intel processors

Possible problems
• Data written in binary format to a file may be scrambled if 

it is read from another computer
• Need to swap bytes



Swapping Bytes

• Use pointers to access individual bytes of each number 
and swap the byte order

float a[100]; c=ptr[0]; ptr[0]=ptr[3]; ptr[3]=c;
char *ptr,c; c=ptr[1]; ptr[1]=ptr[2]; ptr[2]=c;
ptr=&a[1];

Number 1 Number 2 Number 3

a

ptr



PARTIAL DIFFERENTIAL 
EQUATIONS



Partial differential equations

• Non-linear ⇒ closed form solutions usually impossible

• PDE’s are generally more difficult to solve than ODE’s

• PDE’s can be broken into three physical classes:
– Equilibrium problems
– Eigenvalue problems
– Propagation problems

• There are different techniques for each class of problem



Classification of PDE’s by characteristics

• We classify PDE’s on the basis of their characteristic equations. 
Consider

a uxx + b uxy + c uyy = f

• Under what conditions does u, ux and uy uniquely determine uxx, uxy, 
uyy such that our equation is satisfied ?

• We can derive from this, two equations for the derivatives of u with 
respect to x and y:

d(ux) = uxx dx + uxy dy
d(uy) = uxy dx + uyy dy 

• We are seeking characteristic directions along which the equations 
only involve total differentials (i.e. characteristics)



Characteristic equations

• Writing the previous three equations in matrix form:

• The determinant of this matrix is

• The solution of the PDE exists and is unique if the 
determinant of this matrix is non-zero

• If the determinant is zero, multiple solutions exist
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Classification of PDE’s

• The behavior of the quadratic equation (det=0) is closely 
related to the character of the PDE

• Three types of PDE’s are defined:

– b2-4ac>0: hyperbolic equation (2 real characteristics exist)

– b2-4ac=0: parabolic equation (1 real characteristic exist)

– b2-4ac<0: elliptic equation (characteristics are complex)



Classification of PDE systems

• For systems of PDE’s the classification is much more 
involved. One way to proceed is to write the system of 
equations in matrix form:   Lu=f 

with L the differential operator and u the vector of unknowns

• The system of equations is characterized by its eigenvalues:
1. Hyperbolic: if n real roots of the characteristic equation
2. Parabolic: if 1≤ m ≤ n-1 real roots, and no complex roots
3. Elliptic: no real roots

• The eigenvalues are determined from the characteristic 
equation: det(L)=0



Classification by Fourier analysis

• The same characteristic equation can be obtained from a 
Fourier analysis of the system of equations

• In this case, the roots have a different physical 
interpretation, but the PDE classification remains the 
same

• The Fourier approach is useful for systems of PDE’s of 
order higher than first-order

• The Fourier approach indicates the expected from of the 
solution: oscillatory, exponential growth, etc. (useful for 
stability analysis)



Example

• Suppose the solution of the homogeneous 2nd order equation

is sought of the form

substituting into the equation gives

• This is a characteristic polynomial equivalent to the eigenvalue 
analysis, and the nature of the PDE depends on the nature of the 
roots of this characteristic equation
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PDE types

• Hyperbolic equations: describe time-dependent, conservative 
physical processes that are not evolving towards a steady state

• Parabolic equations: describe time-dependent, dissipative physical 
processes that are evolving towards a steady state

• Elliptic equations: describe systems that have already reached a 
steady state or equilibrium and thus are time-independent

2

2

2

2

2

2

z
u

y
u

x
u

t
u

∂

∂
+

∂

∂
+

∂

∂
=

∂
∂

γβα

2

2

2

2

2

2

2

2

z
u

y
u

x
u

t
u

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂
γβα

g
z
u

y
u

x
u

=
∂

∂
+

∂

∂
+

∂

∂
2

2

2

2

2

2

γβα



Hyperbolic PDE’s

• Advection equation:

• Wave equation:

• Hyperbolic PDE’s are associated with propagation problems when 
no dissipation is present (no attenuation of the wave amplitudes). 
Discontinuities are transported or advected
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Parabolic PDE’s

• Diffusion equation:

• Parabolic PDE’s are associated with propagation
problems that include dissipative mechanisms

• Parabolic PDE’s are characterized by solutions that 
march forward in time but diffuse in space

• Discontinuities are diffused => solution becomes 
continuous
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Elliptic PDE’s

• Laplace’s equation:

• Elliptic PDE’s are associated with steady state problems
• The most important feature is that disturbances 

introduced in the interior of the domain influence all 
other points. In contrast, hyperbolic and parabolic PDE’s 
can be solved by marching progressively the initial 
conditions
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GRIDS



Discretization

• The solution of PDE’s are continuous functions of the 
independent variables

• In order to represent continuous functions on a computer 
(an inherently discrete device) the computational domain 
as well as the equation operators must be discretized

• Usually, temporal and spatial discretization are 
performed independently

• Functions and operators are discretized in space using 
computational grids



Computational grids types

Grid topology:
• Structured grids

– Cartesian grids
– Curvilinear grids

• Unstructured grids
– Triangles, tetrahedra
– Quadrilaterals, hexahedra
– Mixed elements

• Mixed
– Mini structured, macro 

unstructured

Boundary representation:
• Body conforming grids
• Embedded grids
• Overlapping grids

Element topology:
• Conforming
• Non-conforming

Global topology:
• Multi-block grids
• Overlapping grids



Grid examples

Body-conforming, 
curvilinear structured grid

Body conforming unstructured grid

Non-body conforming,
Cartesian grid (structured)

Multi-block grid

Conforming elements Non-conforming elements



Discretization techniques

• Finite difference methods
• Finite element methods
• Finite volume methods
• Particle methods
• Meshless or finite points methods



Geometry Representation

• Representation of points
– Coordinate arrays

• Representation of segments
– List of end points

• Representation of polygons
– List of vertices

• Representation of surfaces
– List of triangles / quads

• Representation of solids
– List of tetrahedra / hexahedra



Storing point coordinates in memory

• Storage order:

– Contiguous points

– Contiguous coordinates

• The choice of storage order depends on how you will 
access the point coordinates in your algorithms 
=> try to minimize cache misses 

x1     y1     z1      x2      y2     z2     …      xn     yn     zn

x1     x2     …     xn      y1      y2     …     yn      z1     z2       …     zn



Using linear arrays

C:
int npoin;
double xyz[3*npoin];

xi=xyz[i*3];
yi=xyz[i*3+1];
zi=xyz[i*3+2];

xi=xyz[i];
yi=xyz[n+i];
zi=xyz[2*n+i];

Fortran:
integer npoin
real*8 xyz(3*npoin)

xi=xyz(i*3)
yi=xyz(i*3+1)
zi=xyz(i*3+2)

xi=xyz(i)
yi=xyz(n+i)
zi=xyz(2*n+i)

x1     y1     z1      x2      y2     z2     …      xn     yn     zn

x1     x2     …     xn      y1      y2     …     yn      z1     z2       …     zn



Using multidimensional arrays

C: stores by rows
double xyz[npoin][3];
xi=xyz[i][0];
yi=xyz[i][1];
zi=xyz[i][2];

double xyz[3][npoin];
xi=xyz[0][i];
yi=xyz[1][i];
zi=xyz[2][i];

Fortran: stores by columns
real*8 xyz(3,npoin)
xi=xyz(1,i)
yi=xyz(2,i)
zi=xyz(3,i)

real*8 xyz(npoin,3)
xi=xyz(i,1)
yi=xyz(i,2)
zi=xyz(i,3)

x1     y1     z1      x2      y2     z2     …      xn     yn     zn

x1     x2     …     xn      y1      y2     …     yn      z1     z2       …     zn



Using structures & classes

C:
typedef struct {

double x,y,z;
} ptT;

int npoin;
ptT pts[npoin];
xi=pts[i].x;
yi=pts[i].y;
zi=pts[i].z;

C++:
class ptT {
double x,y,z;
ptT(){x=0;y=0;z=0;}

};

ptT pts[npoin];
xi=pts[i].x;
yi=pts[i].y;
zi=pts[i].z;



Example: memory access

double xyz[npoin*3];

for(i=0; i<npoin; i++) {
x=xyz[i*3  ];
y=xyz[i*3+1];
z=xyz[i*3+2];
d[i]=sqrt(x*x+y*y+z*z);

}

double xyz[npoin*3];

for(i=0; i<npoin; i++) {
x=xyz[i];
y=xyz[i+npoin];
z=xyz[i+2*npoin];
d[i]=sqrt(x*x+y*y+z*z);

}

x1     y1     z1      x2      y2     z2     …      xn     yn     zn

x1     x2     …     xn      y1      y2     …     yn      z1     z2       …     zn
cache

cache



Representing segments

C:
int nseg;
int lnode[2*nseg];
ai=lnode[i*2];
bi=lnode[i*2+1];

lnode: segment connectivity array
(list of the two nodes of a segment)

Must start at 0 in C
Must start at 1 in fortran

Fortran:
integer nseg
integer lnode(2,nseg)
ai=lnode(1,i)
bi=lnode(2,i)

a

b



Representing Surfaces in 3D

• Cloud of points
• Structured curvilinear grids
• Triangular grids
• Quadrilateral grids

i,j i+1,j
i-1,j

i,j-1

i,j+1



Representing surfaces 
(triangles and quads)

int npoin; // nr of points
double xyz[3*npoin]; // point coords
int nelem; // nr of elements
int nnode; // nr of nodes per element
int lnode[nnode*nelem]; // connectivity array
ai=lnode[nnode*i]; // nodes of an element
bi=lnode[nnode*i+1];
ci=lnode[nnode*i+2];

a
b

c

a
b

c

d



Area weighted normal

Element area

Unit normal

Element normal and area
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Representing Solids: Tetrahedral Grids

Same data structures and algorithms for:
• Element connectivity (nnode=4)
• Elements surrounding points
• Points surrounding points
• Elements surrounding elements

Element volume

( ) dav xxx caba ⋅×=
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Unstructured grids

• Mesh representation
– List of points + list of elements

• Derived data structures
– List of elements surrounding each point
– List of points connected to each point
– List of neighbor elements to each element
– List of boundary elements / points

• These derived data structures are many times useful for 
developing efficient algorithms on unstructured grids



Elements surrounding points

int esup1[npoin+1];
int esup2[max_store];

ip
e1

e2

e3

e4
e5

ip

e1

e2

e3

e4

esup1

esup2

point1 point2 point3



Elements surrounding points: building

// count nr of elements surrounding each point
int *esup1=malloc(npoin*sizeof(int));
for(i=0; i<nelem; i++) 

for(j=0; j<nnode; j++) esup1[lnode[3*i+j]+1]++;

// initialize pointers and allocate storage
for(i=1; i<npoin-1; i++) esup1[i]+=esup1[i-1];
int *esup2=malloc(esup1[npoin]*sizeof(int));

// store elements surrounding each point
for(i=0; i<nelem; i++) 

for(j=0; j<nnode; j++)
esup2[esup1[lnode[3*i+j]]++]=i;

for(i=npoin; i>0; i--) esup1[i]=esup1[i-1];
esup1[0]=0;



Elements surrounding points: usage

for(i=0; i<npoin; i++) {     // loop over points (i)
nel=esup1[i+1]-esup1[i];  // num  elem surr i
lel=&esup2[esup1[i]];     // list elem surr i
for(j=0; j<ne1; j++) {     // loop over surr elem

iel=lel[j]; // get next elem surr I
do_work...

}
}



Points surrounding points

int psup1[npoin+1];
int psup2[max_store];

psup1

psup2

point1 point2 point3

ip

p1
p2

p3

p4

p4

ip

p1

p2

p3

p4

p5p6
p7

p8



Points surrounding points: building
integer psup1(npoin+1),psup2(max) ! psup arrays
integer esup1(npoin+1),esup2(max) ! assumed done
integer ltmp(npoin)               ! temp array
initialize ltmp(1:npoin)=0
initialize psup1(1:npoin+1)=0
istor=0
do ipoin=1,npoin ! loop over pts

do iesup=esup1(ipoin)+1,esup2(ipoin+1)! loop el surr pt
ielem=esup2(iesup) ! get el surr ip
do inode=1,nnode ! Loop over nodes
jpoin=lnode(inode,ielem)          ! get point
if(jpoin.ne.ipoin. and .ltmp(jpoin).ne.ipoin) then
istor=istor+1 ! updt strg count
psup2(istor)=jpoin ! store point
ltmp(jpoin)=ipoin ! mark point

endif
enddo

enddo
psup2(ipoin+1)=istor ! Updt strg count

enddo



Points surrounding points: usage

Do ipoin=1,npoin ! loop over points
jp1=psup1(ipoin)+1 ! first point surr ipoin
jp2=psup1(ipoin+1) ! last  point surr ipoin
do jp=jp1,jp2 ! loop over pts surr ipoin
jpoin=psup2(jp) ! gather point
do_work...

enddo
enddo



Elements surrounding elements

int esuel[nnode*nelem];

init esuel[1:nnode*nelem]=-1 
loop over elements (ie)
loop over nodes of ie (a)
get b=next node of ie
get c=next node of ie
loop over elements surrounding b (je≠ie)
if(je and ie have 2 nodes in common) then
store je as neighbor opposite to a
endif
endloop
endloop
endloop

a b

c

ea

ec

eb

e



Boundary elements

nboun=0 ! nr boundary elements
lboun(1:nboun)=0        ! list boundary elements
loop over elements (ie)
loop over neighbor elements (je)
if(je<0) then       ! neighbor does not exist
lboun(nboun)=je   ! add element to list
nboun=nboun+1     ! Update counter

endif
endloop

endloop

a b

c

ec

eb

e



Derived data structures

• The previous data structures and algorithms can be used 
with no modifications for tetrahedral grids:

– Element surrounding points
– Points surrounding points
– Elements surrounding elements
– Boundary elements

• These need to be modified for Hexahedral elements



FINITE DIFFERENCES 
METHOD



Finite difference method

• This method is the oldest of the methods applied to 
PDE’s (Euler 1768). 

• It is based on the properties of the Taylor expansions 
and on the straightforward application of the definition of 
derivatives

• It is the simplest method to apply but requires a high 
degree of regularity of the grids, and in particular, the 
grid must be structured

• The basic idea of this method is quite simple: estimate 
the derivatives by the ratio of two differences according 
to the definition of the derivative



Basics of the FD method

• For a function u(x) the derivative at a point x is defined 
as:

• If ∆x is small but finite, the expression on the right hand 
side is an approximation to the exact value of ux

• The approximation improves as we reduce ∆x, but for 
any finite value of ∆x a truncation error is introduced that 
tends to zero when ∆x goes to zero

• The power of ∆x with which the error goes to zero is 
called the order of the difference approximation
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Difference approximations

• The whole concept of finite difference approximation is 
based on the properties of the Taylor expansions

• Developing u(x + ∆x) we obtain

and therefore

• This approximation of ux is of first order in ∆x , indicating 
that the truncation error goes to zero like the first power 
in ∆x 
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Finite difference formulas

• Consider a 1D space, discretized with N uniformly 
distributed mesh points xi with i=1,…,N. 

• We denote by ui=u(xi) the value of the function at point i
and ∆x the spacing between mesh points

• The following formulas can be derived for the first 
derivative:
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Finite difference 

• It can be easily verified from the Taylor expansion of ui+1
and ui-1 that the one sided formulas are of first order 
while the central difference formula is of second order in 
∆x

i i+1i-1

ui+1

ui-1

ui
backward

forward

central

y=u(x)

x

y

∆x ∆x



Difference formulas with an 
arbitrary number of points

• Difference formulas for the first derivative can be constructed with 
any number of adjacent points, with the order of the approximation 
increasing with the number of points

• Example: one-sided, 2nd order formula containing upstream points i-
2, i-1, i can be obtained by an expression of the form

• The coefficients (a,b,c) are obtained from the Taylor expansions of 
ui-2 and ui-1 around ui:
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Difference formulas with an 
arbitrary number of points

• From these expansions, we get:

• Identifying terms in the proposed difference formula, we get:

• The 2nd order one sided formula is

• This is a general procedure for obtaining FD formulas with an 
arbitrary number of points and an given order of accuracy
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2nd order formulas for the first derivative

• Backward differences

• Forward differences

• Central differences
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Higher order derivatives

• Finite difference formulas for higher order derivatives 
can be obtained by applying the same technique to first 
derivatives, then to second, etc:

• First order formulas for the second derivative:
• Forward differences:

• Backward differences:
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2nd order formulas for the 2nd derivative

• Forward differences

• Backward differences

• Central differences
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Multi-dimensional FD formulas

• The partial derivatives of functions of several variables 
can be approximated by the previously derived formulas 
considering each variable separately

• Examples:
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Difference formulas for 
the Laplace operator

• 2nd order central difference formula for the Laplace 
operator:

• This is the most widely applied 2nd order scheme for the 
Laplace operator, and can be represented by the 
following computational molecule:

),(
22

)( 22
2

1,,1,
2

,1,,1
,

2 yxO
y

uuu

x

uuu
u jijijijijiji

ji ∆∆+
∆

+−
+

∆

+−
=∇ −+−+

i i+1i-1

j+1

j-1

j -4 11

1

1



Other forms of the Laplace operator

• 2nd order 5-point formula:

This formula is not recommended
because odd- and even-numbered
points are detached and oscillatory
solutions can be obtained

• Other 2nd order 9-point formulas:
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FD formulas on non-uniform 
Cartesian meshes

• For non-uniform or curvilinear meshes the discretization can be 
performed after a transformation from the physical space (x, y, z) to 
a Cartesian computational space (ξ, η, ζ)

• The relations between the two spaces are defined by a coordinate 
transformation or mapping: 
ξ= ξ(x,y,z), η= η(x,y,z), ζ= ζ(x,y,z)

• All the FD formulas previously derived can be applied in the 
computational space (ξ, η, ζ)

x

y

ξ

η

Physical space Computational space



FD formulas in 1D non-uniform space

• Consider an arbitrary mesh point distribution in a one 
dimensional space:

• FD formulas can be derived from Taylor expansions. 
For the first derivatives we have:

• Forward difference:

• Backward difference:

• Central difference:
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2nd derivatives

• The 3-point central difference formula for the second 
derivative is

• Note that the truncation error is proportional to the 
difference of two consecutive mesh lengths. If the mesh 
varies abruptly, this formula is only first order accurate.

• This is a general property of finite difference 
approximations on non-uniform meshes. If the mesh size 
does not vary smoothly, a loss of accuracy is 
unavoidable.
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FINITE ELEMENT METHOD



Approximation of functions

• Given a function u(x) in a domain Ω, we want to approximate this 
function as a linear combination of known functions:

uh(x) is the approximation of u(x) , 
(Einstein’s summation convention)

Ni(x) are called trial functions, ûi are the nodal values of u(xi)

• In general, we choose a complete set of trial functions
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Examples

• Truncated Taylor series:

• Truncated Sine series:
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Point Fitting Methods:

• Set uh=u at M selected points: 

Weighted Residual Methods:

• Find the constants that minimize the “error” 
between the functions

Determination of constants
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Weighted Residual Methods

• We want ε h = u – u h → 0 in  Ω. 

• This can be satisfied by requiring that 

• WRM approximate this integral statement by considering 
only a finite set of weighting functions:

• Then as m → ∞ , ε h → 0 at all points in Ω
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WRM

• Inserting the approximation for u:

• This leads to a system of algebraic equations:

• How we choose  Wi defines the method
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Point collocation method

• Choosing Wi=δ(x-xi) for a set of points xi ∈ Ω, the 
weighted residual statement becomes:

• Therefore, we obtain the following system of equations:

• This is equivalent to a Point Fitting Method
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Galerkin method

• Choosing W i = N i, the weighted residual statement 
becomes:

• Therefore, we obtain the following system of equations:

• In matrix form:

Mc is called the consistent mass-matrix
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Least squares problem

• In the least squares problem we want to minimize the 
square of the point-wise errors:

• The variation of this integral must be zero at the 
minimum:

• This is equivalent to the Galerkin WRM

• This shows that the choice of the weighting functions 
equal to the trial functions is an optimal choice
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Local vs global trial functions

• There are several drawbacks in using global trial 
functions:
– Determining Nj is difficult for all but a the simplest 

geometries in 2D or 3D
– The matrix is full and can become ill-conditioned, 

even for simple problems
– The constants ûi have no physical meaning

• Therefore, the use of local trial functions is usually 
preferred



Local trial functions

Given u(x) for x∈ Ω:
• Divide the computational domain Ω into a set of 

non-overlapping sub-intervals Ωel

• Then define uh in each sub-interval
• The sub-intervals are called elements and the points xi

are called nodes



Constant trial functions

• Define a piecewise constant function:

• Then, globally:

• And locally on element E:
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Linear trial functions

• Let uh vary linearly within each element E
• Define a piecewise linear trial function that obeys:

and Nj is only non-zero on the elements associated with 
node j

• Then, globally:
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Linear shape functions

• Locally on element E with nodes 1 and 2:

• Defining:

we have:
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Quadratic trial functions

• Let uh vary quadratically within each element E
• Place extra nodes at the middle of each element in 

addition to the nodes at its ends:

• The shape functions for an element E are:
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General properties of shape functions

• Interpolation property:

• Constant sum: must be able to represent a constant

using interpolation property:

• Conservation property: (derivate previous equation)
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Coordinate interpolation

• In general, we can select u=x, and apply the 
interpolating formulas using the element shape 
functions:

• This formula is valid in any number of dimensions and 
for any trial functions

• This property is useful for deriving the shape functions of 
elements in 2D and 3D

i
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Linear triangle: shape functions

• Shape functions:

• Area coordinates:
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Linear triangle: shape functions at a point

• The shape functions of a linear triangle can be found at 
the location of a point xi as follows:
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Linear triangle: shape function derivatives
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Linear triangle: basic integrals

• Useful integrals:
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Quadratic triangles

• Place extra nodes at the mid-points of the triangle edges

• Shape functions:
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Bilinear quadrilateral elements

• Shape functions:
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WRM with local functions

• The basic idea is to split the global integral as a sum of 
integrals on each element:

• Build the integrals at the element level
• Gather info from global point-arrays to local element-

arrays
• Scatter-add resulting integrals to global matrix/vector 

locations

• For these integrals we only need to know which nodes 
belong to each element (element connectivity data 
structure)
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Finite element approximation of operators

• Function approximations: 
given u, approximate | u – uh | → min

• Operator approximations:
given L(u)=0, approximate | L(u) – L(uh) | → min 

⇒ | L(uh) | → min

• Minimize error or residual:

• WRM:
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Finite element methods

The choice of Ni and Wi defines the method:

• Ni polynomial, Wi =δ(xi): FDM

• Ni polynomial, Wi =1 if x∈ΩE , 0 otherwise: FVM

• Ni polynomial, Wi = Ni : Galerkin FEM

• Ni polynomial, Wi ≠ Ni : Petrov-Galerkin FEM

• Ni spectral (sin, cos), Wi =δ(xi): spectral element 
methods



Example: gradient of a function
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Elementary matrices
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Shape function gradient
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Solving for the Consistent Mass Matrix

( )

( )

( )

ruMuu

δruM

uMMruM

uMMruM

ruMuMM

ruM

=⋅⇒=

+=⋅

⋅−−=⋅

⋅−−=⋅

=⋅+⋅−

=⋅

++

+

+

11

1

1

       :econvergenc

                       or        

   :procedure iterative

      :RHS  the tomove

  :lumpedsubtract  and add

   :system for the

n
c

nn

n
l

n
lc

n
l

lcl

llc

c



Computing the RHS
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Procedure

• Initialize lumped mass matrix and rhs vector
• For each element:

– Gather element nodes
– Gather node coordinates
– Calc element jacobian (area)
– Calc element shape function derivatives
– Calc element contributions to rhs and lumped mass matrix
– Add to global rhs and lumped mass matrix

• For each node:
– Calc gradient field: inverse lumped mass matrix * rhs



Another example: curl of a vector field
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GRID INTERPOLATION



Interpolation on grids

Given: 
• Field values at the nodes of a Cartesian grid
• Position in space

Find:
• Field value at the given position

Procedure:
• Find cell (element) containing given position
• Linearly interpolate field values from cell nodes



Interpolation on a Cartesian grid
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Interpolation on unstructured grids

• “Host” element containing given position cannot be found 
directly as in Cartesian grids

• Need to search the mesh for the element containing the 
given position



Element shape functions at a point
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Element shape functions at a point
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Element shape functions at a point
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Element Shape Functions at a Point

• Linear triangle => area coordinates
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Interpolating the field values
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Brute force interpolation

• Check whether point inside mesh bounding box
• Loop over all the elements

– Evaluate element shape functions at given point
– If point inside => found host

• End loop

• To interpolate between two grids the algorithm is 
Npmesh1 x Npmesh2



Proximity in space

Problem: for a given set of points, consider:
• Find the points closest to a given point
• Find all the points in a given region

Data structures:
• Bins 
• Quad and Octrees



Bins Data Structure

• Subdivide space into boxes or bins
• Construct a list of points for each bin

• nx=nr Bins in x ny=nr bins in y
• ∆x=(xmax-xmin)/nx ∆y=(ymax-ymin)/ny

• ix=(xi-xmin)/∆x iy=(yi-ymin)/∆y

∆y

∆x
Add z for 3D



Bins: implementations

• Straight storage:

• Linked lists:

…

bin 1 bin 2 bin 3 bin 4

ptrs

strg

bin 1 bin 2 bin 3

Good for data that is more or less evenly distributed in space



Quad-trees

• Recursively subdivide space into quads
• Store at most 4 points per quad



Quad-trees

For each quadrant need:
• Bounding box coordinates: xmin, xmax, ymin, ymax

• Storage space for 4 (n) points: x1, y1, x2, y2, x3, y3, x4, y4

• Pointers to the 4 children quads: c1, c2, c3, c4

Insertion / Searching
• When a quad is full and a new point inserted: create 4 

child quads, store pointers & bounding boxes, and 
transfer points

• The quad-trees are traversed downwards
• For uniformly distributed data, it takes approximately 

log4N operations to locate all points in a search region



Octrees

• Extension of quad-trees to 3D
• Subdivide space into boxes or octants
• Store 8 (n) points per octant
• Store 8 children per octant
• Store bounding box for each octant: add zmin, zmax

• Searching: log8N operations for uniform distributions



Interpolation with Bins

• Load grid points into a bin data structure
• Find bin that contains the point 

– Similar to Cartesian grid interpolation

• Loop over the elements of this bin
– Evaluate element shape functions at given point
– If point inside => found host

• End loop

• Performance of grid to grid interpolation is
Np1 x <Np1bin>



Octree search

• Load grid points into an octree/quadtree data structure
• Find point closest to given point
• Loop over the elements surrounding given point

– Evaluate element shape functions at given point
– If point inside => found host

• End loop

• Performance of grid to grid interpolation is
Np1 x log(Np2)*<Np2_surr_elem>



Neighbor to neighbor search

• Start at initial guess element
• While ( not found )

– Evaluate shape functions at given point
– If inside => found
– else jump to neighbor element opposite to node with largest 

negative shape function

• End while

• Performance depends on initial guess (how many 
elements away is the host element)



Layered approach

• Find initial guess from bin or octree data structures
• Perform neighbor to neighbor search
• If not found in a max number of steps, fall back to brute 

force algorithm

• Initialize guess for next point in grid from the current host 
(if grid points are close in space the host will be found in 
a few steps)



ELLIPTIC EQUATIONS



Finite element method

• The finite element method originated from the field of 
structural analysis. 

• The concept of “elements” originated in stress 
calculations where a structure was subdivided into small 
substructures of various shapes and re-assembled after 
each element had been analyzed

• The mathematics of the finite element method has been 
quite extensively studied and is based on functional 
analysis and approximation theory



Laplace’s equation
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Finite element approximation
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Matrix assembling with linear triangles
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Linear triangle: shape functions

• Shape functions:

• Area coordinates:
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Linear triangle: shape functions at a point

• The shape functions of a linear triangle can be found at 
the location of a point xi as follows:
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Linear triangle: shape function derivatives
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Boundary conditions

pointsboundary for  set  and system fromequation  delete    
 :2Option 

RHS in the  and diagonalin  1  :equations of systemmodify     
 :1Option 

 :conditionsboundary Dirichlet 

nformulatio in thefor  accountedalready 
0:conditionsboundary  Natural

0

0

0

φφ

φ

φφ

φ

=

=
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Remark: Shape functions continuity

• Given:

• WRM:

– Nj must have defined 2nd order derivatives 
⇒ must be at least C1 continuous across elements

– Wi can be the δ function

• Integrating by parts:

– Order of max derivative reduced ⇒ wider space of trial functions
– Nj must have defined 1st order derivatives 

⇒ must be at least C0 continuous across elements
– Wi cannot be the δ function

)(0,02 ΩΓ=Ω=∇ onuinu

0ˆ2 =Ω∇∫
Ω

j
ji udNW

0ˆ =Ω∇⋅∇−∫
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j
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Procedure

• Initialize global matrix
• Assemble global matrix:

– loop over elements
• Gather nodes & coordinates
• Calc shape function derivatives
• Calc elementary matrix
• Scatter add to nodes

• Set boundary conditions:
– Loop over boundary points

• Set row to diagonal
• Set rhs value to boundary value

• Solve linear system of equations



Example: Poisson’s equation
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dfNWduNW

fu
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Ω=Ω∇⋅∇

Ω=Ω∇⋅∇

=∇−

∫∫

∫∫

Ω

Ω

    :systemmatrix 

ˆ:methodGalerkin 

ˆ   :WRM

  :equation sPoisson' 2



Mesh

• Regular triangular mesh – assemble element 
contributions to produce the equation for a typical interior 
point (point 5) for the Poisson operator: 

• Connectivity:
fu =−∇ 2

Element Node1 Node 2 Node 3

1 1 5 4
2 2 5 1
3 2 6 5
4 2 3 6
5 4 8 7
6 4 5 8
7 5 9 8
8 5 6 9



Element contributions to global matrix



Contributions of element 1

• Shape function derivatives:

• LHS contribution

• RHS contribution
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Contributions of element 2

• Shape function derivatives:

• LHS contribution

• RHS contribution
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Final equation

• Fully assembled equation for point 5:

• Compare this with the finite difference expansion for

5
2

86425
ˆˆˆˆˆˆ4 fhuuuuu =−−−−






 ++++++=−−−− 9846215

2

86425
ˆˆˆˆˆˆˆ6

12
ˆˆˆˆˆ4 fffffffhuuuuu
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Elliptic PDE solution

• Discretize equations in space
– Finite elements
– Finite differences

• Assemble global matrix system 
– Full matrix
– Compact storage schemes

• Solve linear system of equations
– Direct solvers
– Iterative solvers



SOLVING SYSTEMS OF 
ALGEBRAIC EQUATIONS



Solving linear systems

• Large systems of algebraic equations must be solved :

1. For obtaining the solution of elliptic PDE’s (in particular, obtaining 
the solution of the field equations for particle systems using the PM 
method)

2. For advancing the solution of PDE’s discretized using implicit 
schemes

• Typically these systems have to be solved more than once during a 
numerical simulation, therefore, efficient algorithms are needed
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Classification of methods

Approach
• Direct solvers
• Iterative solvers

Algorithm
• Mesh relaxation methods
• Matrix methods
• Rapid elliptic solvers

Storage
• Matrix methods
• Matrix-free methods



Mesh relaxation methods

• Jacobi (J)
• Gauss-Seidel (GS)
• Successive Over Relaxation (SOR)
• Cyclic Chebyshev (CC)
• Block Iterative Methods
• Alternating-Direction Implicit (ADI)



Mesh relaxation methods

• Basic idea:
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ruRBuA

BAR
B

RBA
ruA

+⋅−−=+⋅−=⋅⇒
=⋅+=⋅⇒

−=

+=
=⋅

)(
)(

remainder :)(
invertibleeasily   ist matrix tha :

  :matrix Split the
    :equations of Sy stem



Mesh relaxation iterations

• Different iterative processes are defined by splitting the 
matrix A in different ways, i.e. by defining different forms 
for B

matrixiteration  :
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Relaxation factor

• Consider a general five point formula which represents a 
row of matrix A (for instance, from the discretization of 
the Poisson equation using second order finite central 
differences on a regular Cartesian grid):

• This formula can be converted into an explicit iterative 
scheme for point ij in terms of the surrounding points:

• Introducing a relaxation factor ω we have:
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Jacobi Method (J)

• In the Jacobi method the matrix B is the diagonal matrix 
formed from the diagonal elements of A

• The solution for the next iteration is obtained by solving 
each mesh point equation assuming that all the 
surrounding values are correct

• The new values do not replace the old values until all the 
new values have been calculated

• This implies ω=1, and the iterative scheme is equivalent 
to averaging the values of the four adjacent nodes to find 
the next iteration of the Laplace’s equation

• The method converges slowly and is not commonly used



Gauss-Seidel Method (GS)

• In this method, the matrix B is a lower triangular matrix 
formed from the lower triangular elements of A

• The inversion of B is obtained by forward substitution

• This method is computationally the same as the Jacobi 
method, except that the newly computed values for the 
next iterate replace old values from the last iteration as 
soon as they are calculated (again ω=1)

• This method is somewhat faster than the Jacobi iteration

• However, it is really only suitable for scalar computation 
because one computation must be completed before 
another can be started



Successive Over-Relaxation (SOR)

• This method tries to improve the convergence rate of the 
Gauss-Seidel method by taking a linear combination of 
the old values and the values given by the GS iteration

• The relaxation factor lies in the range 1<ω<2 and 
corresponds to making an over-correction at the point in 
order to anticipate future corrections

• In some cases convergence can only be obtained with 
ω<1, in which case the process is known as under-
relaxation



SOR

• This method converges faster than the other methods 
described so far

• However, convergence is still slow in the early stages of 
the iteration because the error can only propagate away 
from a cell at a rate of one cell per iteration

• Furthermore, the error during these stages can even 
grow from step to step



Block iterative methods

• So far we have considered methods involving pointwise 
adjustment of the approximate solution

• Block methods calculate entire groups of unknowns at 
the same time, using an implicit or semi-implicit method

• The common feature of these methods is that the 
convergence rate improves as larger and larger blocks of 
the problem are solved implicitly

• Block methods are less frequently used than point SOR 
principally because they are more complicated to 
program



Successive line overrelaxation (SLOR)

• Point iterative methods update unknowns at a single point at a time, 
the order of processing depends on the method used:

• In block iterative methods a block of unknowns are updated 
simultaneously using an implicit method

• The SLOR for the Laplace operator updates three unknowns by 
solving a tridiagonal system for each row or column

Jacobi method        Gauss-Seidel method

φn

φn+1,i

φn+1,i-1



Matrix methods

• Gaussian Elimination
• Thomas Tridiagonal Algorithm
• Sparse Matrix (SM)
• Conjugate Gradient Algorithm (CGA)
• Incomplete Cholesky – Conjugate Gradient (ICCG)
• Generalized Minimal Residuals (GMRES)



Upper triangular matrices

• For an upper triangular matrix

• We can solve the system using back-substitution:

where i=n-1, …, 1
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Lower triangular matrices

• Similarly, for a lower triangular matrix

• we can solve the system using forward-substitution:

where i=2, ... , n
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Moving to a triangular form

• Since we can always solve upper and lower triangular 
matrices, we want to find a way to move all matrices into 
these forms

• If we can write

• We then solve the simple problem
by forward-substitution

• Then we solve the problem
by backward substitution

bxLUxA =⋅=⋅

byL =⋅

yxU =⋅



Gaussian elimination or LU decomposition

• Doing this is conceptually fairly easy – we need to find a 
series of matrices Mi each of which adds a zero into the 
correct location.

• This is equivalent to subtracting multiples of the rows

• The system we end up with is:
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Gaussian elimination

The algorithm is:
for 

for
for

a(i,j)=a(i,j)-( (a(i,k)/a(k,k) ) * a(k,j)
end

end
end

• L and U are stored in the same matrix space
• This algorithm has three possible loop orders ~O(N3). 
• The order of loop execution may have a large effect on 

execution time.
• Accessing non-contiguous memory is slower than 

addressing contiguous memory

pivot



Gaussian elimination

• In some cases, we may be multiplying a row by a large 
number

• Examine

• So

• The multiplier needed to zero element 21 will cause a 
severe numerical problem with element 22
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Gaussian elimination

• We use pivoting to change the order of the elimination to 
prevent these numerical errors from happening

• Specifically, we wish to require all multipliers to have a 
size less than 1

• In other words, we pick the minimum for every column to 
use as the row multiplier to use for each stage of  the 
elimination



Tridiagonal matrices

• For tridiagonal matrices

both forward and back substitutions reduce to a single loop:

for i=1,N-1
a(i+1,N+1)-= a(i,N+1)*a(i+1,i)/a(i,i)
a(i+1,i+1)-= a(i,i+1)*a(i+1,i)/a(i,i)

for j=N,1,-1
x(j)=(a(j,N+1)-a(j,j+1)*x(j+1))/a(j,j)

• A tridiagonal system can be solved in linear time
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Direct Solvers

• The work required by a direct solver is ~O(Neq Nba
2) 

• The storage requirement is ~O(Neq Nba)

• For Neq fixed, try to reduce the bandwidth Nba

• This is achieved by renumbering:

– Cuthill-McKee 
– Wavefront
– Nested dissection

• Iterative solvers usually have less work and storage 
requirements and must be used for non-linear problems



Conjugate Gradient Algorithm (CGA)

• The conjugate gradient algorithm is a general method 
for finding the minimum of a function

• It may be used to solve a set of difference equation

A φ = q

by defining the quadratic form 

V(φ) = ½ φT A φ - qT φ

where φ is the vector of unknowns, q is the vector of 
RHS values and A is an N x N matrix

• The CGA applies if the matrix A is symmetric and 
positive definite 

• This is the case if A is the finite difference representation 
of -∇2



CGA

• Differencing the quadratic equation V(φ) = ½ φT A φ - qT φ
we obtain the gradient vector r:

• And differencing again shows that A is the matrix of 
second derivatives

• These equations show that all first derivatives are zero at 
a solution of the original equations, and if A is positive 
definite, this extremum is a minimum
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CGA

• The CGA finds the minimum of a quadratic function of N
variables in a maximum of N iterations

• The CGA successively finds the minima in subspaces of 
the N variables, starting with a one dimensional 
subspace

• Having found the minimum in one subspace, it expands 
the subspace by one dimension and locates the new 
minimum

• When the dimension of the subspace reaches N, the 
number of original equations, the solution is found



Steepest Descent Method

• The gradient r0 is evaluated at the initial guess φ0

• The initial subspace is defined by the search direction 
s0=-r0 which is in the “steepest downhill” direction at φ0

• The minimum of V(φ) is then computed along the 
direction s0

• If w is the distance along s0, V(φ0+w s0) is a scalar 
quadratic function of w and the minimum at w=w0 can be 
directly evaluated

• This position φ1= φ0+w s0 defines the next value in the 
iteration towards the solution

φ0

φ1

s0

s1



SDM

• The steepest descent method can be extremely slowly 
convergent if the ratio of the maximum to minimum 
eigenvalues of A (called the condition number) is large

• This happens when the valley around the minimum of V
is very long and narrow

• In this case successive iterates tend to bounce across 
the sides of the valley and only progress very slowly 
towards the minimum 



CGA

• The CGA overcomes this problem by choosing the next 
search direction s1 as a linear combination of s0 and the 
new steepest-descent direction –r1 at φ1:

• It can be shown that s1 is the direction of the minimum in 
the 2D subspace containing r1 and s0

• In the 2D example the minimum along s1 is the solution 
of the problem, it has been reached in two steps

00

11

011

rr
rr

srs

⋅
⋅

=

+−=

β

β φ0

s0

s1 φ1



CGA

• The 2D case can be regarded as a slice through a 3D 
problem, and the method extends naturally to higher 
dimensions

• The successive residual vectors have the important 
property of being orthogonal to each other

• Since there can be only N different orthogonal vectors in 
an N dimensional space, the N plus first residual vector 
must be the null vector and the solution has been found



Generalized Minimal Residuals (GMRES)

• Conjugate gradient algorithms fail for non-symmetric matrices
• The problem is that for complex eigenvalues, two search directions 

are not enough
• Thus, the idea is to take more search directions vk, k=1,..., m
• Defining the residual as: 
• Starting vector:

• For j=1,2, …, m-1 we have
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GMRES

• It can be shown that the vectors vk are orthogonal:

• The space defined by the vectors vk is called the Krylov 
space
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GMRES

• The basic scheme updates the solution as a linear 
combination of the search vectors vk:

• Then the residual is minimized, in least squares sense

• The solution can then be written as

• The solution of this system is obtained with a direct 
solver since it is small: Nk x Nk with Nk: Krylov space 
dimension ~10
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GMRES: Properties

• Easy to code
• Easy to maintain
• Easy to vectorize
• Easy to parallelize
• Slow convergence if A is badly conditioned
• => need a good preconditioner P



Non-Linear Problems

• In a non-linear problem we can define a Newton linearization in 
order to enter an iterative approximation sequence

• If the non-linear system is of the form

• The Newton iteration is

• The Jacobian of A defines the iterative scheme
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Non-Linear Problems

• If the linear equation K ∆φn = -Rn is solved by a direct 
method we would obtain the exact solution φ’=φn - K-1 Rn

• The error with respect to the exact solution satisfies

K en = K (φn – φ’) = Rn

• If the system is solved by an iterative method 
represented by the preconditioning operator P/τ

P/τ ∆φ = -Rn

• The error will be amplified by an operator G, such that
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Non-Linear Problems

• For a non-linear system of equations we can consider 
that the conditioning operator should be an 
approximation to the Jacobian matrix of the system (K)

• The iterative scheme will converge if the spectral radius 
(value of the maximum eigenvalue) of G is lower or 
equal to one



Constant and secant stiffness methods

• These names come from finite element applications where the 
following preconditioning matrices are used

Constant stiffness method: P = A(φ0)
• The convergence matrix P is taken as the operator A at a previous 

iteration and kept fixed

Secant stiffness method: P = A(φn-1)
• The Jacobian is approximated by the previous value of the matrix 

A(φn-1)

• The systems obtained can be solved by any of the methods 
described, direct or iterative

• If a direct solution is used, we have a semi-direct method in the 
sense that the iterations treat only the non-linearity



HYPERBOLIC EQUATIONS



Hyperbolic PDE solvers

In  general the solution of PDE’s proceeds as follows:

1. Construct a spatial grid to represent continuous 
functions

2. Build approximations to the spatial derivatives on this 
grid (spatial discretization)

3. Obtain a system of ODE’s
4. Construct a temporal FD scheme to solve the ODE 

system
5. Advance the solution in time



Example: transient heat equation

Given the 1D heat equation:

1. Construct spatial grid:
– Uniform 1D grid: element size h = xi+1 – xi = const.

2. Build approximations to the derivatives on the grid:
– FD approximation:

3. Obtain coupled system of ODE’s:
– For each point i:

– Matrix form:
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Example: transient heat equation

4. Construct the FD temporal scheme to solve the ODE 
system:

5. Code it and solve it 

Remark 1: you will need to estimate the allowable time-step 
for your solution scheme

Remark 2: you will also need to build approximations of the 
boundary conditions and take them into account in the 
solution algorithm
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Explicit and implicit schemes

• Typically time-dependent PDE’s are first discretized in 
space using any of the methods described before

• This results in a system of coupled ODE’s that is then 
discretized usually using finite differences

• Numerical schemes are then classified as explicit or 
implicit depending on how the time derivatives are 
discretized



Explicit and implicit schemes: example
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Mixed schemes

• Hybrid methods are obtained by linear combination of 
explicit and implicit schemes:

• θ=0   : Forward Euler (explicit)
• θ=1/2: Crank-Nicholson (hybrid)
• θ=1   : Backward Euler (fully implicit)
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Advancing explicit systems
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Advancing implicit systems
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Explicit vs Implicit

• Explicit schemes require matrix multiplication
• Implicit schemes require matrix invertion (solution of 

algebraic system at each time step)

• So, why use implicit schemes ? …
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Analysis of numerical schemes

Consistency
• Approximation → PDE for ∆t, ∆x → 0

Stability
• Long term effects of local and round-off errors

Convergence
• Approximation → exact solution for ∆t, ∆x → 0

Accuracy
• Magnitude of local errors

Efficiency
• CPU and storage vs accuracy



Consistency, Stability & Convergence

Governing partial 
differential equation

System of algebraic
equations

Approximate
solution

Exact
solution

consistency

convergence

stability



Consistency 

• Consistency expresses that the discretized equations 
should tend to the differential equations when ∆t and ∆x 
tend to 0

• Condition on structure of numerical formulation

• Discretized equation ⇔ differential equation



Consistency: example
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Accuracy

• The order of accuracy of a method is defined by 
expressing the measure of error in powers of the grid 
size h

phE ≈



Accuracy: example
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Stability

• The numerical scheme should not allow errors to grow 
unbounded, i.e. amplified without bound between two 
steps

• Condition on solution of numerical scheme

• Numerical solution ⇔ exact solution of discretized 
equation



Stability: example
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Convergence

• The numerical solution should approach the exact 
solution of the differential equation as ∆t and ∆x tend to 
zero

• Condition on solution of numerical scheme

• Numerical solution ⇔ exact solution of differential 
equation



Lax equivalence theorem

• For a well-posed initial value problem and a consistent 
discretization scheme, stability is the necessary and 
sufficient condition for convergence:

consistency & stability ⇒ convergence

Analysis of numerical schemes:
1. Analyze the consistency condition: this leads to the 

determination of the order of accuracy of the scheme 
and its truncation error

2. Analyze the stability properties: this leads to detailed on 
the frequency distribution of the error

 From these two steps convergence can be established 



Schemes for hyperbolic equations

• Hyperbolic PDE’s are in general remarkably more 
difficult to solve than elliptic or parabolic equations

• Many interesting problems are described by hyperbolic 
differential equations:
– Gas dynamics
– Dispersion transport
– Climate modeling
– Acoustics
– Electromagnetics
– …



Model equations

• We will illustrate the schemes for hyperbolic equations 
on the 1D conservation law, which can be written in 
conservation form as:

• Or in quasi-linear form as:

• Particular (non-trivial) cases:
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1D linear advection equation

• When the speed a is constant (first order wave equation) this 
equation becomes linear and has analytical solution:

u = u0( x – at )
• This solution represents a pure translation with speed a with no 

deformation or dispersion of the initial “disturbance” (no new 
maxima or minima, i.e. monotonicity is preserved)

• This turns out to be a very difficult problem !
x

u t0 t1



Explicit first order space-centered scheme

• The simplest scheme that can be written for the 1D advection 
equation is forward Euler in time and central differences in space:

• 1st order in time, 2nd order in space
• Unconditionally unstable !
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Lax-Friedrichs scheme

• The stabilizing procedure consists of the following 
replacement:

• In conservation form:
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Numerical dissipation

• The last term of the RHS can be thought as the 2nd order 
central difference discretization of u,xx

• Therefore, the Lax-Friedrichs scheme can be viewed as 
being obtained from an explicit forward Euler time 
integration of an equation of the form:

• This is a convection-diffusion equation with numerical 
viscosity or dissipation α
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Properties 

• This scheme is first order in time and space
• This scheme is monotonicity preserving

• The Lax-Friedrichs scheme is conditionally stable
• The stability or CFL condition is:
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Solutions

• Numerical dissipation => results too “smeared”



Upwind schemes

• Another alternative for stabilizing our original scheme is 
to replace the central difference formula for the spatial 
derivative by a one-sided formula in the direction of 
propagation  (i.e. upwind formula):
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Properties

• First order accurate in space and time
• Monotonicity preserving scheme

• This scheme is also conditionally stable for

• The numerical viscosity term vanishes for a=0
(stagnation regions) and comparing to the Lax-Friedrichs 
scheme it is smaller by a factor of (σ+1)/σ
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Solutions

• Less numerical dissipation => less “smeared” solutions



Lax-Wendroff scheme

• Basic idea: combine space and time discretization to 
achieve second order accuracy

• The Taylor series expansion in time yields:

• Inserting the advection equation repeatedly:
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Properties

• Second order in space and time
• Conditionally stable for

• Not monotonicity preserving !

• The numerical dissipation term is fourth order
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Solutions

• Solutions contain non-physical oscillations (too little 
numerical dissipation where it is needed)



Artificial viscosity

• Second order methods such as Lax-Wendroff generate 
oscillations around discontinuities

• First-order schemes have truncation errors proportional 
to a second derivative that acts as an added numerical 
viscosity. 

• Therefore, these schemes will damp the high-frequency 
components and smooth out gradients



Artificial viscosity

• In order to remove the high-frequency oscillations 
around discontinuities Von Neumann & Richtmyer 
introduced the concept of artificial viscosity

• These additional terms should simulate the effects of 
physical dissipation, on the scale of the mesh, around 
discontinuities and be negligible (of an order equal or 
larger than the truncation error) in smooth regions

• Many artificial viscosity terms have been devised for 
different hyperbolic equations



Godunov’s theorem

• No linear scheme of order higher than one is 
monotonicity preserving

• First order is not accurate enough for practical 
applications !

 Need non-linear schemes



Flux Corrected Transport schemes

Basic idea:
• We desire a high order scheme 
• But a low order scheme is safe
• Then write a scheme of the form:

• Introduce a “limitor” function to limit the “anti-diffusive” 
fluxes:

• The limitor is designed such that:
– c=0 => low order scheme
– c=1 => high order scheme

)(1 lhlnhnn uuuuuuu ∆−∆+∆+=∆+=+

)(1 lhlnn uucuuu ∆−∆⋅+∆+=+



“Limitor” function

• The aim in the design of the limitor function is to create 
no new minima or maxima by adding the “anti-diffusive” 
term

• First the allowed values for un+1 are obtained
• Then the worst case scenario is evaluated:

– All positive fluxes => possible new maxima
– All negative fluxes => possible new minima

• Then limit the anti-diffusive terms so that the new values 
are within the acceptable range of values (given by the 
low order scheme)

• These schemes yield remarkably good results for 
conservation laws or systems of conservation laws

)( lh uu ∆−∆



Multidimensional Upwind Scheme
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Multidimensional Lax-Wendroff Scheme
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FINITE VOLUME METHOD



Finite volume method

• A conservation law can be written in the general integral 
form

• If the flux function is continuous, we can apply Gauss’ 
theorem to get the equivalent partial differential equation

• The finite volume method is based on the integral form of 
conservation laws
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Example: mass conservation

• Consider the time variation of the mass of fluid of density 
ρ flowing through a volume V with a velocity v:
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ρρ

Time variation of total
mass in volume V

Flux of mass across the 
surface of volume V

Mass production 
(source) inside V

Integral form:

Differential form:



Basis of the finite volume method

• Suppose the computational domain is divided into non-
overlapping sub-volumes, then the integral form of the 
conservation law can be written for each of these sub-
volumes or control cells:

where ui is the average of u over the sub-volume vi , and 
the sum of the flux terms refers to all external sides or 
faces of the control cell i

• By summing over all control volumes the original integral 
conservation law is satisfied
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Control volumes

• This is the general formulation of the finite volume method
• In addition to the control volumes, it is necessary to select the way 

to compute the cell volumes and face areas, and how to 
approximate the fluxes at the faces

• The FV method is quite general and can handle any kind of mesh 
(restricted to elements with rectilinear sides)

Cell-centered scheme Node-centered scheme



Finite volumes in 3D

• The finite volume method is applied in a straightforward 
manner in three dimensions

• Typically, the space is subdivided into hexahedral or 
tetrahedral elements

• Expressions for evaluating the volume of these elements 
and the areas of their faces (quads or triangles) are 
available



Evaluation of fluxes at cell faces

• The evaluation of fluxes at cell faces depends on the 
selected scheme and on the location of the unknown 
variables

• Central scheme, Option 1: 

• Central scheme, Option 2:

• The second choice corresponds to the trapezoidal 
formula for the flux integral
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Central and upwind schemes

• The central schemes take the average of the fluxes on 
both sides of the cell face

• The upwind schemes take the flux from the cell 
upstream of the cell face. The propagation direction of 
the associated convection speed is determined by the 
flux Jacobian

• Example: mass conservation law
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Conservative discretizations

• Consider the 1D conservation law

• Discretize this equation with a central difference scheme

• The sum of these equations yields a consistent discretization for the 
conservation law in the interval (i-3/2, i+3/2):
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Conservative schemes

• This happens because the internal fluxes cancel out, 
therefore the discretization is said to be conservative (no 
numerical volumetric sources)

• The conservation property is satisfied if the numerical 
scheme can be written as 

where f* is called the numerical flux
• For instance, flux fi+1/2 is added to cell i and subtracted 

from cell i+1 , thus the global conservation of the quantity 
u is guaranteed

• This is exactly what we get with a finite volume method
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ORDINARY DIFFERENTIAL 
EQUATIONS



Reducing the order of ODE’s

• If you have an ODE of second order or higher, you can 
always write it as a set of coupled, first order equations

• Given

• We can define v(x) so the set

is equivalent to the original 2nd order equation

• This is an essential trick for numerical solution of ODE’s
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Example: harmonic oscillator
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Numerical solution of ODE’s

• A first order non-linear ODE can be written in the form

where the independent variable t increases from an 
initial value t0. The analogous set of coupled ODE’s can 
be written in vector form:

• These are called initial value problems. Given the initial 
conditions y0 we want to integrate this system forward in 
time to determine the value of y(t) at later times.
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Finite Differences for ODE’s

• We will concentrate on finite difference methods

• These methods divide the interval of time t over which 
we wish to integrate the equations into a discrete set of 
values {tn}, where n=0,1,…,N

• The intervals or timesteps between the various values tn
are denoted as {hn}, where hn=tn – tn-1



Numerical schemes for ODE’s

• A scalar ODE algorithm can be written as

where i=0,1,…,n+1 indicates the various discrete steps 
at which the solution has been calculated. The numerical 
schemes that advances yn is embodied in the function F

• The most useful numerical schemes depend on at most 
a few previous values, i.e. i=n, n-1, n-2, …
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Explicit and implicit methods

• Explicit methods: the value of yn+1 depends only on 
values at previous steps (n, n-1, …)

• Implicit schemes: the value of yn+1 depends also on 
values at step n+1



Explicit vs implicit schemes

Explicit schemes
• Easy to code
• Easy to apply boundary 

conditions
• Easy to vectorize /  

parallelize
• Easy to maintain / upgrade
• No limitation on the order of 

accuracy
• Step size limited by stability 

constraint

Implicit schemes
• Can use arbitrary step 

size
• Order of accuracy for 

stable schemes limited to 
2

• Large overhead in 
solving large systems of 
equations



Situations where implicit schemes pay off

• Stiff system of equations / physical stiffness:

relevant or physical step size >> step size required for 
stability

Caution
• If step size too large and non-linear system:
⇒Chaotic solutions possible
⇒Need to conduct convergence study

• Possible solution: step size adaptivity / sensing in time



Classical methods of solution

• One-step methods
• Linear multi-step methods
• Extrapolation methods
• Leap-frog integration methods
• Implicit methods for stiff ODE’s



One-step methods

• Any one-step method can be written as
yn+1 = yn + h F(tn, yn, h)

• The derivative approximation F can be evaluated either 
from a Taylor series expansion about tn

or from approximations of the function F in the integral 
form

• In the latter case, approximations to F typically take the 
form of polynomials or exponentials
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Euler method

• The simplest one-step method is the explicit, first order 
Taylor algorithm or Euler method:

yn+1 = yn + h f(tn, yn)

• In this method, we truncate the Taylor series after the 
first term ~O(h)

• Taylor series algorithms for higher orders can be written 
analogously from the Taylor series expansion. Typically 
the higher derivatives are found from analytical 
differentiation of the original ODE’s and substituting into 
the Taylor series



Runge-Kutta methods

• RK methods are efficient, easily programmed, one-step 
algorithms that generally give higher order accuracy than 
Taylor series methods

• Their gains come from evaluating the function f(t,y) at 
more than one point in the neighborhood of (tn, yn) 
instead of evaluating higher derivatives

• The function F is expressed as a weighted average of 
first derivatives obtained numerically at points in the 
region [tn , tn+1]



Runge-Kutta schemes

• The generic form for an N-stage Runge-Kutta scheme is

where i=1,2,…, N labels the stage, and 

• Explicit schemes are obtained when all k values used 
are calculated at an earlier step, i.e. when bij=0 for all j≥i
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Modified Euler method

• Explicit
• 2nd order accurate
• Two-stage method with a2=1/2, b21=1/2, c2=1 and all 

other constants zero:

• The Euler method is used to estimate the value of y at 
the half step [tn,tn+1]. Then the average estimate of the 
derivative is a step-centered quantity. No extra storage is 
required.
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Improved Euler method

• Explicit
• 2nd order accurate
• Two-stage method with a2=1, b21=1, c2=1/2 and all other 

constants zero:

• This method takes the average of the old derivative and 
the first-order estimate of the new derivative at the end 
of the step

• This method requires extra storage for k2
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Classical Runge-Kutta scheme

• Explicit
• 4th order accurate
• Four-stage method:

• This is the most commonly used one-step method
• Requires extra storage for ki
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Low storage Runge-Kutta scheme

• Explicit
• N-stage scheme:

where i=1, 2, …, N
• Nth order accurate for linear ODE’s
• Low storage (only need to store previous stage)
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Linear multi-step methods

• A N-step multi-step method can be written in general 
form:

for i=1, …, N

• We typically need to know the set of past quantities

at equally spaced intervals in h to compute yn+1. Thus, 
results must be stored for several steps back.
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Adams-Bashford method

• 4th order accurate
• Explicit scheme:

• The N=1 method is the same as the first-order Euler 
method
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Adams-Moulton method

• 4th order accurate
• Implicit scheme:

• The N=1 method is called the trapezoidal method
because it is a trapezoidal quadrature formula
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Predictor-corrector methods

• The Adams-Bashford and Adams-Moulton methods are predictor-
corrector methods because they use a lower order method to 
predict the answers until enough timesteps have accumulated to 
carry out the full timestep procedure

• In practice, predictor-corrector methods compare favorable to 
Runge-Kutta methods, they can be made more accurate with equal 
computational effort

• Runge-Kutta methods are self-starting because they only require 
data at one time level to begin the integration. Predictor-corrector 
methods often use a one-step method to accumulate enough values 
from previous times to proceed

• In Runge-Kutta methods it is easier to vary the timestep (adaptive 
steps)



Extrapolation methods

• The idea of the Euler-Romberg method is 
to integrate the equation over the interval 
h many times using Euler’s method with 
h, h/2, h/4, …

• Then an extrapolation is made to h=0 with the increasingly accurate 
integrations with smaller and smaller h values

• This algorithm is selft-starting an rivals the best predictor-corrector 
schemes for efficiency and accuracy

• The choice of step size is fairly arbitrary because the method 
successively halves the step size until the required accuracy is 
achieved at each step



Leap-frog integration methods

• In this method, two sets of staggered variables are used:

• The system of equations is:

• Because the derivative of yn depends on the dependent variables 
Yn+1/2 and vice versa, the centered derivative for each of the 
variables can always be evaluated explicitly using the most recently 
updated values for the other set of variables
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Leap-frog scheme

• The second order explicit leap-frog algorithm is:

• This algorithm is reversible, thus long integrations can be traced 
back to their initial conditions. This property is particularly useful for 
systems of ODE’s that exhibit time reversibility

• One of the major uses of this algorithm is in particle dynamics 
where the positions x≡y depend on the velocities v≡Y and the 
velocities depend on a force that is only a function of the 
instantaneous positions
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Schemes for stiff ODE’s

• Stiffness is related to the presence of a wide range of 
time scales affecting the system dynamics

• Mathematically, a system is stiff when its Jacobian 
matrix has eigenvalues whose magnitudes differ by a 
large ratio

• This means that at least two independent homogeneous 
solutions vary with time at greatly disparate rates

• Stiff problems make us seek methods that do not restrict 
the step size for stability reasons, and which can treat 
widely disparate scales in some reasonable manner



Stiff ODE’s

• When there are two or more very different “time-scales” 
in the problem:
– You can’t integrate with the big time steps, because you will miss 

the rapid changes
– You can’t integrate with the small time steps, because you may 

miss the slow changes

• Example:

solution:

the second term dominates very rapidly when x<0
However, for x>0, the first term dominates
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Backward differentiation formulas

• These are linear multi-step methods:

with α0≠0 and βi≠0

• Coefficients for backward differentiation methods:
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Backward differentiation methods

• These are the most common methods for solving stiff 
ODE’s

• The order of accuracy of these methods is equal to the 
number of steps N

• The first order method is the backward Euler method



Exponential methods

• Implicit methods for stiff ODE’s are derived by curve-fitting:
an interpolating function is adopted with free parameters 
determined by requiring the interpolant to satisfy certain conditions 
on the approximate solution and its derivatives

• Example: choose the two parameter polynomial function

•

as the interpolant and require that I(t) satisfy

•

on the interval [0,h]=[tn , tn+1]. This results in Euler’s method:

• Other constraints and interpolants result in other previously 
described explicit and implicit schemes
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Exponential methods

• The basis of this approach is that exact solutions of stiff 
ODE’s behave like decaying exponential functions

• Exponentials are poorly described by polynomials when 
the step size is larger than the characteristic decay rate

• Thus, using exponential approximations should allow 
considerably longer timesteps



Exponential methods

• Consider the three-parameter exponential interpolant:

for which A, B and Z must be determined.
• The constraints (same as previous example) determine 

A and B in terms of Z:

• Thus, the scheme is:
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Exponential methods

• There are a number of ways to choose the parameter Z:

• It has been shown that exponential methods can be at 
least comparable in speed and accuracy to the backward 
differentiation methods for stiff ODE’s
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Variable step sizes

• One of the “big ideas” in numerical ODE solvers (and in 
computational sciences as a whole) is variable step sizes

• Not ALL steps need to be the same size. The step size taken should 
depend on the local behavior of the function

• Taking a previous example:

At x>>1 the function changes very slowly ⇒ large steps
For 0<x<1, it changes very rapidly ⇒ smaller steps

• The trick is understanding when to change the step size
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Adaptive step sizes

• The fundamental ingredient for an adaptive step size method is a 
way to estimate the error of the numerical approximation

• There are two basic ways of checking the local error:
– Use two methods with different orders over the same interval
– Use two step sizes over the same interval

• The first method allows you to use two integrators with different 
order on the same step, and you estimate the error by

• Usually, the low order method will have less accuracy than the high 
order method
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High / low order step control

• The basic idea is to solve the same problem using a high order and 
a low order method to estimate the error

• The most common example combines a 4th and a 5th order Runge-
Kutta routine (known as Runge-Kutta Fehlberg):
– Make a trial calculation using the 4th order method
– Make a trial calculation using the 5th order method
– If the difference is small, take a step using the 5th order trial result
– Based on the error between the two methods and a prescribed 

tolerance, set the step-size for the next step:

– If the difference between the two methods is large, repeat the steps 
with a smaller step-size
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Error estimation

• In some cases, you can’t use a high order method for a step
• But you can always take two sets of steps over the same interval. 

The first step can use a step-size h, and the second a step-size h/2

• Again, we form the approximate error by considering the difference 
of the two methods

• The assumption we are making is that the small step size is a better 
estimate than the big step size. If the method converges, this is very 
likely
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Using error estimates

• After you have calculated the local error, you then use it 
to make decisions about the local step. You need to set 
an error tolerance for the integrators

• The algorithm works something like this:
– Calculate the local error
– If the local error is larger than the error tolerance, decrease the 

step size and repeat the step
– If the local error is MUCH smaller than the error tolerance, 

accept the step, but increase the step size for the next iteration
– If the local error is acceptable, then accept the step and continue



Using error estimates

• You always use the highest order method for the actual step since it 
is more accurate than the lower order method

• Variable step sizes will not work well with all methods

• In predictor-corrector methods, for example, it is difficult to change 
the step size since they rely on the information from the previous 
steps



Global conservation measures

• The idea is to find global quantities to monitor during the integration 
which should be conserved. In some simulations, total energy, total 
angular momentum, total mass, etc. can be tracked and checked for 
conservation. If these quantities vary much from their initial values, 
something went wrong

• In reality, global conservation measures really aren’t the best way to 
control the error in ODE integration. However, they provide an 
independent check of the accuracy of the results

• We could look at (say) the energy change at each time-step and see 
if it goes beyond a preset limit, and adjust the step size accordingly. 



Local step size criteria

• One of the most common ways to set the step size is to use local 
step size criteria. Basically, we find some local stability criteria in the 
equations which should not be violated, and then set the step-size to 
be based on this value

• The best examples of this are in fluid mechanics, where the step 
size is driven by the Courant-Frederichs-Levy (CFL) condition. The 
assumption is that information should propagate between cells at a 
rate which does not exceed the time the fastest fluid element can 
cross the smallest grid cell

• Similar criteria are used in other fields



PARTICLE METHODS



Particle systems

• Particle simulations are common in many fields of 
computational sciences

• Many continuous problems can be re-cast as particle 
systems

• Many problems can be thought of as particle systems 
(e.g. visualization / computer graphics – smoke, fire, …)

• Pros: particles are easier to handle than meshes 
• Cons: usually need many particles, boundaries are 

difficult



Governing equations

• System of coupled ODE’s given by Newton’s second 
Law:

• The force vector is the sum of the forces exerted by all 
other particles and external forces

mass :
 vectorforce :

vector velocity  :
ectorposition v :
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Particle forces

Different types of forces can be applied to the particles:

• Forces from an external field
– Particles traveling through an electro-magnetic field (Lorentz 

forces)
– Particles traveling through a gravitational field
– Particles moving with a given velocity field (streamlines)

• Forces from other particles
– Charged particles
– Gravitating particles
– Collisions

• Forces from the domain boundaries
– Contact forces



Example force fields

[ ]BvEF ×+= q :force Lorentz
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Example particle-particle forces

• Classical (Newton’s) gravitation:

• Electrostatic (Coulomb) forces:

• Molecular dynamics (Lennard-Jones potential):
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Basic methods

• Particle-Particle Method (PP)
• Particle-Mesh Method (PM)
• Particle-Particle Particle-Mesh Method (P3M)



Particle-Particle Method

• Simplest method to advance a particle system

Basic idea:
• Compute total force on each particle as sum of forces 

exerted by all other particles
• Advance particle velocities using Newton’s second law
• Advance particle positions from current velocities



PP basic loop

• Initialize force array: fi=0
• For each pair of particles i,j:

– Compute force fij
• Integrate equations of motion

– Advance velocities
– Advance positions

• Update 
– Velocities
– Positions
– Time

• Loop back



Code structure
t=0.0; init(x,v);                                                       //  initialization
for(k=0; k<Ntime; k++) {                                      // time loop

for(i=0;i<3*Npart;i++) {xi[i]=x[i]; vi[i]=v[i];}  // init stage temp arrays
for(i=0; i<Nstage; i++) {                                  // loop over RK stages

alpha=dt/(Nstage-1+i);                                 // RK factor
calcForces(x,f);                                            // calc RHS (forces)
for(j=0; j<Npart; j++) {                                 // loop over particles

xi[3*j]=x[3*j]+alpha*v[j*3];  …               // advance positions
vi[3*j]=v[3*j]+alpha*f[j*3];   …             // advance velocities

}  
}
for(i=0; i<3*Npart; i++) {x[i]=xi[i]; v[i]=vi[i];}  // update veloc & pos
t+=dt;                                                                    // update time

}
output(x,v,t);



Force calculation

calcForces(x,f) {
for(i=0; i<3*Npart; i++) f[i]=0.0;               // init force array =0
for(i=0; i<Npart; i++) {                           // loop over particles i

for(j=0; j<Npart; j++) {                        // loop over particles j
if( j==i ) continue;                            // skip j=i
dx=x[i*3   ]-x[j*3    ];                         // distance in x
dy=x[i*3+1]-x[j*3+1];                        // distance in y
dz=x[i*3+2]-x[j*3+2];                        // distance in z
r2=dx*dx+dy*dy+dz*dz; r=sqrt(r2);  // distance^2 and distance 
f[i*3]+=k/r2 * dx/r;  …                       // forces in x y and z

}
}

}
}

=>   Loop: Npart * Npart 



Operation count

• For one time step and Np particles:
– Force calculation: O(Np

2)
– Update: O(Np)

• => FLOPS ≈ 10 Np
2

(FLOPS: floating point 
operations per second)

 To do one timestep per second with 106 particles, 
we would need a 10 Tflops machine

Np FLOPS/timestep

102 105

103 107

104 109

105 1011

106 1013

107 1015



PP Improvements

• Symmetric force calculations 
• Short range interactions
• Long range interactions



Symmetric force calculations

• Newton’s 3rd law: fij =- fji
• Can cut the inner loop in the force calculation by 2

for(i=0; i<Npart-1; i++) {
for(j=i+1; j<Npart; j++) {

compute fij
add to i and subtract from j

}
}

=>    Loop: Npart * ( Npart -1 ) / 2



Avoiding force divergences

• Several force potentials diverge at r=0 (when two 
particles become too close) causing numerical 
instabilities

• Option 1: use adaptive time-steps
• Option 2: add a force cut-off for r<ε

(neglect very short range force effects)
• Option 3: add repulsive term to model particle collisions 

r
φ(r)

cut-off

ε

r

φ(r)



Adaptive time-steps

• Use adaptive time-steps to increase temporal resolution 
when particle accelerations are large

• High-low order step control
– Use a high and a low order method to advance each step
– Estimate local error & adapt time step

• Step doubling
– Take each step twice
– Estimate local error & adapt time step



Force cut-offs and fast searching

• Neglect very long range force effects: add a force cut-off 
by making force=0 for r>rmax

• Then consider only neighboring particles with r>rmax

• Use appropriate data-structures for fast searching of the 
closest particles to a given particle:
– Octrees / Quadtrees
– Bins

• Clustering of particles is still a
problem since there may be many
particles inside the force interaction
range

rφ(r)

cut-off

rmax



Multipole expansions

• Consider a localized distribution of charge that is 
described by the charge density ρ(x) which is non-
vanishing only inside a sphere of radius R

• The potential outside the sphere can be written as an 
expansion in spherical harmonics:

• The coefficients can be found from the Poisson integral 
(Green’s theorem for the Poisson integral):
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Multipole expansion

• The qlm coefficients are called the multipole moments
• q00 is the monopole moment
• q11 and q10 are the dipole moments
• q22, q21 and q20 are the quadrupole moments
• …

• There are formulas for computing the monopole, dipole 
and quadrupole terms from the given density distribution

• Multipole expansions are useful for approximating the 
potential of a localized charge distribution (by truncating 
the expansion for example at the quadrupole terms)



Multipole expansion

• Situations where a multipole expansion may pay off 
include interacting clusters of particles

• Examples: interacting galaxies / stellar clusters



Particle-Mesh Method

• The basic idea is to compute the forces on particles from 
an energy potential function evaluated on a grid

• The basis of this approach is that there are fast solvers 
for obtaining the solution of the governing equation for 
the potential (i.e. faster than N2)

• This method is faster but the force evaluation is less 
accurate



Force calculations from potentials
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Fast Field Solvers Using Fourier Transforms

• The Fourier Transform of a function h(t) is defined as

• And the inverse Fourier Transform is

where 

and ω is the angular frequency

• Fourier Transforms move the function from the time 
domain to the frequency domain
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FFT’s

• There are numerous algorithms available to compute the 
Fourier Transforms in N log N time 

• These are called Fast Fourier Transforms or FFT

• See for example Numerical Recipes



Fourier Convolution Theorem

• Given two functions f(t) and g(t-τ), their convolution is defined as:

• For a continuous Fourier Transform, it can be shown that

and for a discretely binned set of functions

or

since the FFT’s each take O(N log2 N) calculations, the convolution 
using an FFT wing BIG over brute force convolution
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Field Solver

origin at the chargeunit  a of potential :)(

)()()(

'
1

)'(   :function sGreen'

')'()'()(  :integralPoisson 

  :equationPoisson 
3

2

xG

xxGx

xx
xxG

xdxxxGx

ρφ

ρφ

ρφ

⊗=⇒

−
=−

−=

=∇

∫



Field Solution Using FFT’s
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PM basic loop

• Compute density on mesh from particle positions → ρ
• Solve Poisson’s equation → φ
• Compute forces at the mesh points → fij

• Interpolate forces to particle positions → fip

• Advance particles one timestep → xn+1

• Update time → t = t + ∆t
• Loop back



Operation count

• For one time step with Np particles and Nm mesh points:
– Density calculation ~ O(Np)
– Potential calculation ~ O(Nm log Nm)
– Force calculation ~ O(Np)
– Update ~ O(Np)

• => FLOPS ≈ 20 Np + 5 Nm log2 Nm

 To do one timestep per second with 106 particles, 
we would need a 40 Mflops machine (workstation)

Np Nm FLOPS / ∆t
102 83 2.5 x 104

103 83 4.3 x 104

104 163 4.4 x 105

105 163 2.2 x 106

106 643 4.4 x 107

107 1283 4.2 x 108



Properties

• Gain in speed at the cost of resolution

• Potential and force of a single particle poorly 
represented for distance < mesh spacing h

• Resolution depends not only on the grid size but also on 
the choice of interpolating functions



Charge and force evaluations

Forces are computed by:

1. Accumulating densities (particles → mesh)
2. Solving a Poisson equation
3. Interpolating forces to particles (mesh → particles)

Accurate forces => make transfers as accurate as possible



Notation 
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Nearest Grid Point (NGP) Method
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Cloud in Cell (CIC) Method
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Triangular Shaped Cloud (TSC) Method
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Particle-Particle Particle-Mesh Method

Basic idea:
• Split forces into short and long range contributions
• Compute short range forces from close particles (PP)
• Compute long range forces from potential (PM)

Advantages:
• Avoids the global Np

2 complexity
• Retains local accuracy

Difficulty:
• Need to properly define the cut-off distance



Long range force (PM)

• The total “mesh” force on a particle is computed as in 
the PM method:

1. Assign charges to the potential mesh
2. Solve for the potential
3. Difference potentials to find mesh fields
4. Interpolate to find forces on particles



Short range force (PP)

• The short range part of the force on a particle is 
computed as the sum of the inter-particle force with a 
cut-off:
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Short range force calculation

• To avoid looping over Np particles a bin data structure is used

• Use linked list to store particles in each bin
• For each particle, search for particles inside re by looking at the bins 

that contains the particle and its neighbors

re

Bin mesh

Potential mesh



Optimizations 

• To avoid duplicate calculations of force pairs, loop over 
the bins and compute the force between particle pairs in 
this bin and with particles in neighboring bins, then add 
the contributions to both particles

• Considerable savings are made in the force calculation 
by tabulating the values of the force at uniform intervals 
of r2

• Then for each force pair calculation the force r2 is 
computed and the value of the force is interpolated from 
the table instead of computing the square root



Operation count

• For one time step with Np particles and Nm mesh points:
– PM force calculation ~ O(Np + Nm log2 Nm )
– PP force calculation ~ O( (re/h)3 * Np

2 / Nm )

• => FLOPS ≈ αNp + βNm log2 Nm + γ (re/h)3 * Np
2 / Nm

• Increased cost from PM method but still avoids the N2

problem

 To do one timestep per second with 106 particles, 
we would need a supercomputer



Smoothed Particle Hydrodynamics

• SPH was invented to deal with problems in astrophysics 
involving fluid masses moving arbitrarily in three 
dimensions, in the absence of boundaries

• The fundamental idea of SPH is to use an interpolation 
method which allows any function to be expressed in 
terms of its values at a set of disordered points 
(particles)

• So, SPH is a particle method to approximate the solution 
of the equations of motion of continuous fluids



Interpolation

• The integral interpolant of any function A(r) is defined as:

where the integral is over the entire space and W is the 
interpolating kernel, which has the following properties:

h defines the smoothing length of the kernel W
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Numerical Interpolation

• For numerical work the integral interpolant is 
approximated by a summation interpolant:

where the particle i has mas mi, position ri, density ρi and 
velocity vi. The value of any quantity A at the position of 
particle i is Ai

• The essential point is that function derivatives can be 
obtained from the kernel derivatives
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Density

• For example, the density can be estimated everywhere 
as

• This can be interpreted as the smoothing of the particle’s 
point mass by the kernel so as to obtain a continuous 
density field from a set of particles
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Mass conservation equation
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Momentum conservation equation
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Thermal energy equation
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More physics

Extra terms have been devised to include different effects 
into the previous equations:

• External pressures
• Viscosity
• Thermal conduction
• Gravitational forces
• Magnetic fields (MHD)
• Special relativity



Kernels 

• Several kernels have been devised:
• Gaussian kernels
• Splines

• Design criteria:
• Smoothness
• Compact support



Applications 

• SPH has been successfully applied to a variety of 
problems:

• Shocks and shock tubes
• Blast and wave phenomena
• Interaction / collision of starts
• Meteor / comet impacts
• High speed impacts of metals
• Binary star formation
• Structure formation in the universe
• Supernova explosions
• Nuclear collisions (special relativity)
• Neutron stars
• Plasma physics



Initialization

• Initialization of particle simulations must be done carefully

• The best way to initialize particle codes is from given density and 
velocity distributions

• Density distributions are usually given in the form of a probability 
function of space, such as a uniform distribution, a Gaussian 
distribution, etc

• Velocity distributions can be given in the form of a velocity 
probability distribution, such as the Maxwell-Boltzmann distribution 
(Gaussian velocity distribution); or from an initial velocity field, such 
as a differential rotation, etc.

• Random numbers with a non-uniform deviate are used to generate 
the initial conditions from given probability distributions



HIGH PERFORMANCE 
COMPUTING



Why Supercomputers ?

We want to:
• Run many problems in a timely manner (e.g. optimization)
• Run more complex problems (e.g. multi-scale models)
• Run larger problems (e.g. more resolution)
• Run for longer times (e.g. atmospheric dispersion models)

Major issues:
• Speed
• Memory
• Storage



Computer Hardware

• Workstations → PC’s , SGI workstations
– Cache
– Small RAM
– Graphics
– Single or dual processors

• Vector Machines → Cray , NEC, …
– Degradation for scalar operations
– Need appropriate coding
– No graphics

• Parallel Machines → SGI Altix/Origin , Clusters, …
– Cache 
– Degradation for scalar operations
– Message passing programming
– Data distribution



Forms of Parallelism

• Multiple functional units
• Pipelining
• Vector processors
• Multiprocessor systems
• Distributed systems



Multiple Functional Units

• This is one of the earliest forms of parallelism
• It consists of multiplying the number of functional units 

such as adders and multipliers
• The detection of parallelism is done at compile time with 

a dependence analysis tree

• Example of dependence analysis for arithmetic 
expression and parallel processing of operations

a b

+

+

+

c d

*

e f

*

(a + b) + (c * d + d * e)



Pipelining 

• The concept of pipeline is that of an assembly line
• Assume that an operation takes s stages to complete
• Then the operands can be passed through the s stages instead of 

waiting for all stages to be completed for the first two operands

• If each stage takes a time t to complete, then an operation with n
numbers will take the time s*t + (n-1)*t=(n+s-1)*t

• The speedup would be the ratio of the time to complete the s stages 
in a nonpipelined unit: S=ns/(n+s-1)     (S≈s for n>>1)

• Examples: Cray

Xi
Yi

Xi-1
Yi-1

Xi-2
Yi-2

Xi-3
Yi-3

stage 1 stage 2 stage 3 stage 4



Vector Processors

• Vector computers are equipped with pipelined functional 
units such as pipelined floating point adders and 
multipliers

• In addition they incorporate vector instructions explicitly 
as part of their instructions sets. For example:
– vload: load a vector from memory to a vector register
– vadd:  add the content of two vector registers
– vmul:  multiply the content of two vector registers

• Similarly to multiple functional units for scalar machines, 
vector pipelines can be duplicated into multiple vector 
pipelines

• Examples: NEC, Fujitsu



Multiprocessor Systems

• A multiprocessor system is a computer, or a set of 
computers, consisting of several processing elements, 
each consisting of a CPU, a memory and an I/O system

• The processing elements are interconnected with a bus 
or network

• Examples: Dual Processor PC’s, IBM SP3



Distributed Systems

• Distributed computing is a more general form of 
multiprocessing in which the processors are actually 
computers linked by a local area network

• Distributed systems can be homogeneous (same 
computer in each node) or heterogeneous (linking 
different types of computers)

• Computer clusters are usually homogeneous systems 
with a fast network connection between them

• Computer farms are usually heterogeneous systems 
connected with a slower network



Parallel Processing Models

• Vector pipeline model
• Shared memory model
• Single instruction multiple data model or data parallel 

models
• Distributed memory message passing model



Vector pipeline model

• Vector computers have vector pipeline processors 
connected to a large global memory

• The parallelization is done at the level of the arithmetic 
operations

• Useful when we need to do many times the same 
operation on an array of data (vector operation)

• Model: subdivide the arithmetic operations into different 
stages and perform every stage on a different entry



Shared memory model

• Shared memory computers have the processors connected to a 
large global memory with the same global view

• The parallelization is done at the level of the loops
• The advantage of this model is that the transparent data access 

greatly simplifies the programming

• There are two types of shared memory machines:
1. Bus-based architectures
2. Switch-based architectures

P P P P

High Speed Bus

Shared Memory

P P P P

Switching Network

M M M M



High Performance Programming

• Coding for scalar computers
• Coding for vector computers
• Coding for shared memory computers
• Coding for distributed memory computers



Memory architecture

Modern computers have a hierarchical memory system:
• Backup system: tapes / DVD / CD-ROM / floppy
• Hard disk / virtual or swap memory
• RAM
• Cache 
• Registers on the processor

Processor
Registers

Cache

RAM

Hard Disk Tape



Timing and profiling

• Code optimization goes hand in hand with code profiling
• You should always optimize the portions of your code 

that take the longest time to execute (bottlenecks)

• You can use the Unix “time” command to get the total 
execution time of your code

• You can access the system time in your code to time 
individual routines

• Or you can use profiling programs to time your code 
modules



Simple Code Optimization

• Reducing operation counts
• Reducing indirect addressing
• Reducing cache misses



Example: PP code

for i=1,n
for j=1,n

if( i==j ) continue
if( sqrt((x(i,1)-x(j,1))**2+(x(i,2)-x(j,2))**2)<1.0e-1 ) {

f(i,1)=f(i,1)+1/4/3.14/e0*q(i)*q(j)*(x(j,1)-x(i,1))/
(sqrt(((x(i,1)-x(j,1))**2+(x(i,2)-x(j,2))**2))**3)

f(i,2)=f(i,2)+1/4/3.14/e0*q(i)*q(j)*(x(j,2)-x(i,2))/
(sqrt(((x(i,1)-x(j,1))**2+(x(i,2)-x(j,2))**2))**3)

}
}

}
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Optimization #1

Don’t use Matlab !
• Using the Matlab profiler we find that one force calculation for 200 

particles takes about 55.56 seconds
• Assuming the code scales as N2, it will take (106/200)2 *55.56 

seconds to do a single calculation for a million particles
• This means we need about 44 years per timestep, or about 44,000 

years for a 1000 timestep run
• Using F90 on the same machine (SGI O2) one time step with 200 

particles took 0.026 seconds (2000 faster than Matlab)
• With this improvement we move down from 44 years per timestep to 

only 7.5 days per timestep ! And the entire run would take about 2 
years



Reducing Operation Counts

• The simplest code optimization is to try to reduce the 
number of operations performed to a minimum, taking 
into account that some operations are more expensive 
than others

• Some operations from more to less expensive: 
– function calls
– memory allocation (malloc)
– if statements
– trigonometric functions (sin, cos, exp)
– sqrt, ** or  ^ or pow
– division (/)
– multiplication (*)
– addition (+, -)
– bit operations (&, <, >, ~, ^)

Integer operations are faster than 
floating point operations



Example: PP code

rmax=1.0e-1;  rmax2=rmax*rmax
const=1.0/(4.0*e0)
for i=1,n-1

for j=i+1,n
dx=x(j,1)-x(i,1);   dy=x(j,2)-x(i,2);
r2=dx*dx+dy*dy
if( r2<rmax2 ) {

tmp=const*q(i)*q(j)/(r2*sqrt(r))
f(i,1)=f(i,1)+tmp*dx;  f(j,1)=f(j,1)-tmp*dx;
f(i,2)=f(i,2)+tmp*dy;  f(j,2)=f(j,2)-tmp*dy; 

}
}

}



Reducing Indirect Addressing

• Fetching variable values from memory by following a 
pointer or array index takes longer than accessing the 
value stored in a variable directly (indirect addressing)

• => the objective is to minimize the memory access 
through indirect addressing



Example: PP code

rmax=1.0e-1;  rmax2=rmax*rmax
const=1.0/(4.0*e0)
for i=1,n-1

xi=x(i,1); yi=x(i,2); qi=q(i);
for j=i+1,n

dx=x(j,1)-xi;   dy=x(j,2)-yi;
r2=dx*dx+dy*dy
if( r2<rmax2 ) {

tmp=const*qi*q(j)/(r2*sqrt(r))
tmpx=tmp*dx;  tmpy=tmp*dy
f(i,1)=f(i,1)+tmpx;  f(j,1)=f(j,1)-tmpx
f(i,2)=f(i,2)+tmpy;  f(j,2)=f(j,2)-tmpy

}
}

}



Reducing Page and Cache Misses

• Whenever you request a value that is not in the RAM, you get a 
page fault (the value is fetched from swap memory – i.e. the hard 
drive). The access time is then 100 times slower

• Page faults can only be avoided by allocating less memory and 
using only the memory that is actually needed

• Whenever you request a value that is not in the cache, the 
processor loads it from RAM and you get a cache miss. The access 
time is 10 or more times slower

• When an array element is loaded from RAM to the cache, the 
processor actually loads a chunk of the array. Therefore, 
performance can be improved by processing that are close in 
memory in order to avoid cache misses



Reducing Cache Misses

The main strategies for reducing cache misses include:
• Proper memory allocation (by chunks)
• Proper array access in loops
• Renumbering of array elements (sort the array elements 

in the processing order)



Example: PP code
rmax=1.0e-1;  rmax2=rmax*rmax
const=1.0/(4.0*e0)
for i=1,n-1

xi=x(1,i); yi=x(2,i); qi=q(i);
for j=i+1,n

dx=x(1,j)-xi;   dy=x(2,j)-yi;
r2=dx*dx+dy*dy
if( r2<rmax2 ) {

tmp=const*qi*q(j)/(r2*sqrt(r))
tmp=const*qi*q(j)/(r2*sqrt(r))
tmpx=tmp*dx;  tmpy=tmp*dy
f(1,i)=f(1,i)+tmpx;  f(1,j)=f(1,j)-tmpx
f(2,i)=f(2,i)+tmpy;  f(2,j)=f(2,j)-tmpy

}
}

}



Other examples

Recursive function calls:

double fact(double a) {
return (a==1)?1:fact(a-1);

}

double fact(double a)
{

double r=1;
for(i=2; i<=a; i++) r=r*i;
return r;

}

Memory allocation:

while( !EOF ) {read(x,y,z); 
listadd(x,y,z);}

listadd(x,y,z) {
newpt[num++]=malloc(3);
…

}

listadd(x,y,z) {
if(num+1>=nalloc) 
pts=realloc(3*chunk)

…
}



Compiler optimizations

Some of these optimizations are already performed by 
compilers (when invoked with the –O –O2 or –O3 flags), 
but usually what a compiler can do are simple 
optimizations:

• Removal of inaccessible code
• Removal of code that produces unused results
• Simplification of constants
• Constant folding (un-redefined variables)
• Common sub-expression elimination
• Mathematical simplifications
• Removal of loop invariant code
• Simplification of inductive code



Vectorization

• The idea of pipelining is to divide the operations into stages and 
perform each stage on different entries simultaneously

• Example: adding two arrays  a(i)=b(i)+c(i)  i=1,n
• Stages:

– Fetch b(i)
– Fetch c(i)
– Compare exponents
– Align mantissas
– Add
– Normalize
– Store a(i)

• In reality there are more stages (~16), therefore gains of 
approximately 1:16 can be obtained



Vectorization

Vectorization pays off if:
• Vectors are sufficiently long 

(at least n>16, but the longer the better)
• Loops can be vectorized:

– No recurrence
– No complex if statements or code branching
– Orderly memory access

• Your program must be carefully coded in order for the 
compilers to properly vectorize operations



Example

Original code:
do i=1,1000

do j=1,3
a(i,j)=(a(i,j)+b(i,j))*a(i,j)+b(i,j)

enddo
enddo

Improved code (longer inner loop => larger vector processing):
do j=1,3

do i=1,1000
a(i,j)=(a(i,j)+b(i,j))*a(i,j)+b(i,j)

enddo
enddo



Another example

• Force calculation for a spring system

do iedge=1,nedge
a =edpo(1,iedge)
b =edpo(2,iedge)
fx=k*( x(1,j)-x(1,j) )
fy=k*( x(2,j)-x(2,j) )
f(1,i)=f(1,i)+fx
f(2,i)=f(2,i)+fy
f(1,j)=f(1,j)-fx
f(2,j)=f(2,j)-fy

enddo
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Problem: possible access of same 
point by different edges
=> memory contention



Avoiding memory contentions

• Memory contentions can be usually avoided by processing groups of 
disconnected elements (in this case edges)

• Idea: in each group no point is accessed more than once
• Coloring algorithms are use to create these groups
• The code in our example would then look like this:

do igroup=1,ngroup
istart=group(1,igroup)   ! first edge of this group
iend =group(2,igroup)   ! last edge of this group

c$dir ivdep                       ! compiler directive: ignore vector dependencies
do iedge=istart,iend

…
enddo

enddo



Parallel computing

• Basics
• Shared memory: processes and threads
• Distributed memory: message passing



Speedup

• The speedup can be computed by dividing the time 
required to run on 1 processor to the time it takes to run 
on N processors

• In some cases, due to data locality and the memory 
cache, superlinear speedups can be achieved (e.g. 
running on 2 processors you get a speedup of 2.2)

Nproc

Speedup

Nproc

Time



Amdahl’s law

• Amdahl’s law states that the speedup of a code can be 
computed as

• α is the portion of the code that cannot be parallelized
• p is the number of processors

• This implies that the speedup is limited by the slowest 
(serial) portion of the code

• If 1% of your code cannot be parallelized, does it make 
sense to run on 100 processors ? And 1,000 ? And 
10,000 ?

p
S
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Code scalability

The performance and scalability of a parallel code will be 
determined by the following factors:

• Load balancing
• Communication speed (system bandwidth)
• Computation / communication ratio 

(problem size and data locality)
• I/O



Coding for shared memory machines

• Parallel programming on shared memory computers 
can follow two basic strategies:

1. By creating independent processes
2. By creating independent threads

• Threads share the same memory space, therefore there 
is no need for explicit communications

• Processes have their own memory space and must 
communicate to exchange data



Parallel Processes

• Parallel processes can be created with the fork() 
command in linux

• This command creates a new process (child) with an 
exact copy of the memory of the calling (parent) process

• The function fork() returns the process id (pid) of the 
child to the parent process and 0 to the child process

• The code execution continues on both processes with 
the next line below the fork() call

pid=fork()
if( pid==0 )  print “I am the child”
else             print “I am the parent”



Communications

Communications between parallel Unix processes can be 
done in a number of ways:

• Signals
• Shared memory + semaphores
• Pipes
• Sockets
• Files



Threads

• The creation of a parallel thread is similar to the fork() 
but in this case the memory space is not duplicated, it is 
inherited by the child thread

• The thread creation function will return the id of the child 
to the parent and 0 to the child

• There are different implementations of threads, the most 
commonly used is pthreads

if( thread_create()==0 )   for i=n/2+1,n  do_work(i)
else                                  for j=1,n/2      do_work(j)



Parallel threads / processes

sequential

sequential

parallel

barrier

fork / create thread



OpenMP

• OpenMP is a set of compiler directives to write parallel 
programs for shared memory machines

• Although it uses parallel threads, the programming is 
different from explicit thread programming for example 
with pthreads

• OpenMP is available for C/C++ and Fortran

• The number of threads used in a parallel calculation can 
be set via environment variables or with explicit function 
calls within the code



Thread management

Environment variables:
• OMP_NUM_THREADS

Functions:
• numt=omp_get_num_threads()
• myid=omp_get_thread_num()



Parallel constructs

C/C++:
#pragma omp parallel shared(a), private(i)
{

i=omp_get_thread_num();
do_work(a,i);

}

Fortran:
!$omp parallel shared(a) private(i)

i=omp_get_thread_num()
do_work(a,i)

$!omp end parallel



Parallel loops

C/C++:
#pragma omp parallel for shared(a,n), private(i)
{

for(i=0; i<n; i++) a[i]=i*i;
}

Fortran:
!$omp parallel do shared(a,n) private(i)

do i=1,n
a(i)=i*i

enddo
$!omp end parallel do



Other constructs

• master: 
specifies that a block is executed only by the master of a 
thread group

• critical: 
specifies that a block is executed by a single thread at a 
time

• barrier: 
waits until all threads have reached this point

• reduction: 
the reduction operator, a copy of temporary values are 
stored in each thread and at the end of the parallel 
construct these variables are associated with the 
specified operator



Caution

• Need to be careful with memory consistency

#pragma parallel for shared(a,n), private(i) 
{

for(i=1; i<n; i++) a[i]=a[i-1];
}

• Sometimes you will need to duplicate memory or change 
the execution logic in order to achieve the correct result 
in parallel



Coding for distributed memory machines

• There are two basic modes of programming for 
distributed memory computers:

1. A single program is loaded and executed in each node 
simultaneously 

2. A master program is launched on one of the nodes that 
then launches slave programs into the other nodes

• Then the processes running on different nodes 
communicate with each other via message passing

• The two most common libraries for message passing 
are PVM (Parallel Virtual Machine) and MPI (Message 
Passing Interface)



Operations

• Process control
• Global operations
• Communications
• Group operations



Process control

• Initialize the parallel node
• Launch a code on other nodes
• Obtain task or process id
• Obtain parent task id
• Obtain number of processes
• Finalize a parallel task
• Synchronize parallel tasks



Process control

PVM

• pvm_init()
• pvm_exit()
• myid=pvm_mytid()
• parid=pvm_parent()

• pvm_barrier()

• pvm_spawn()

MPI

• MPI_Init()
• MPI_Finalize()
• MPI_COMM_RANK(…myid…)
• MPI_COMM_SIZE(…nproc…)

• MPI_Barrier()



Global operations

• Reduction operations
– sum, min, max, product of a distributed array

• Synchronization operations
– Cause all processes to stop until all processes have reached this 

point

• Broadcast operations
– Transmit data from a node to all the other nodes



Global Operations

PVM

• pvm_reduce()
• Operations: sum, max, min, 

product

MPI

• MPI_Reduce()
• Operations: sum



Example: PVM

main() {
mid=pvm_mytid();
pid=pvm_parent();
if( pid<0 ) {master=1; cid=pvm_spawn();}
else          {master=0;}
print “my id=” mid
print “parent id=” pid
if( master==1) print “master”
else                 print “slave”
pvm_exit()

}



Example: MPI

Main() {
MPI_init()
MPI_Comm_size(MPI_COMM_WORLD,&np)
MPI_Comm_rank(MPI_COMM_WORLD,&mid)
print “my id=” mid
print “# proc=” np
MPI_Finalize()

}



Communications

• Communications can be blocking or non-blocking
• Operations include:

– Packing information into a communication buffer
– Sending data to another node
– Receiving data from another node
– Unpacking data from a communication buffer
– Checking whether a message has arrived



Communications 

PVM
• pvm_initsend()
• pvm_pack*()
• pvm_send()
• pvm_psend()
• pvm_mcast()

• pvm_recv()
• pvm_upk*()
• pvm_probe()

MPI

• MPI_Send()
• MPI_Isend() – non-blocking
• MPI_Bcast()

• MPI_Recv()
• MPI_Irecv() – non-blocking
• MPI_Iprobe()



Parallel reduction

• Problem: add a distributed set of numbers
sum=a1+a2+a3+a4+a5+a6+a7+a8

• Possible solution: one node acts as master and the 
others as slaves

if( i==1 ) {
sum=a; 
for(i=2,n) {receive(a,any); sum+=a;}
print sum

}
else {send(a.1);}

a1

a4 a5 a6 a7a2 a3 a8



Parallel Reduction

• Ring communication strategy: sequential processing

if( i==1 ) {send(a,i+1); receive(sum,n); print sum;}
if( i==n ) {receive(sum,i-1); sum+=a; send(sum,1);}
else       {receive(sum,i-1); sum+=a; send(sum,i+1);}

• Need N steps to complete the sum

a1 a4 a5 a6 a7a2 a3 a8



Parallel reduction

• Tree communication strategy: parallel processing

• Need log2 N steps to complete the sum

a1 a4

a5 a6 a7

a2 a3

a8

Step 1
Step 2
Step 3



Structured Grid PDE Solution

• Suppose we are solving a PDE on a structured grid in parallel on 
two processors

• Split the mesh in two keeping one layer of overlapping points
• The boundary points of the white mesh are interior points for the 

yellow mesh and vice versa
• Need to exchange boundary values between neighboring 

processors before proceeding to the next timestep

send

send



Code Structure

loop over timesteps
apply boundary conditions
solve for interior points
if( i==1 ) {send(column nx-1,i+1); receive(column nx,i+1);}
else       {send(column 2,i-1); receive(column 1,i-1);}

end loop



Unstructured Grid PDE

Same idea for unstructured grids but since each sub-
domain can have an arbitrary number of neighbor sub-
domains, thus each processor needs:

• List of neighboring sub-domains
• List of grid points that send values to each neighbor
• List of grid points that receive values from each neighbor
• Scheduling list: order in which communications with 

neighbors are processed



Code Structure

loop over timesteps
apply boundary conditions
solve for interior points
loop over list of neighbor sub-domains (j)

jneig=lneig[j]
send(lpsnd[jneig],jneig);
recv(lprcv[jneig],jneig);

end loop
end loop

Lneig[j]: list of neighbor sub-domains (processors)
Lpsnd[j]: list of points to send to neighbor j
Lprcv[j]: list of points to receive from neighbor j



Shared vs Distributed Memory

• Parallelizing for shared memory is easier and you always have a 
working code

• Parallelizing for distributed memory is harder and it doesn’t work 
until you have entirely parallelized your code

• For distributed memory you will probably need extra tools such as 
grid partitioning and parallel visualization tools

• In some cases distributed memory can yield better performance 
because of better data locality (the actual memory of most shared 
memory machines is distributed!)

• Shared memory computers are more expensive (?), clusters can be 
cheaper but for a fair comparison we would need to compare two 
systems with the same performance working for the same number 
of years…

• Mixed models can be also attractive: cluster of shared memory 
nodes (4 to 16 shared processors per node are readily available) 
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