FISICA 1 (PALEONTOLOGÍA) 2DO CUATRIMESTRE 2020

CLASE 6

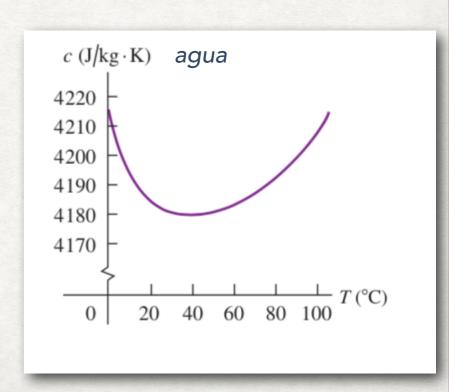
Temas: Calor, capacidad calorífica, conducción del calor, calorimetría y cambio de fase

calor: aquello que se transfiere entre un sistema y su medio ambiente en virtud de su diferencia de temperatura

~"calórico" S.XVIII -> forma de energía S.XIX -> ~1850 equivalente mecánico y conservación energía

unidad de calor Q: definida a partir del cambio (de T) que produce en un cuerpo

~"caloria" aumenta de 14.5 a 15.5 °C 1 gramo de agua (4.186 J)

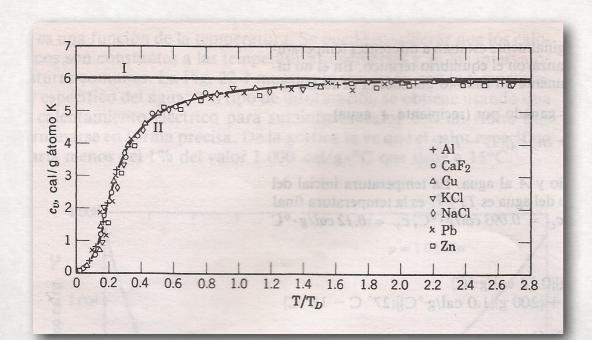

capacidad calorífica C: cantidad de calor ΔQ asociada a un cambio de temperatura ΔT

$$C = \frac{\Delta Q}{\Delta T} \qquad \text{``de un objeto'}$$

calor específico c: capacidad calorífica por unidad de masa

$$c = \frac{\Delta Q}{m \, \Delta T} \quad \text{~de un material}$$

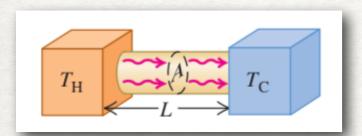
$$C(T) c(T) \qquad Q = \int_{T_i}^{T_f} m c dT \simeq m c (T_f - T_i) = m c \Delta T$$


capacidad calorífica molar: los calores específicos varían según la sustancia, pero si se comparan muestras con igual número de moles ~ 6 cal/mol (25 J/mol)

Dulong y Petit 1819

$$C = \frac{\Delta Q}{\Delta T} \qquad c = \frac{\Delta Q}{m \, \Delta T}$$

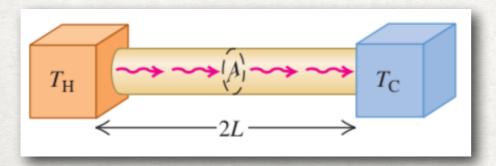
$$C_{mol} = \frac{\Delta Q}{n \, \Delta T} = \frac{\Delta Q}{m/M \, \Delta T} = c \, M$$


n número de moles $n = \frac{m}{M}$ M peso molecular

	C	M	C _{mol} Capacidad calorífica molar (J/mol·K)	
Sustancia	Calor específico, (J/kg·K)	Masa molar, (kg/mol)		
Aluminio	910	0.0270	24.6	
Berilio	1970	0.00901	17.7	
Cobre	390	0.0635	24.8	
Etanol	2428	0.0461	111.9	
Etilenglicol	2386	0.0620	148.0	
Hielo (cerca de 0 °C)	2100	0.0180	37.8	
Hierro	470	0.0559	26.3	
Plomo	130	0.207	26.9	
Mármol (CaCO ₃)	879	0.100	87.9	
Mercurio	138	0.201	27.7	
Sal (NaCl)	879	0.0585	51.4	
Plata	234	0.108	25.3	
Agua (líquida)	4190	0.0180	75.4	

 T_D temperatura de Debye

conducción del calor: transferencia de energía causada por la diferencia de temperatura (entre dos partes adyacentes de un cuerpo o dos cuerpos)



$$H = \frac{dQ}{dt}$$
 corriente de calor

$$T_{\mathrm{H}}$$
 T_{C}
 T_{C}

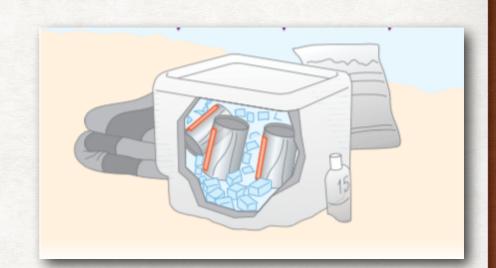
$$H = \frac{dQ}{dt} = k A \frac{T_C - T_H}{L}$$
gradiente

k conductividad térmica

$$H = \frac{dQ}{dt} = -kA\frac{dT}{dx}$$

Sustancia	$k(W/m \cdot K)$		
Metales			
Aluminio	205.0		
Latón	109.0		
Cobre	385.0		
Plomo	34.7		
Mercurio	8.3		
Plata	406.0		
Acero	50.2		
Sólidos (valores representativos)			
Ladrillo, aislante	0.15		
Tabique (ladrillo rojo)	0.6		
Concreto (hormigón)	0.8		
Corcho	0.04		
Fieltro	0.04		
Fibra de vidrio	0.04		
Vidrio	0.8		
Hielo	1.6		
Lana mineral	0.04		
Espuma de poliestireno	0.01		
Madera	0.12 - 0.04		
Gases			
Aire	0.024		
Argón	0.016		
Helio	0.14		
Hidrógeno	0.14		
Oxígeno	0.023		

heladerita en la playa: cuánto hielo se derrite en un día?


 $0.80 \, m^2$ área total (A):

 $0.02 \, m$ espesor (L):

 $0^{\circ} C (273 K)$ temperatura interior:

temperatura ambiente: $30^{\circ} C (303 K)$

conductividad: $0.01 \, W/m \, K$

$$H = \frac{dQ}{dt} = k A \frac{T_C - T_H}{L} = 0.01 \ 0.8 \frac{30 - 0}{0.02} W = 12 \ W = 12 \ J/s$$

dia: 86400 s

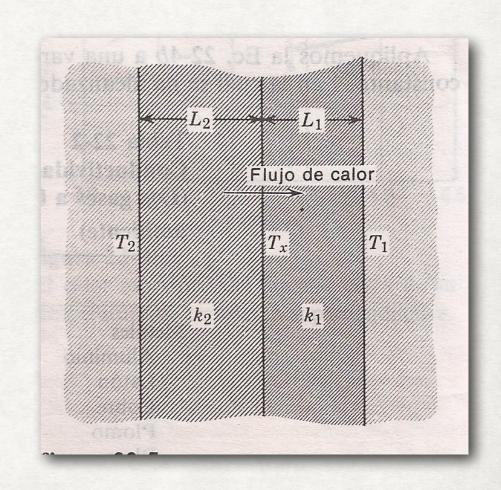
$$Q = H t = 1.04 \, 10^6 J$$

calor de fusión hielo:
$$3.34 \ 10^5 \ J/kg$$
 $m = \frac{Q}{c_L} = \frac{1.04 \ 10^6 \ J}{3.34 \ 10^5 \ J/kg} = 3.1 \ kg$

(sin abrirla)

resistencia térmica: lo que se "opone" a la conducción del calor

$$H = \frac{dQ}{dt} = k A \frac{T_C - T_H}{L} = \frac{A (T_C - T_H)}{R} \qquad R = \frac{L}{k}$$


$$H_{2} = k_{2} A \frac{T_{2} - T_{x}}{L_{2}} \qquad H_{1} = k_{1} A \frac{T_{x} - T_{1}}{L_{1}}$$

$$k_{2} A \frac{T_{2} - T_{x}}{L_{2}} = k_{1} A \frac{T_{x} - T_{1}}{L_{1}} \qquad \frac{k_{2}}{L_{2}} (T_{2} - T_{x}) = \frac{k_{1}}{L_{1}} (T_{x} - T_{1})$$

$$\frac{k_{2}}{L_{2}} T_{2} + \frac{k_{1}}{L_{1}} T_{1} = (\frac{k_{1}}{L_{1}} + \frac{k_{2}}{L_{2}}) T_{x} \qquad T_{X} = \frac{\frac{k_{2}}{L_{2}} T_{2} + \frac{k_{1}}{L_{1}} T_{1}}{(\frac{k_{1}}{L_{1}} + \frac{k_{2}}{L_{2}})}$$

$$A(T_{2} - T_{1}) \qquad A(T_{2} - T_{1}) \qquad A(T_{2} - T_{1})$$

$$H = \frac{A(T_2 - T_1)}{\frac{L_1}{k_1} + \frac{L_2}{k_2}} = \frac{A(T_2 - T_1)}{R_1 + R_2} \longrightarrow \frac{A(T_2 - T_1)}{\sum_i R_i}$$

convexión: transferencia de calor por movimiento de una masa de fluido

"forzada" ~ motor auto, sistema circulatorio

"natural" ~ atmósfera, lago

ninguna admite un tratamiento analítico simple

radiación: transferencia de calor por ondas electromagnéticas

 $H = A e \sigma T^4$ corriente por radiación

A área

e emisividad [0-1]

 σ constante de Stefan-Boltzmann

$$5.6704 \ 10^{-8} \frac{W}{m^2 K^4}$$

buen emisor=buen absorbedor (c. negro)

mal emisor=buen reflector (termo)

radiación del cuerpo humano:

área total: $1.20 \, m^2$

temperatura superficial: $30^{\circ} C (303 K)$

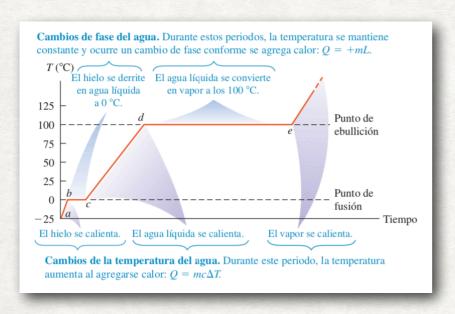
temperatura ambiente: $20^{\circ} C (293 K)$

emisividad: $\simeq 1$

 $H = A e \sigma T^4$ corriente por radiación

 $H_{rad} = 1.20 \, 15.67 \, 10^{-8} \, 303^4 \, W = 574 \, W$

 $H_{abs} = 1.20 \ 15.67 \ 10^{-8} \ 293^4 \ W = 502 \ W$


 $H_{neta} = 72 W$

calorimetría y cambios de fase: el calor interviene en los cambios de fase de la materia

fase: estado específico de la materia (sólido, líquido, gaseoso)

calor latente de fusión: calor requerido por unidad de masa para pasar de sólido a líquido calor latente de vaporización: ídem para pasar de líquido a gas

	Punto de fusión normal		Calor de fusión, L _f	Punto de ebullición normal		Calor de vaporización, $L_{\rm v}$
Sustancia	K	°C	(J/kg)	K	°C	(J/kg)
Helio	*	*	*	4.216	-268.93	20.9×10^{3}
Hidrógeno	13.84	-259.31	58.6×10^{3}	20.26	-252.89	452×10^{3}
Nitrógeno	63.18	-209.97	25.5×10^{3}	77.34	-195.8	201×10^3
Oxígeno	54.36	-218.79	13.8×10^{3}	90.18	-183.0	213×10^{3}
Etanol	159	-114	104.2×10^{3}	351	78	854×10^3
Mercurio	234	-39	11.8×10^{3}	630	357	272×10^3
Agua	273.15	0.00	334×10^3	373.15	100.00	2256×10^{3}
Azufre	392	119	38.1×10^{3}	717.75	444.60	326×10^3
Plomo	600.5	327.3	24.5×10^{3}	2023	1750	871×10^{3}
Antimonio	903.65	630.50	165×10^{3}	1713	1440	561×10^{3}
Plata	1233.95	960.80	88.3×10^{3}	2466	2193	2336×10^{3}
Oro	1336.15	1063.00	64.5×10^{3}	2933	2660	1578×10^{3}
Cobre	1356	1083	134×10^3	1460	1187	5069×10^{3}

^{*}Se requiere una presión mayor que 25 atmósferas para solidificar el helio. A presión de 1 atmósfera, el helio sigue siendo líquido hasta el cero absoluto.