Problemas Cuántica de fotones §

El estado de polarización de un fotón se puede describir por un vector en un espacio vectorial complejo de dimensión 2. En el se pueden definir las bases $\{|x\rangle\,,|y\rangle\}$, $\{|x'\rangle\,,|y'\rangle\}$ y $\{|R\rangle\,,|L\rangle\}$, correspondientes a polarización lineal en x y y, polarización lineal en x' y y' y polarización circular. Los productos de dichas bases estan en la siguiente tabla:

	x	y	x'	y'	R	L
x	1	0	$\cos(\theta)$	$-\sin(\theta)$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
y		1	$\sin(\theta)$	$\cos(\theta)$	$-\frac{\sqrt{i}}{\sqrt{2}}$	$\frac{v_i^2}{\sqrt{2}}$
x'			1	0	$\frac{\exp(-i\theta)}{\sqrt{2}}$	$\frac{\exp(i\theta)}{\sqrt{2}}$
y'				1	$-\frac{i\exp(-i\theta)}{\sqrt{2}}$	$\frac{i \exp(i\theta)}{\sqrt{2}}$
R					1 2	0
L						1

- 1. Sea el estado $|\psi\rangle = \frac{(1+i)}{2} |R\rangle + \frac{(1-i)}{2} |L\rangle$
 - 1. ¿Está polarizado circularmente? Si es así, es esta polarización R o L?
 - 2. ¿Está polarizado linealmente? En qué eje?

Ayuda:

- a) Multiplique por $\langle x'|$ y encuentre para que valor de θ , $\langle x'|\psi\rangle=1$
- b) Utilizando la matriz cambio de base, escriba $|\psi\rangle$ en la base $\{|x\rangle, |y\rangle\}$.
- 2. A partir de la relación de completitud de la base $\{|x\rangle,|y\rangle\}$, verifique la de $\{|x'\rangle,|y'\rangle\}$ y $\{|R\rangle,|L\rangle\}$.
- 3. Definimos el operador rotación como $|x'\rangle = \hat{R}(\theta)|x\rangle$.
 - 1. Escriba la representación matricial de $\{|x'\rangle, |y'\rangle\}, \{|R\rangle, |L\rangle\}$, y $\hat{R}(\theta)$ en la base $\{|x\rangle, |y\rangle\}$.
 - 2. Encuentre los autoestados y autovalores de $\hat{R}(\theta)$.
 - 3. Aplicando $\hat{R}(\pi/2)$ sobre $|x'\rangle$ muestre que obtiene $|y'\rangle$
- 4. Para un estado arbitrario $|\psi\rangle$ diga cuales de las siguientes propiedades son ciertas siempre, a veces o nunca. Ademas, diga cuales dependen de como se elige el factor arbitrario de fase.
 - a) $|\langle x|\psi\rangle|^2 + |\langle y|\psi\rangle|^2 = 1$.
 - b) $\langle x|\psi\rangle$ es real.
 - c) $\langle x|\psi\rangle$ y $\langle x'|\psi\rangle$ son reales.
 - d) $\langle x|\psi\rangle$ y $\langle R|\psi\rangle$ son reales.
 - e) Existe un $|\phi\rangle$ tal que $\langle\phi|\psi\rangle=0$.
 - f) $|\langle x|\psi\rangle|^2 + |\langle R|\psi\rangle|^2 = 1$.
 - g) Si $|\langle x|\psi\rangle|^2 = |\langle y|\psi\rangle|^2$, entonces $|\langle x'|\psi\rangle|^2 = 1/2$ para todo θ .

Interprete los que pueda en término de los experimentos de polarización y cristales birrefringentes.

[§]http://www.df.uba.ar/users/dmitnik/teoricaII/fotones

- 5. Sea x' un eje orientado en $\theta = 30$ respecto a x, y un haz de fotones orientados en un estado de polarización ψ tal que $|\langle y|\psi\rangle| = \frac{1}{\sqrt{5}}$.
 - 1. Se hace pasar el haz por los siguientes 3 proyectores:

Detector
$$\leftarrow y' \leftarrow R \leftarrow y \leftarrow \psi$$

Calcular la probabilidad de transmisión.

2. Repetir el cálculo si se invierten las direcciones:

Detector
$$\leftarrow \psi \leftarrow y \leftarrow R \leftarrow y'$$

- 3. Repetir los cálculos si se reemplazan los polarizadores R por un par de analizadores R-L.
- 6. Sea un haz de ${\cal N}$ fotones por segundo descritos por el siguiente estado de polarización

$$|\psi\rangle = c(3|x\rangle + 4i|y\rangle)$$

- 1. Qué fracción de los fotones pasarán en promedio por un polarizador y.
- 2. Qué fracción de los fotones pasarán en promedio por un polarizador x' (orientado en un ángulo θ respecto a x).
- 3. Cuando un fotón está polarizado en R lleva un momento angular \hbar respecto a su dirección de movimiento. Si su polarización es L ejerce el mismo momento angular, pero orientado en la dirección opuesta. Si el haz descripto por el estado ψ es absorbido totalmente por una superficie, qué torque se ejercerá sobre esta superficie?
- 4. ¿Qué se observa cuando se envia un solo fotón y éste es absorbido por la superficie (suponiendo que tiene un instrumento suficientemente delicado paramedirlo)?
- 7. Sea $\{|1\rangle, |2\rangle\}$ una base ortonormal abstracta. Para las siguientes propiedades diga cuales son suficientes para asegurar ortonormalidad, cuales son necesarias pero no suficientes y cuales irrelevantes a la cuestión de la ortonormalidad:
 - a) $\langle 1|2\rangle = 0$.
 - b) $|\langle 1|x\rangle|^2 + |\langle 2|x\rangle|^2 = 1$
 - c) $|\langle 1|\phi\rangle|^2 + |\langle 2|\phi\rangle|^2 = 1$ para todo $|\phi\rangle$.
 - d) Existe un $|\phi\rangle$ tal que $\langle 1|\phi\rangle = 0$ y $\langle 2|\phi\rangle = 0$.
 - e) Para todo $|\phi\rangle$ existen constantes a y b tal que $|\phi\rangle = a|1\rangle + b|2\rangle$
 - f) Al menos uno de $\langle 1|R\rangle$ y $\langle 2|R\rangle$ es complejo.