Estructura de la materia IV

1er cuatrimestre 2007 - Daniel De Florian

Segundo recuperatorio (17/07/2007)

1. (3p) Sea el lagrangiano de un campo escalar complejo

$$L(t) = \int d^3x \, (\partial_\mu \phi \partial^\mu \phi^* - m^2 \phi^* \phi).$$

- (a) (0.5p) Halle las simetrías internas globales de éste lagrangiano y fuércelas a que sean locales.
- (b) (1p) En esta nueva teoría donde la simetría es local, muestre que si $\phi \in R$ entonces no hay acoplamiento entre el/los campos de gauge y el campo ϕ .
- (c) (1.5p) Halle las ecuaciones de movimientos correspondientes. Sea prolijo, ordenado y explícito.
- 2. (4.5p) De los siguientes procesos: (i) diga cuáles son posibles y cuáles no dentro del Modelo Estándar yendo hasta nivel árbol (i.e. sin loops); y (ii) en los procesos posibles dibuje al menos un diagrama de Feynman que contribuya al proceso e indique en cada vértice cómo es el término del lagrangiano encargado del vértice; en los procesos no posibles explique por qué razón no son posibles.

(a)
$$pp \rightarrow pp\bar{p}$$
 (b) $\bar{\nu}_e\nu_\mu \rightarrow \bar{e}\mu$ (c) $pe \rightarrow pe$. (1)

Ídem con el siguiente proceso, pero en este caso -si existe- dibuje al menos 3 diagramas diferentes a nivel árbol:

$$(d) \quad e \, \bar{e} \quad \to \quad \mu \bar{\mu}. \tag{2}$$

Ídem con el siguiente proceso, pero esta vez dibuje todos los diagramas posibles yendo hasta segundo orden en teoría de perturbaciones:

$$(e) \quad g g \quad \to \quad g g. \tag{3}$$

Ayudas: al escribir cada término del lagrangiano correspondiente a cada vértice, deje las constantes numéricas con una letra; y no tenga en cuenta los diferentes colores de los quarks. (Los ítems (a),(b) y (c) valen 0.66p cada uno, mientras que (d) y (e) valen 1.25p cada uno.)

3. (2.5P) Sea la siguiente lagrangiana para un campo escalar complejo ϕ ,

$$\mathcal{L} = \partial_{\mu} \phi^* \partial^{\mu} \phi - \mu^2 \phi^* \phi - \lambda (\phi^* \phi)^2,$$

donde $\mu^2 < 0$ y $\lambda > 0$.

- (a) (1p) Halle el grupo de simetrías internas global de este lagrangiano y fuércelo a que ahora este grupo de simetría sea local. Escriba el nuevo lagrangiano y diga cuál es la masa del/de los campo/s de gauge que debió agregar.
- (b) (1.5p) Suponga ahora que $\phi(x)$ toma un valor de expectación en el vacío en un mínimo de su potencial, y desarróllelo alrededor de éste mínimo según

$$\phi(x) = \frac{1}{\sqrt{2}} \left(v + h(x) \right),\,$$

donde h(x) es real. Con esta ruptura espontánea de la simetría, halle la masa del campo h(x) y del/de los campo/s de gauge.

4. (*Puntos extras* (1.5p)) Dibuje los diagramas de Feynman de los vértices permitidos por la teoría del ejercicio 3, una vez que se ha roto espontáneamente la simetría.

Fórmulas

Algunas fórmulas que no tendría sentido que se las recuerde de memoria:

$$\begin{array}{lcl} [t^a,t^b] & = & if^{abc}t^c \\ D_\mu & = & \partial_\mu - igA_\mu^at^a \\ A_\mu^a & \rightarrow & A_\mu^a + \frac{1}{g}\partial_\mu\alpha^a + f^{abc}A_\mu^b\alpha^c \\ F_{\mu\nu}^a & = & \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + gf^{abc}A_\mu^bA_\nu^c \\ \end{array}$$

Nota: Tiene 3: 30 hs. para resolver el examen. En cada item de cada ejercicio, una justificación y un razonamiento correctos dan la mitad de los puntos, y un resultado correcto da la otra mitad. Se aprueba con 6 puntos o más; entre 5 y 6 puntos es un "Aprobado —", que quiere decir que tiene la oportunidad de recuperar la fracción de punto faltante con lo que le sobra de 6 en su nota del primer examen/recuperatorio; y con menos de 5 puntos no se aprueba el examen.