
Chapter 10 

Vibrations of Crystal Lattices 
and Thermodynamic Properties of Solids 

By E. W. RIONTROLL, Cniversity of Rochester 

1. Introduction 

The hest capacity, C,, of a system of iV interacting 
particles under n” externnl constrnint z is defined 
by C, = (aQ/a7’),, the ratio of the addcd hent to 
the corr+sponding temperature rise of the systcm. 
The hes; capneities of solids “re gencrnlly mcnsurcd 
at conc:3nt prcssure, whilc statisticnl mcchnnics 
leads more naturnlly to formulas for the constnnt- 
volume quantity. Thc t~hcrmodgnnmic formuln 

C. = 4G4.4 (-8)" + UT 

The appropriate units are calorics per mole per degree 
Kclvin. The 0 nnd a rnlucs of a vnriety of metals 
are given in Tablc 10.1. A more complete lisr. can be 
found in Appendis C of “l’henomena at the Tem- 
prratwc of Lictuid Ileliut~~” by Burton, Smith, and 
Wllwlm [ll.’ 

TABI.E 10.1. COXRT.~XTS OB AS” a FOR 
LO\\.-TE11I’EIìTI.IIE IIEhT C.+P.\CITIES 

[Units nrc <~hosrn so 111x1 C, = .lG4.4(I’/Oo)’ + aT 
is in cûlorics per molc prr (lcgrce Kclvin] 

relates C, to C.. The quantitics aL> 1’, nnd x reprcsent, 
rcsprctirely, the coeficicnt of thcrmnl cspnnsion, thc 
volume, xnd tbc comprrssibility. Thc hent rnpncity 
nt constdnt mngnctic tield strength II is of considrr:~hlc 
importnncc in low-tcmprrnt,urc phynics. 

Vnrious typrs of microsïopic dcgrcrs of frccdom in 
solids mzkc thrir chnrnctcristic contributions to thc 
hcnt ropncity. Thc constants nssocintcd with 
thrsc dcprrrs of frccdom dctrrrninc thcir cnrrgy 
Ic\& ?.nd hcncc thc tempcrnturc at which thoir 
eKrct on thc hcnt cnpncity bccomcs importnnt. 
~lrnstlrcmr”ts of thc tc”~pcr”tnrc vnrintion of t hc 
hcart cnpnrity hnvc bccn a rich sourcc of inforrn”t,io” 
on thc rlec~ronia, ntomic, nnd rnolccul:~ <ly”:unics 
of cryst?.is. 

Thc <onstiturnt ntolns “nd molcculcs of nll solids 
undcrgo (rithrr t,hrough thcrmnl ngitxtio” or ben- 
tum-mrìhnnirnl arro-point r”crpy) smnll oscill:~tio”s 
nbout tlcir r<luilibriw positions. At tcmpcrnturcs 
not too closc to thc mrlting point 3 crystallinc solid 
is rssc”:i.îlly R srt of 3 lwgc number of co”pled 
oscillntors. Einstein pointcd oot mnny ycnrs “go 
thnt the vibrntionnl contribution to thcrmodynnznic 
propcrtk of solids CR” be cnlculatcd through thc 
npplicnrion of thc rtu”ntwn throry of t,he hnrmonic 
oscillntor. Thc frrc rlcrtrons in mrtnls nrc rcsponsi- 
ble for Poste of thc hrnt cnpncity nt \‘rry lO\Y tcm- 
pcrntura. Sincc thry obcy Fermi-Dirnc stntistics, 
thcir hat cnpncity is proportionnl t8 T as T- 0, 
whilc la;tice vibrntions hnvc C.mT3. For discussion 
of the ckctron throry of mctnls, sec I’nrt S. Esperi- 
mental Iox-temprrnturc C, dnts of mctals “re fre- 
<luent,ly fittcd to 
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Anomrdiw in thc form of “X points” or discontinui- 
ties in C, occur in bi”:rry substitution nlloys, icrro- 
mngilrts, Icrro~~l<x~t rirs. hydrogcn hnlidcs. suprr- 
co”thlctors, vnrious molrrulnr crysrnls (cspwially 
orpxnir: onrs), ctr. Tbvsr nnom”lirs are pcncrnlly 
“ssorintcd with thc disnpprnrnncc of somc kind of 
lonp-ren~r ordcr. Thcy uc discusscd in t,hc chnptcr 
o” phnsc trnnsitions. \Vc shnll mcrcly point out 
herc that if onc wishrs to compnrc thc rcsulrs of n 
qunntit:~tire theory of 3” nnomnlous cffcrt with 
espcrimcntnl mîesurrmcnts, it is “errssnry to have 
a” nccurntc thcory of the norrnnl contribution of 
Intticc vibrntions to thc hrnt cnpncitirs so th”t t,hc 
anon~“lous cficct cn” bc obtnincd by subtrnrtion. 

This chnptcr is n bricf sur\-ry of the thcory oi Int ticc 
vibrîtions 2nd thcir intlurnrc o” hcît cnpncitics of 
crFst”ls. Thc equntion of stntc of solids will nlso 
be discusscd. 

The roupled osrillntor model of 3 crystnl ca” be 
decomposrd into its indrprndcnt, nor~nnl modcs. 

* ?iumbers i” brîckets rcier to Refercnces “t end oi 
chapter. 
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If the normal mode frequencies of a crystsl with 3N 
degrees of fwdom are Y,, ~2, . . . > YL,., then Eq. 
(Z’ií), Chap. 2, implies that the interna1 energy of 
the crystal is 

ei =$ (10.1) 

while its heat r>pacity is 

Generolly as r,% number of degrces of freedom be- 
comes ia6nitez <he normal modc frequeneies become 
so dense thnt, L frequency distribution function g(v) 
esists with the 3ropcrty that 

is the number mi frequeneies less than Y. The hest 
capacity can br esprcssed as an integral with respect 
to Y: 

mhcre YL is thc Lrgcst normal modo frcquency. 
Thc power series oxpnnsion of thc esponcntinl and 

hypcrbolic func:ions of (10.1) nnd (10.2) lends natu- 
rnlly to the f~llowing high-tcmpcrnturc formulas 
p, 31: 

(10.4) 

B, = 6 2: : $“. B, = :r- B, = $6 
Bs = ;o Bis = &Q,‘< 

nnd thc fin’ü XT<’ :hc momcnts of thc frcqurncy dis- 
tributioo g(v): 

px = c yi” = .L 
Li’” 

v”g(v) dv (10.6) 
i “L 

The cnlculntion cí thcse momcnts xvi11 be discussed 
in the ncst secluns. It is clear thnt as T- m, 
(10.5) yields the Mong-Pctit rcsult C. -3X1;. 

Thc lo\\.--temwxorc bchavior of C, depends on 
the low-frequen<~ iorm of g(v). For example, if 
therc are tT\-o coExnts /l nnd a such thnt as Y - 0 

g(v) - 3.v.<v* (10.7) 

Equntion (10.3), nhen witten in terms of the variable 
z = hv/kT, has tfe low-temperature form 

C,-~NAk(;)Q+‘j,m&dz 

= 3ANk ($)=+’ (2 f 4 V(2 + 4 (10.8) 

mhere <::I) is the Riemann zeta function, 

f(y) = 1 +2-y +3-u + ’ . . 

[f(2) = i/6 and f(-l) = sC/SOJ. Since lom-frequency 
vibratior in a crystal hsve mavelengths which are 
very 10~6 compared with lattice spacings, the low- 
frequenrT behavior of g(v) should have the sarne 
forro as :hat of an elastic continuum. Hence in a 
t%o-dimtnsionnl crystal the appropriate value of P 
should bt 1, while it should be 2 in a three-dimensionsl 
crystal. The low-temperature heat capacity of a 
two-dinxxsional structure should vary as T’, mhile 
thnt of 3 Tiree-dimensional material should vary as TS. 

The zy-mptotic 2’~ law was first observed experi- 
mentall:- ~,r Sernst and his collaborators many years 
ago and Las been verified for most materials. The 
results oi Pitzer [i] and De Sorbo (51 on diamond are 
typicu1 oi 3 nonmetal. 

Severs.l important exceptions to the Ta lam [6-91 
exist in grzphite, gallium, and BN. Experimental 
C. behs.r-:.x of thesc materials is better fitted by the 
form C?.C?‘?; which is, according to (10.8), more 
approprisx for tmo-dimensional systems. This is 
not surprring because the flnkiness of pure graphite 
nnd BS ‘>dicntes thst the binding forces between 
crystnl Is>-ers are very meak. 

Thcrmtdynamic propertics are then derived by 
considerir.< thesc materials as formed of almost 
indcpcndilc two-dimensional hexagonal arrnys of 
aton1s. Tr~nsrcrsc vibrations give the mnin con- 
t,ribution to thcrmodynamic quantitics. G. F. 
New11 [I ji has made a detailcd invcstigation of 
wcakly imxacting laycr structurcs and has revicwed 
thc work of cnrlier authors. Various other laycr 
structurcs 3sn bc expccted to have a Tl law for the 
low-tcmpcnturc hcat capncitics. 

Thcre i-- xlso somo cvidcncc of a T law in matcrials 
such ns Sc znd S which are composcd of weakly con- 
ncctcd ntoxic chnins [ll). 

Thc syc:,?mnt,ic theory of tho varintion of thcrmnl 
propcrtws oi polymcrs and glasscs is still in its 
formntiw x3gc. Thesc matcrinls have a network 
structurc c( chains with varying length. The work 
of Dole nnC his collnborntors [12) on the heat capacity 
of polystyíoc is rcprcsentntive of that on polymers. 
Reversible xmperature changes seem to be hard to 
achicw in ;olymer systems. 

Accordirr fo Winkclmann 1131 the specific heat of 
glnsses can ;E cxprcssed very xell as a linear function 
of the com?xition 

c = TX& 

thc z,‘s beCq the weight fraction of oxides occurring 
in the glns!?s. The empirical rntio of the thermal 
factor c, oo-cnlled Winkelmnnn factors) to the 
classicol hig%temperature specific hest of the par- 
ticular corrponents has the eorrect qualitative 
behavior in rhnt strongly bound atoms in the net- 
work contrïrute low C,‘s (reflecting quantum eñects) 
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If the normsl mode frequencies of s crystal with 3N 
degrees of freedom are YI, Y:, . . , YJN, then Eq. 
(2.7í), Chap. 2, implies that the interna1 energy of 
the crystal is za 3A,,rk (-i;T)=-1 (2 + 4 !f (2 + a) (10.8) 

while its heat capscity is 

Generally as the number of degreez of freedom be- 
comes infinite, the normal mode frequencics become 
so dense thnt a frequency disrribution function g(“) 
esists xith the propcrty that 

lo B(Y) dv 
is the numbcr of frequcncies less thon Y. Thc hest 
cnpacity can be exprcssed ns sn integral with rcspect 
to v: 

whcre YL is the Iargcst normnl mode ircquency. 
The powr series cxpnnsion oi the exponcntial nnd 

hyperbolic functions of (10.1) zmd (10.2) lends nntu- 
rnlly to thc following high-tcmpcr~turc formulns 
12, 31: 

(gq- “51 (10.5) 

@n = 1 y;” = ; /u“ egcpi d” (10.6) 

Th cnlwlntion of t,hcsc momcnts wiil bc discussed 
in the ncst sections. It is clenr thr: ns T+ ce, 
(10.5) yiclds thc Dulong-Pctit rcsult CT - 3XL 

Thc lo\\--temperntorc behavior of C, depcnds on 
the low-frequcncy form of g(v). Fc: exomplc, if 
there nre tlvo constnnts .I and OL such tix,t as Y - 0 

g(v) - 3S;L”U (10.7) 

Equntion (10.3), when wittcn in terms of the variable 
z = h./kT, has the low-temperata form 

where T(y) is the Riezum zeta function, 

r(y) = 1 + 2-r f 3-u + . . . 

[t(2) = S~/G and r(4) = &90]. Since lom-frequency 
vibrations in 8. crycrsl ha\-e n-avelengths mhich are 
very long compared ír-ith fattice spacings, the low- 
frequency behavior oi g(r1 should have the sarne 
form as that of nn &stic continuum. Hence in a 
two-dimensional cn-s:sl tbe nppropriate value of a 
should be 1, while ir s’rould be 2 in a three-dimensional 
crystnl. The Ion--tez~pers:ure heat capacity of 5 
two-dimensional strueare should vary as Tz, mhile 
that of a three-dimer&nal material should vary as TJ. 

The nsymptotic T’ lztn, xas Iirst observed experi- 
mentally by Nernsr ard bis collaborators many yesrs 
ago snd has been rer:fied ior most materials. The 
results of Pitzer 141 srd De Sorbo 151 on diamond are 
typical of a nonmet31. 

Severo1 importnnr exceprions to the TJ lam [G-SI 
exist in graphite, gsfium, snd BN. Experimental 
C, behnvior of these ruterizls is better fitted by the 
form C,aT2; which is, sccording to (10.8), more 
approprmte for twoümenrional systems. This is 
not surprising because rhe r?skiness of pure graphito 
nnd UN indieatcs thx the binding forces between 
crystnl layers m-c very n-enk. 

Thcrmodynamic pruperiics are thcn derived by 
considcrine these mzreri& as formcd of almost 
indcpcndeit tao-diminsionsl hexagonal nrrays of 
ntonx. Transversc vibrntions givc the main con- 
tribution to thermod-nunic qunntitics. G. F. 
Ncwcll (101 hns madz 3 detnilcd invcstigntion of 
wenkly intcracting Iayer structurcs and has reviewed 
thc work of carlicr ruthor;. Various other layer 
structurcs crin be csprcrcd IO have a T2 law for thc 
low-tcmpcraturc herir czpxiiics. 

Thcrc is nlsa somc c+dcnce of a !I’ Inw in materials 
such ns Sc and S which nre composed of wenkly con- 
ncctcd ntomic chnins [ii]. 

Thc systematic thco.l; of the vnriation of thermal 
propcrtics of polymcr.; nnd glnsscs is still in its 
formativc stagc. Thcw mnwiuls have R nctwork 
structurc of chains xvii: varxing Icngth. Thc work 
of Dole 2nd his collzborztors 1121 on the hcat capacity 
of polystyrcno is reprcsintnti;~ of that on polymers. 
Reversible tempernture chnngcs secm to be hnrd to 
achicrc in polymer systems. 

According to Winkelcxm il3] the specific heat of 
glnsscs can be cxpress& very well ns a linear function 
of thc composition 

c = x;, 

the z,>s being the weigh: irncrion of oxides occurring 
in the glnsses. The erzpiriczl ratio of the thermal 
factor C, (so-callcd Kinkelmann fsctors) to the 
classicnl high-temperstux specific hent of the par- 
ticular components h-s the correct qunlitative 
behavior in that strongl: bound atoms in the net- 
work contribute low C,‘s (reflecting quantum effccts) 
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rrhile those of weakly bound atoms are close to the 
clsssicsl value (see Condon [14)1. 

Dyson (151 has made a first step toward the theory 
“f the heat capncity of networks of particles wi;h 
varying force constant and masses by studying the 
normal mode distribution function g(v) of a linear 
chin of couplcd springs and mass with random force 
ronstsnts and masses. 

.1t high tcmperatures anharmonic vibrntions yield 3 
contribution above the Dulong-Prtit value which iì 
proportional to the tempernturc (sec Born ond 

The total number of frequencier 1~ :han Y, N(V), 
is proportional to the volume of rhe Gpsoid defined 
by (10.11) in (,l.,n,,n.) space. Thr -alumc of the 
ellipsoid is (3~‘)avYJ&/c3 = ($’ ,rJ-x: ?, V being 
the volumc of “UT box. Since ail n,‘% uc positive, 
only ene-eighth of this volume contr31:res to N(v). 
There is esantly “ne frequency per ~3 volume in 
(n,,n2,113) spnre. He”Ce 

Brody [lU/). 
.\n escellcnt bibliography of experimental data on 

hect capncities of solids (as ~11 ns other thermsl 
properties) ean be found in l’artington’s trcatise on 
physicnl chemistry [171. 

Thc complete frequency distribution function g(7) 
is neccssary for the description of the behavior of C, 
nr temperatures out of the rnnge of the two nsymp 
roric formulas (10.5) and (10.8). 

2. Debye Theory of IIent Capacities 

Thc tirst, cnlculation of thr distribution “f fre- 
qwncics of normal modes wns mnde by Debye (IS:. 
tlc postukltcd * solid ta be nn rlustic rootinuanl. 
Sincc n continunm hns nn infinitc number “f n”rm-.l 
nmdcs, Dcbyc cut thc frc<lucncy spc~!tru,n oti 3t 3 
frcqwncy such that thc total nwnbcr of normp., 
modcs mas r<lual to thc numbcr of dcgrccs of frccdol:, 
oi the solid. Debyc’s work WRS “nc of the grrn: 
S~CITSS~~~ of the carly quantmn thcory. The theorvri- 
cal hcat rapxitics bnscd “o bis freqrwncy spcctrrlr:, 
:L*C in good agrwmcnt with csprrimcnt:~l rcsult2. 
Thc .Gruplicity of t hc l>oby~~ tlwory ~~“n~bin~l \vit!l 
rhii (nct has girw it :I long and fruitfnl life 39 the 
domin:mt t,hwry “f thc hmtt vnpnîity nf solids. Th 
rlzisical cspositiou of thc l>cbyc tbcory was writtrn 
1)~ sdlro~di~~g~~ 1191 (sl!<: rll~~) ~-CT nnd hJ,rr (20; 
nnd l+~\~l<:r [211). S<!hr”odin!J!r c011o<*te<1 3” cnor- 
nmu :rwount of hc:rt-wpnnity <Inta and wu~pnrr.d i: 
\YiIil ,ho l)cl,y<! t hcory. 

wli-rc c is thc vclocit~y of propnEati”n :rnd <p is tlle 
di+ccmcnt of :I point whirh :tt r<luilibrium is 
lorxtcd at (z,u,r). Thc normal modw of vibrntion 
\rhich corrrspond to stutionary crystal I>oun<lnrir; 
nr? found us follovs. Lct “ur solid hnve thc shnpe 
of 2 rcctan&u 1)0x with sidrs of length l,, l,, nnd 11, 
sdutions “f (10.9) “f thc form 

exi‘t whcn (,rl,n?,n,) rangc through the integers 
0, 1, 1, 3, . . . By srtbstit~lting (10.10) into (10.91. 
w iind that thc frequcnry Y is wlated to (I~,,RQ~~) b> 

There nre two kinds of wavcs pr”p~g~:¿d in a con- 
tinuum model of a solid, transver~ 306 !“ngitudinal, 
each with its charncteristic rclocity (r.Lch we repre- 
sent, respectiwly, by c, snd ch): irdtid therc nrc 
two trnnsverse mnves for every lar-xdinnl “ne. 
Hence tho total number of normsl nxies of both 
typcs with frequency tess than I are :~l’.“(?c,-s 
+ cl-31 nnd tho mrmbcr of normal mc&s betmecn y 
and Y + <Iv is 

and 

and the entropy is 
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Tho functions requircd for calculntion of the various 
thermodynamic quantities have been tabulated by 
Beattie (221. An importnnt feature of the Dobye 
theory is that only R single psrnmeter is required to 
characterize 3 material. By choosing the tempera- 
ture scnle properly sll heat-capncity data can be 
fitted to a single universal curve. At low tempcra- 
tures we can apply Eqs. (10.7) and (í0.8). The 
parameters of thosc equntions are :l = 9/v~J, a = 2, 
and r(4) = +:90. Henrr ns T - 0 we havr 

c, = 3Nk [$+ @” + .] (10.17) 

Th<1 Inrgrst frt~luen<:y YI., bcing rclatwl to thc 
veloïit,y of ,~lastic \VIIICS in the crystnl, can nlso be 
rxprcsscd in ferros of its cIastic conslnnts. A” 
intcrnnl rhcck of thc Dcbyr thcory hns hccn mndr 
by compnring thc wl~ws of YL determined from clastic 
constants wich rhosr whirh gire thc bcst fit of hclnt- 
cnpncity dnrn with 11x Ilebyc theory (scc Bl:~k- 
man [?3j). In mct:da it is :rssumcd that at low 
temperatures C. = n’l’ + bP, thc linear term being 
the clcrtronir rontribution to C... Somc exnmples 
of thc typc of ngrrrnwnt obtnined nrc givcn in (hcre 
we discrtss Br, = hur./k rnthrr than v‘) Tnble 10.2. 
The tempcmrurrs in thr third nnd fifth rolumns nre 
those at which thr rlnatir ronstnnts hnve bcen 
dctermined. 

If onc plots (‘. dill:1 ovrr n wide tempernture range 
the nppnrrnt ngrcrnwnt between esperiment nnd 
theory is nlmost unbelievnble when he considers the 
enormous physirnl diffrrenrcs between various kinds 

TULE 10.2. COXPARISOS OF eo AS DETER~IISE~ 
BY TRER~~, AND EL~STIC DATA (231 

of c:Wals nnd the eonrseness of the continuum 
modif. 

h jetter appreciation of the Isck oí agrccment is 
obtGed b.y rclntinrr each esocriment ooint to thnt 
value of 0; which i; required’ in Eq. (10.16) to give 
the neasured C. at the appropriate tcmpcraturc. 
If conlplete agreemcnt \rere to esist, thc set of 8~‘s 
compxed would be temperature indcpendent. A 
typial varintion of en with temperature T is plotted 
in Fi:. 10.1. Plots of this type mere first proposcd 
by BIxkman [23, 241. Thc extreme values of BB 
dificr hy about 15 per cent. In vcry nnisotropic 
subsrinces such ns Li, Zn, and Cd, thc dcvintions 
nre oi :hc ordcr of 30 to 50 per ccnt, whilc in gold and 
tungxcn (fncc-centercd <,rystnls which are xlmost 
isotro?ic) thc devintions :uc only 10 per ccnt. 

.2 r 

CSl 
0.0 0.05 CllO 0.15 0.20 0.25 

It ir to bc expectcd thnt, sonw improvcmcnt shoul 
result irom the use of 3 discrete Inttice modcl ratha 
than 2 continuum onc. Unfortunstely the t.hcor 
becomes rnuch morc complicnted. KO simple un 
wrsal formulas for thermodynamie propcrties see 
to esisz, each cxnmplc hcing a specinl case. Tl 
discrer model wns first nnalyzed by I3orn and vr 
Kdrm5n [25]. 


