ESTRUCTURA DE LA MATERIA 4

2DO CUATRIMESTRE 2025

CLASE 2

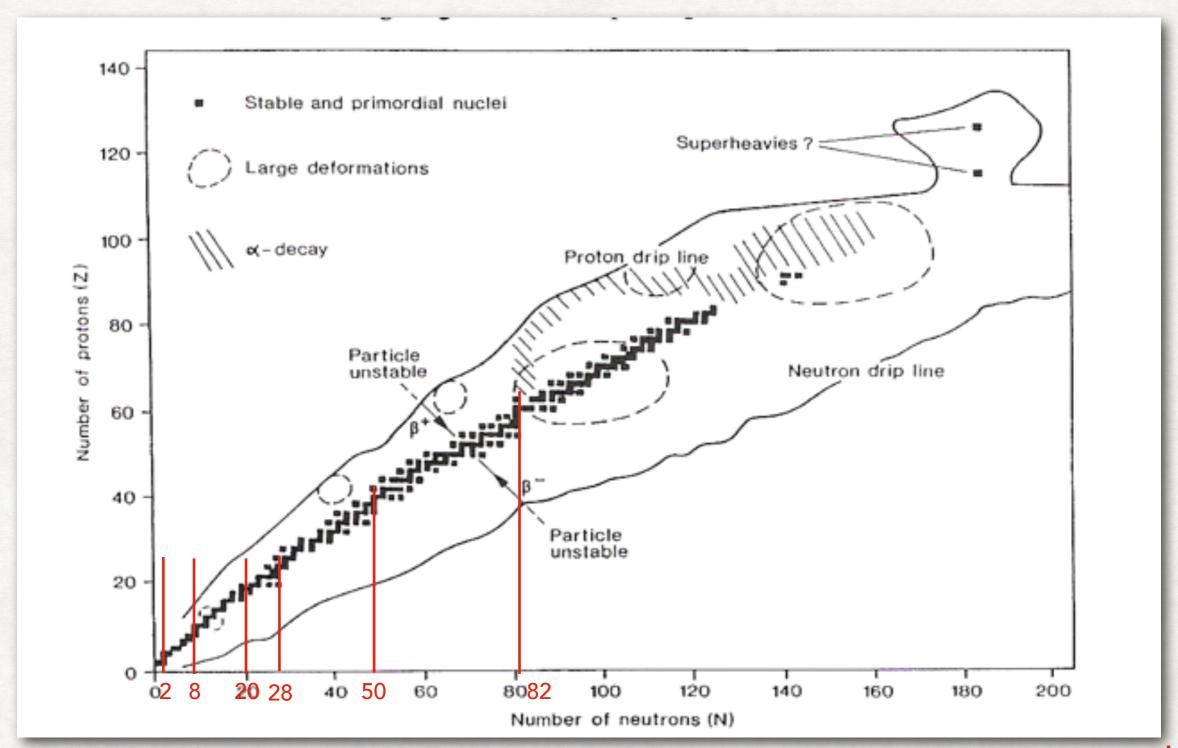
Temas: Núcleos, modelos nucleares.

núcleo atómico: (Rutherford 1911)

$$A=4$$
 $Z=2$
 He

275 núcleos "estables"
$$> 2000 \text{ núcleos "inestables"} \qquad (\tau \sim 10^{-7} s \ - 10^{18} \, y)$$

- → gran variedad de fenómenos a describir
 - → descubrir regularidades: pistas sobre las interacciones nucleares

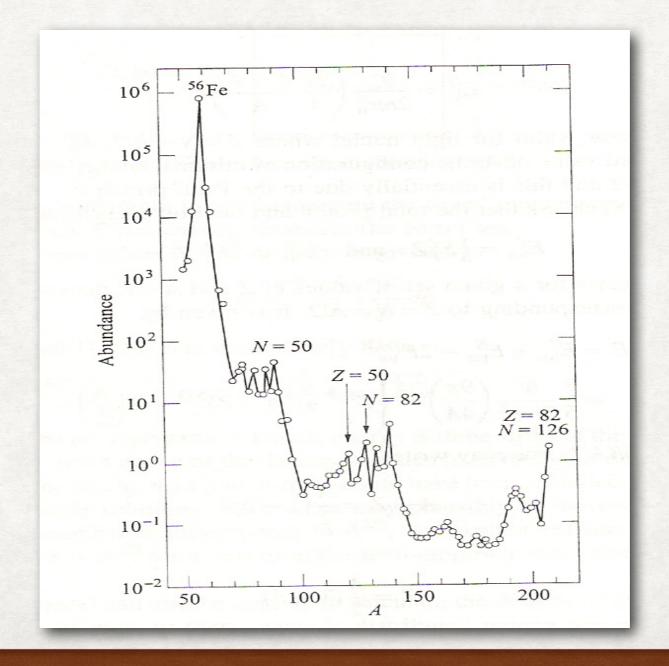


la interacción distingue entre p/n, pero los trata en pie de igualdad (p ←→ n) aproximada corrección electrostática ~ corto alcance más de un isótopo (isóbaro) estable; cuántos? ~ números mágicos

números mágicos: $Z \circ N = 2,8,20,28,50,82,126$

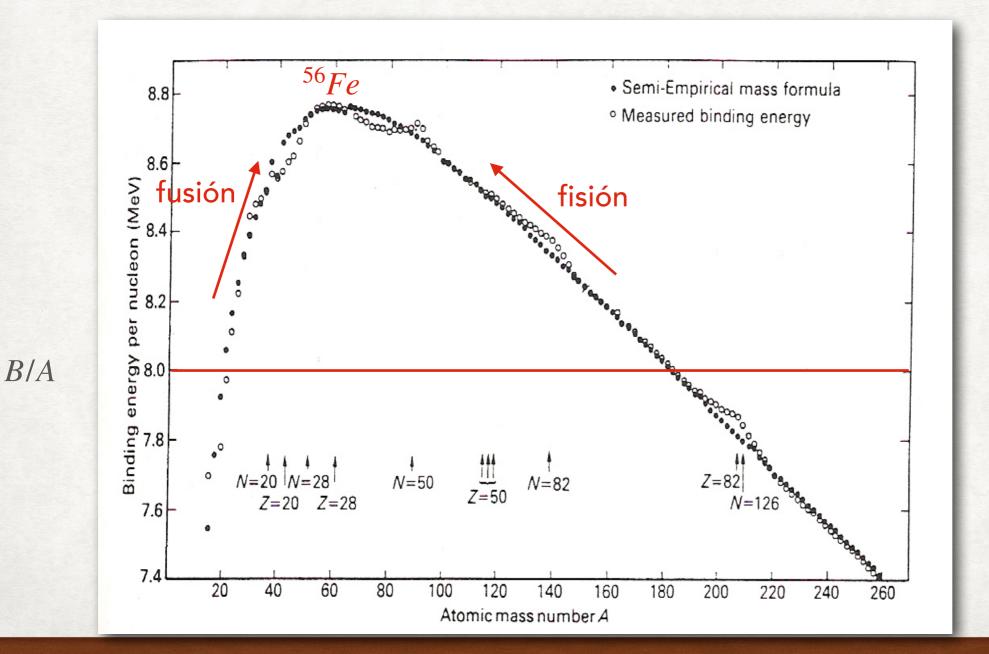
~ discontinuidades en propiedades nucleares (~orbitales atómo de hidrógeno?)

doble mágicos: ${}^{16}_{8}O$, ${}^{40}_{20}Ca$, ${}^{208}_{82}Pb$



masas nucleares: función (bastante) suave de A, Z, N

$$M = Z m_p + (A - Z) m_n - B$$
 B binding energy/energía de ligadura $(B > 0)$ $M = Z m_p + (A - Z) m_n - a_v A + a_s A^{2/3} + a_c \frac{Z(Z - 1)}{A^{1/3}} + a_{sym} \frac{(N - Z)^2}{A} + \Delta(A)$



$$r(A) \simeq r_0 A^{1/3}$$

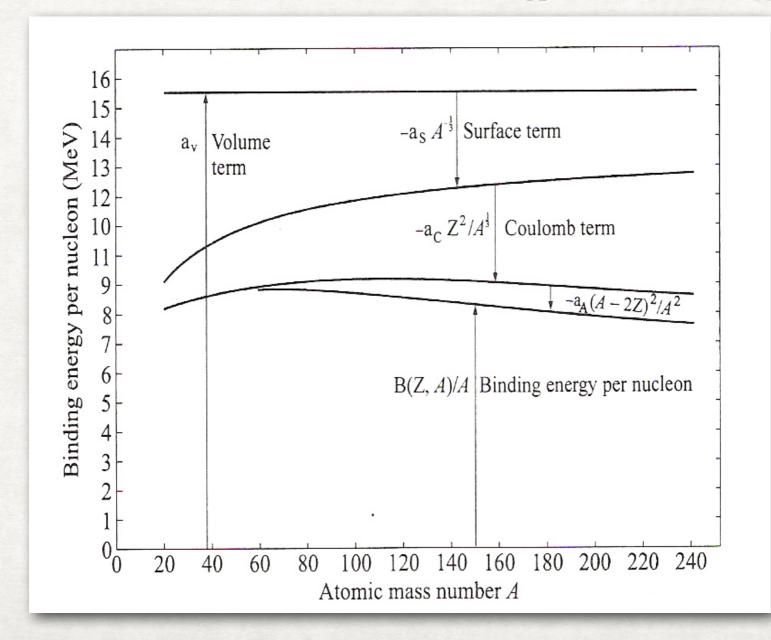
$$+\Delta$$
 impar – impar $\Delta(A)$ 0 A impar $-\Delta$ par – par

 $8 MeV \pm 10 \%$

primeros vecinos enorme!

masas nucleares: función (bastante) suave de A, Z, N

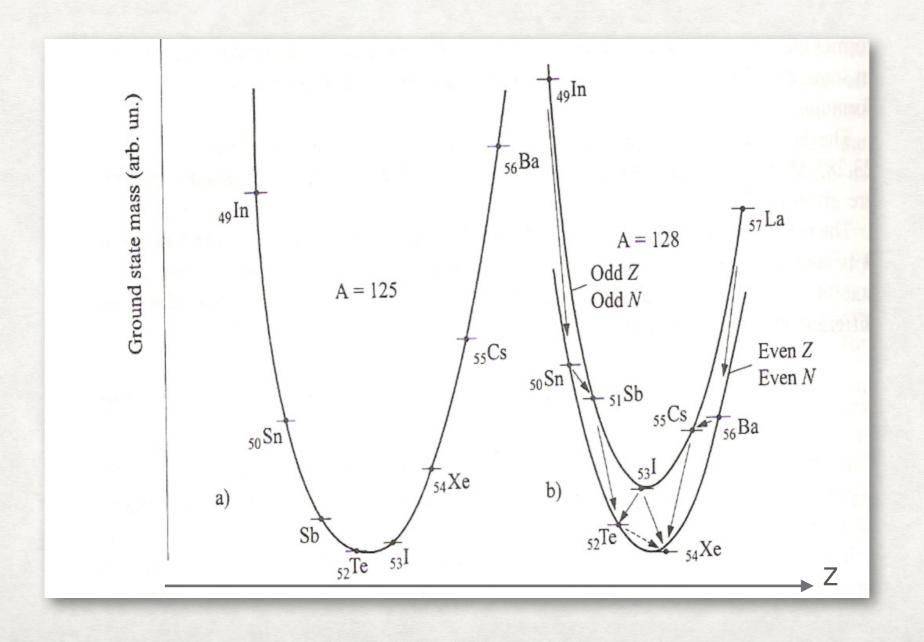
$$M = Z m_p + (A - Z) m_n - B$$
 B binding energy/energía de ligadura $(B > 0)$
 $M = Z m_p + (A - Z) m_n - a_v A + a_s A^{2/3} + a_c \frac{Z(Z - 1)}{A^{1/3}} + a_{sym} \frac{(N - Z)^2}{A} + \Delta(A)$



Георгий Антонович Гамов

masas nucleares: función (bastante) suave de A, Z, N

$$M = Z m_p + (A - Z) m_n - B$$
 B binding energy/energía de ligadura $(B > 0)$
 $M = Z m_p + (A - Z) m_n - a_v A + a_s A^{2/3} + a_c \frac{Z(Z - 1)}{A^{1/3}} + a_{sym} \frac{(N - Z)^2}{A} + \Delta(A)$

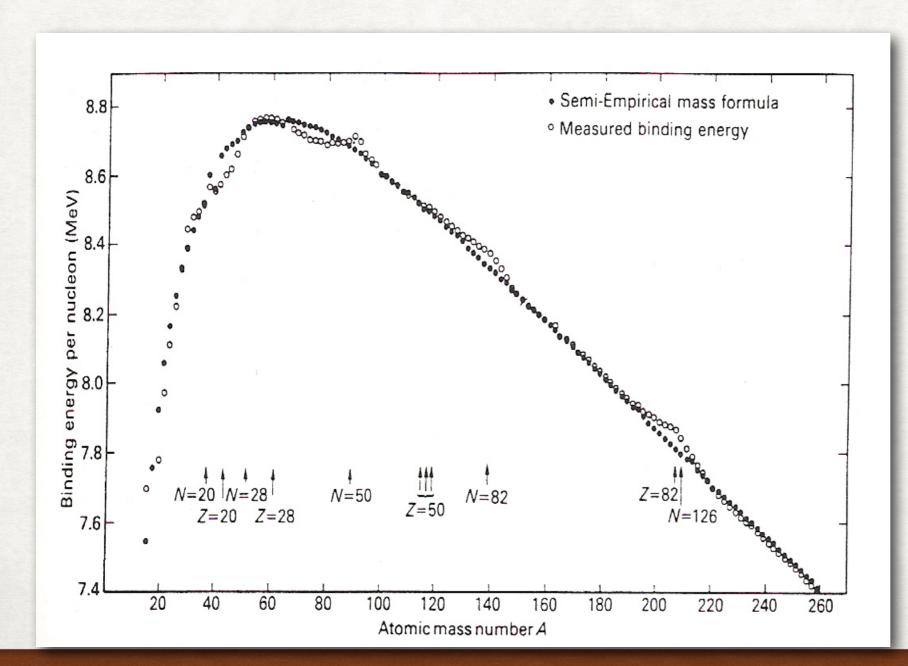


$$n \to p + e^- + \overline{\nu}$$

$$n \to n + e^+ + \nu$$

masas nucleares: función (bastante) suave de A, Z, N

$$M = Z m_p + (A - Z) m_n - B$$
 B binding energy/energía de ligadura $(B > 0)$
 $M = Z m_p + (A - Z) m_n - a_v A + a_s A^{2/3} + a_c \frac{Z(Z - 1)}{A^{1/3}} + a_{sym} \frac{(N - Z)^2}{A} + \Delta(A)$



fórmula semi-empírica (gota líquida)

números mágicos?

esquema de niveles ~ potencial cuántico

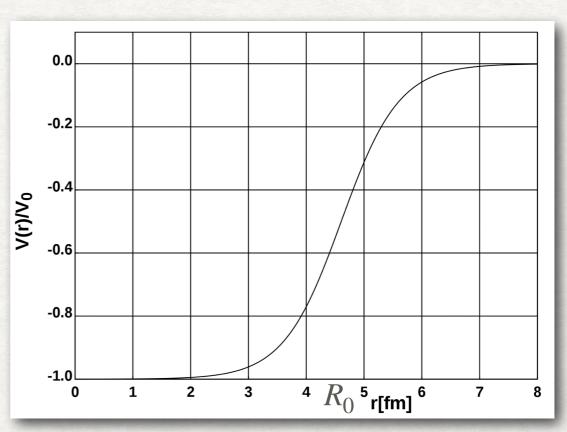
modelo de capas:

números mágicos del átomo de hidrógeno ~ potencial central \implies L buen número cuántico degeneración 2L+1 espín \implies factor 2

según la dependencia radial del potencial V(r), surgen distintos esquemas de niveles

$$V(r) = \frac{-V_0}{1 + e^{\frac{r - R_0}{a}}}$$

potencial de Woods-Saxon



modelo de capas:

aproximación con un oscilador armónico tridimensional

$$V(r) = -V_0 + \frac{1}{2}M\omega^2 r^2$$
$$E = (N + \frac{3}{2})\hbar\omega - V_0$$

$$\psi_{N,l,m} = R_{N,l}(r) \Phi_{l,m}(\theta,\phi)$$

$$N = 0,1,2,...$$
 # nodos

$$l = 0,1,2,....$$

$$N = 2(n-1) + l$$

$$m = -l, \ldots, +l$$

acumula

$$N = 0 \qquad n = 1 \quad l = 0$$

$$l_z$$
 1 estado l_z

$$N=1$$
 $n=1$ $l=1$ 1p 3 estados l_Z

$$p$$
 3 estados l

$$N = 2 \qquad n = 1 \quad l = 2 \qquad 1d$$

$$ld$$
 5 estados l_Z

$$n = 2$$
 $l = 0$

$$2s$$
 1 estado l_Z

modelo de capas:

