Chapter 10

Vibrations of Crystal Lattices
and Thermodynamic Properties of Solids

By E. W, MONTROLL, University of Rochester

1. Introduction

The heat capacity, s, of a system of N interacting
particles under an external constraint z is defined
by €, = (aQ/8T):, the ratio of the added heat to
the corresponding temperature rise of the system.
The hea; capacitics of solids are generally measured
at consiant pressure, while statistical mechanies
leads more naturally to formulas for the constant-
volume cuantity. The thermodynamic formula
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relates C,to C.. The quantities «, ¥, and « represent,
respectively, the coefficient of thermal expansion, the
volume, and the compressibility. The heat capacity
at constant magnetic ficld strength X is of considerable
importance in low-temperature physics.

Various types of microscopic degrees of freedom in
solids mzke their characteristic contributions to the
heat ecapacity. The constants associated with
thege degrees of freedomn determine their energy
levels and hence the temperature at which their
effcet on the heat capacity becomes important,
Measurements of the temperature variation of the
heat capacity have been a rich source of information
on the electronie, atomic, and molecular dynamics
of crystals.

The constituent atoms and molecules of all solids
undergo {cither through thermal agitation or quan-
tum-mechanical zero-point energy) small oscillations
about their equilibrium positions., At temperatures
not too close to the melting point a crystalline solid
is essenially a set of a large number of coupled
oscillators.  Einstein pointed out many years ago
that the vibrational contribution to thermodynamic
propertizs of solids can be ealeulated through the
application of the quantum theory of the harmonic
oscillater.  The free eleetrons in metals are responsi-
ble for most of the heat capacity at very low tem-
peratures. Since they obey Fermi-Dirne statistics,
their heat capacity is proportional to T as T — 0,
while lattice vibrations have CL.aT3.  For discussion
of the clectron theory of metals, see Part 8. Experi-
mental low-temperature C, data of metals are fre-
quently fitted to
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magnets,
conductors,

C, = 164.4 (GZ)’ +aT

The appropriate units are calories per mole per degree
Kelvin, The 8 and @ values of a variety of metals
are given in Table 10.1. A more complete list can be
found in Appendix C of ‘“‘Phenomena at the Tem-
perature of Liquid Helium' by Burton, Smith, and
Wilhelm [1].*

Tapre 10.1. CoxsTANTS 05 AND @ FOR
Low-TEMPERATURE HeaT CaraciTIES
[Units are chosen so that C. = A64.4(7"/8p)2
is in calories per mole per degree Kelvin)

+aT

Metal |

o a X 104
Al 119 3.48
Ag aun 1.54
Cu 335 1.78
Pt 33 16.07 pd
I'b 90 ¢ 7.15
Mg 410 42.1
Sn 185 | 4.0

Anomalies in the form of “A points’ or discontinui-
ties in €, oceur in binary substitution alloys, ferro-
ferrocleetries, hydrogen  halides, super-

various molecular erystals (especiaily
organic oncs), cte.  These anomalies are generally

associnted with the disappearance of some kind of

long-range order.  They are discussed in the chapter
on phase transitions. We shall merely point out
here that if onc wishes to compare the resulis of a
quantitative theory of an anomalous effeet with

experimental measurements, it is necessary to have

an accurate thcory of the normal contribution of
lattice vibrations to the heat capacities so that the
anomalous effect can be obtained by subtraction.

This chapter is a brief survey of the theory of lattice
vibrations and their influcnee on heat capacities of
crystals. The equation of state of solids will also
be discussed.

The coupled oscillator model of a erystal can be
decomposed into its independent normal modes.

* Numbers in brackets refer to References at end of
chapter.
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If the normal mode frequencies of a crystal with 3N
degrees of frezdom are »y, 3, . . ., v3v, then Eq.
(2.77), Chap. 2, implies that the internal energy of
the crystal is

aN
z 1 _ hy;
E= ‘zl h; (5 T + exp B,—) b = kT (10.1)
J -

while its heat :apacity is

anN (16,)?

Cy = kz 2 10.2
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Generally as tze number of degrees of freedom be-

comes infinite, she normal mode frequencies become

so dense that : frequency distribution function g(»)

exists with the nroperty that

ﬂ} " o() dv

is the number »{ frequencies less than ». The heat
capacity ean be expressed as an integral with respeet
to »:

L e (3 ho/kT)?
Cy, =% [ — 10.3
“lo ) Gn i 10D
where v is the argest normal mode frequency.

The power seties expansion of the exponential and
hyperbolic funcions of (10.1) and (10.2) leads natu-
rally to the filowing high-temperature formulas
(2, 3}

B = aNkT [; RN el D1 .’_‘2)2" “”;n] (10.4)
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The serics converze when Avp /T < 2« the B.'s are
Bernoulli numbess
‘.1Lu‘ By =
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and the p.'s are “he moments of the frequency dis-
tribution g(»}:
YL
Bn = v yr = —1—[ wig(v) dv (10.6)
pr 40

The caleulation ¥ these moments will be discussed
in the next secions. It is clear that as T— o,
(10.3) vields the Dulong-Petit result € ~ 3NE.

The low-tempsrature behavior of €, depends on
the low-frequencr form of ¢(»). For example, if
there are two corzants A and « such that as v — 0

g{v) ~ 3N A= (10.7)

Equation (10.3), when written in terms of the variable
z = hv/kT, has tl= low-temperature form
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=3 (kT)“‘“[‘ ptta
G 4NAk 3 0 ginh? 4z

= 3ANE (’ﬁ:—")“ﬂ @+ a)k@ +a) (10.8)

where 1) is the Riemann zeta function,
fy) =1 +2 v+ 3 v -0

[t(2) = /6 and (4) = +4/90]. Since low-frequency
vibraticzs in a crystal have wavelengths which are
very lorr compared with lattice spacings, the low-
frequencr behavior of g{») should have the same
form as :that of an elastic continuum. Hence in a
two-dimensional crystal the appropriate value of o
should bz 1, while it should be 2 in a three-dimensional
crystal. The low-temperature heat capacity of a
two-dimensional structure should vary as T2, while
that of a three-dimensional material should vary as 73,

The asvmptotic T3 law was first observed experi-
mentally 2¥ Nernst and his collaborators many years
ago and 2as been verified for most materials. The
results of Pitzer {4] and De Sorbe {3] on diamond are
typical o7 2 nonmetal.

Several important exceptions to the T'* law [6-9]
exist in rraphite, gallium, and BN. Experimental
C, behaviar of these materials is better fitted by the
form C.=T?; which is, according to (10.8), more
approprizie for two-dimensional systems. This is
not surprising because the flakiness of pure graphite
and BN ‘ndicates that the binding forces between
erystal layers are very weak.

Thermecdynamic properties arc then derived by
considerir.z these materizls as formed of almost
independiat two-dimensional hexagonal arrays of
atoms. Transverse vibrations give the main con-
tribution to thermedynamic quantities. G, F.
Newell [13 has made a detsiled investigation of
weakly interncting layer structures and has reviewed
the work of carlier authors. Various other layer
structurcs can be expected to have & 72 law for the
low-tempesature heat capacities.

There iz also some evidence of o T law in materials
such as Se and 8 which are composed of weakly con-
neeted atemic chains {111,

The sysi:matic theory of the variation of thermal
properties of polymers and glasses is still in its
formative =sage. These materials have a network
structurc ¢f chains with varying length. The work
of Dole anc his collaborators [12) on the heat capacity
of polystyr:ae is representative of that on polymers.
Reversible :emperature changes seem to be hard to
achieve in zolymer systems.

Accordicz to Winkelmann [13] the specific heat of
glasses can Ze expressed very well as a linear function
of the comzyosition

C = zCuz,

the z.'s beizz the weight fraction of oxides occurring
in the glasizs. The empirical ratio of the thermal
factor €. so-called Winkelmann factors) to the
classical higa-temperature specific heat of the par-
ticular components has the correct qualitative
behavior in that strongly bound atoms in the net-
work contrizute low C,'s (reflecting quantum effects)
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If the normal mode frequencies of & crystal with 3N
degrees of freedom are vy, »;, . .., vy, then Eq.
(2.77), Chap. 2, implies that the internal energy of
the crystal is

3 1 1 h
¥i
E=E A —_— =221 10,
hy; (2—!— 3 +exp6,;) 8; T (10.1)

i=1
while its heat capacity is

3N (18,2
yo= kY 10.2
¢ Z sinh? (36;" (10.2)
j=1
Generally as the number of degrees of {reedom be-
comes infinite, the normal mode frequencies become
so dense that a frequency distribution funection g(v)
exists with the property that

frawas

is the number of frequencies less than ». The heat
capacity can be expressed as an integral with respect
to »:

(4 ho/kT:2

PL
=k — 10.3
Co=k .ﬂl o0 sinh? (3 hv/2T) (103)

where vy is the largest normal mode irequency.

The power series cxpansion of the exponential nnd
hyperbolie functions of (10.1) and (10.2) leads natu-
rally to the following high-temiperature formulas
2, 3):

(Zn)! NAT vt
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The scries converge when hez /KT < 21; the B.'s are
Bernoulli numbers

B =1 By ) By =}y
B = we B, = ‘.‘G:?JLJ o

and the p,'s are the moments of the ‘requency dis-
tribution g{#):

L
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The calculation of these moments wili be discussed
in the next sections. It is clear that as T — oo,
(10.5) yields the Dulong-Petit result €, ~ 3Nk,

The low-temperature behavior of ¢, depends on
the low-frequency form of g(v). For example, if
there are two constants /A and « such that as » — 0

glv) ~ 3N 4o (10.7)

Equation {10.3), when written in terms of the variable
z = hv/kT, has the low-temperature form

By =+

Sl
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=S () [ 7=
C'"4NA" A 0 sinh’%xdx
a=i

= 3ANE (i}?) T@ k@t o) (108)

where {(y) is the Riemann zeta function,
) =142 43

{£(2) = »*/6and {{4) = =4,/90]. Since low-frequency
vibrations in a crystal have wavelengths which are
very long compared with lattice spacings, the low-
frequency behavior of g¢{»} should have the same
form as that of an elastic continuum. Hence in a
two-dimensional crys:al the appropriate value of «
should be 1, while it stould be 2 in a three-dimensional
crystal. The low-temperature heat capacity of a
two-dimensional structure should vary as 7%, while
that of a three-dimensional material should vary as T3

The asymptotic 73 law was first observed experi-
mentally by Nernst azd his collaborators many years
ago and has been verified for most materials, The
results of Pitzer [4] ard De 3orbo [5] on diamond are
typical of a nonmetal,

Several important exceptions to the 7% law [6-9]
exist in graphite, galium, snd BN. Experimental
C, behavior of these raterials is better fitted by the
form C.aT?; which 5, according to (10.8), more
appropriate for two-dimensional systems. This is
hot surprising because the £akiness of pure graphite
and BN indicates thst the binding forces between
crystal layers are very weak.

Thermodynamic properiics are then derived by
considering these ma:erials as formed of almost
independent two-dimensional hexagonal arrays of
atoms. Transverse vibrations give the main con-
tribution  to thermodvnamic quantitics. G. F.
Newell {10] has mad: a detailed investigation of
weakly interacting layer structures and has reviewed
the work of earlier suthors. Various other layer
structures ean be expected 1o have a 72 law for the
low-temnperature heat capacities.

There is also some evidence of a T law in materials
such as Se and 8 which are composed of weakly con-
nceted atomie chains [11].

The systematic theory of the variation of thermal
properties of polymers and glasses iz still in its
formative stage., These materinls have s network
structure of chains with varving length. The work
of Dole and his collaborators [12] on the heat capacity
of polystyrene is repressntative of that on polymers.
Reversible temperature changes seem to be hard to
achieve in polymer systems.

According to Winkelr:ann {13] the specific heat of
glasses can be expressed very well as a linear function
of the composition

C = 2Cﬁ:7

the z,’s being the weigh: fraction of oxides occurring
in the glasses. The erpirical ratio of the thermal
factor C, (so-called Winkelmann factors) to the
classical high-temperature specific heat of the par-
ticular components bes the correct qualitative
behavior in that strongly bound atoms in the net-
work contribute low C,’s (reflecting quantum effects)
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while those of weakly bound atoms are close to the
classieal value (see Condon [14)],

Dyson [15] has made o first step toward the theory
of the heat capacity of networks of particles wizh
varying foree constant and masses by studying the
normal mode distribution function g(») of a linear
chain of coupled springs and mass with random force
constants and masses.

At high temperatures anharmonic vibrations yield a
contribution above the Dulong-Petit value which is
proportional to the temperature (see Born and
Brody [186}).

An excellent bibliography of experimental data on
heat capacities of solids (as well as other thermsl
propertics) ean be found in Partington’s treatise on
physieal chemistry [17].

The complete frequeney distribution function g(»
is necessary for the description of the behavior of €,
at temperatures out of the range of the two asymp-
totie formulas (10.5) and (10.8).

2. Debye Theory of Heat Capacities

The first caleulation of the distribution of fre-
quencies of normal modes was made by Debye {18
He postulated a solid to be an elastic continuum.
Sinee a continuum has an infinite number of normal
modes, Debye cut the frequeney spectrum off at a
frequency such that the total number of normal
maedes was equal to the number of degrees of freedom
of the solid. Debye's work was one of the gres:
steeesses of the early quantum theory, The theoreti-
cal heat capacities based on his frequency spectrum
are in good agreement with experimental results.
The simplicity of the Debye theory combined with
this faet has given it o long and fruitful life as the
dominant theory of the heat eapacity of solids. The
classical exposition of the Debye theory was written
by Scehroedinger (19 (sce also Mayer and Mayer (200
and Fowler [21]). Schroedinger collected an enor-
mous mpount of heat-capneity data and compared i
with the Debye theory.

The cquations for wave propagation in an elastic
continuun are

1 3%
c? at®

= V2 (10.9°

where ¢ is the velocity of propagation and ¢ is the
dieplacement of & point which at cquitibrium s
located ut (z,7,2z). The normal modes of vibration
which correspond to stationary erystal boundarics
are found as follows. Let our seolid have the shape
of a reetangular box with sides of length {;, [, and {..
Solutions of (10.9) of the form

e - . Xwtly . YRMs . ZAN;
@ = le*ririgin sin ¥ n 5 (10.10
] 2 3

exist when (ny,n.,n;) range through the integers
0,123 .. By substituting (10.10) into (10.9),
we find that the frequency v is related to (ny,na,ng) by

OO
’ 4: ,1 + 12 + !3

n,n,ra=01,2, ... (1011

The total number of frequencies less than v, N},
is proportional to the volume of the el psoid defined
by (10.11) in (n.,n,,n) space. The -dlume of the
ellipsoid is (H)mrdhlli/c® = (3 =V 3, V being
the volume of our box. Bince zll n;: are positive,
only one-eighth of this volume contritates to N{y).
There is exactly one frequency per wzit velume in
(n1,ne,n3) space. Hence

dx¥yt

o3

(10.12)

N =

There are two kinds of waves propags-ed in a con-
tinuum meodel of a solid, transverse and longitudinal,
each with its characteristic veloeity {wich we repre-
sent, respectively, by e and ¢} icdesd there arce
two transverse waves for every longrudinal one.
Henee the total number of normal modes of both
types with frequency less than » arc ir17%(2¢3
+ 73 and the number of normal mod:s between »
and » ¥ v is

gl = dxVp2(2r 3 L o2 {10.13)

We mentioned above that the frecweney spee-
trum must be cut off at a frequeney o such that
N(vr) = 3N, the number of degreez of reedom of o
lattice of NV particles. Henee

:I_I 1',,!'3(2(-!”3 + oY = 3N

[y

9N }’ *
\ .=
50 tha V7. {[4Trp?(‘_)r-"~3 + ‘-I'J}f
and
2
A% (.ﬂ.) it 7 <y
vig(v) = e (10.14)
0 e >

The internal energy of the Debye mod! iy
9 . oy REE 5_-’1
E == Nhy, + 3NETD | =2 {10.15a)
8 T
where 6 is the so-called Dehye temper=sire

bp = ’i;'_’ (10.150)

and D(u) is the Debye funetion

3 ¥ 2d:
D = .1
(1) el [ (10.15¢)
The heat capacity at constant volume i
én . a n
=3NkD = 4 3NkT — D=
€ =3NkDa+ a7 T
#p 36n. T
= 3Nk [ D= — _,__.._,] 10.16
ML T exp {(8p/T) — = ( )

and the entropy is

S = 3Nk {%D(%”) — log [1 — exp ("?f? ]}
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The functions required for calculation of the various
thermodynamic quantities have been tabulated by
Beattie {22]. An important feature of the Debye
theory is that only a single parameter is required to
characterize a material. By choosing the tempera-
ture scale properly all heat-capacity data can be
fitted to a single universal curve. At low tempera-
tures we can apply Eags. (10.7) and (10.8). The
parameters of these equations are A = 9/pr3, o = 2,
and t(4) = =4/90. Henee ns 7 — O we have

™ 3
C,=3Nk[3r*(l) +
5 5

The even moments of g(») are

vl
=S v [

= 2{\— ‘/‘J'L pint2 dy
&)

v
QN vy 2
2n + 3

] (10.17)

Hence the first few terms in the high-temperature
expansion of (. are [Eq. (10.5}]:

. én A
m=Mkb—_( ) ) .,J
560 T +

while the entropy goes as

1 o‘n,)2 . ]
T 40 1

The highest frequeney v should correspond to the
vibration of shortest wavelength in the lattice. This
wavelength would be of the order of the distance
between a pair of nearest neighbors and the associated
normal mode would involve nearest neighbors
oscillating 180° out of phase. This vibration could
be excited by an external electric field of the proper
frequency in an ionice lattice such as NaCl or KCI in
which componerts aof pairs of nearest neighbors have
unlike charges. The frequeney »p therefore cor-
responds to the highest reststraklen frequency of the
crystal.

The largest frequeney »z, being related to the
velocity of elastic waves in the crystal, van also be
expressed in terms of its elastic constants. An
internal check of the Debye theory has been made
by comparing the values of vp determined from clastic
constants with those which give the best fit of heat-
capacity data with the Debye theory (see Black-
man [23]). In metals it is assumed that at low
temperatures €, = a7 4 0T, the linear term being
the electronic contribution to C.. BSome examples
of the type of agreement obtained are given in (here
we discuss 6, = hvy/k rather than ».) Table 10.2.
The temperatures in the third and fifth columns are
those at which the clastic constants have been
determined.

If one plots €. data over a wide temperature range
the apparent agreement between experiment and
theory is almost unbelievable when he considers the
enormous physical differences between various kinds

S—J\A[——‘l
3
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TasLe 10.2. CoMPARISON OF fp AS DETERMINED
BY THERMAL AND Evastic Data [23]

Maarial | 6p (thermal) | T, °K 7o (elastie) T, °K
Ag 237 4 216 ~290
Zn 308 4 305 ~-280
NsTl 308 10 320 0
RC | 220 3 246 4]

I

of e¢rystals and the coarseness of the continuum
modsl,

A betier appreciation of the lack of agreement is
obtained by relating each experiment point to that
value of @p which is required in Eq. (10.16} to give
the measured C, at the appropriate temperature.
If complete agreement were to exist, the set of 8p’s
computed would be temperature independent. A
typical variation of 6p with temperature 7 is plotted
in Fiz. 10.1. Plots of this type were first proposed
by Biackman [23, 24]. The extreme values of 8,
differ by about 15 per cent. In very anisotropic
substances such as Li, Zn, and Cd, the deviations
are of the order of 30 to 50 per cent, while in gold and
tungsen (face-centered crystals which are almost
isotropic) the deviations are only 10 per cent.

2 "' —— o Copper
—-—-# Digmond
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"1 ----------- a Silver
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5 rq N o St
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E ra Fi o o
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% .
8 Y
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8
2
=
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x

T

C.E i 1l Ll A el

Q20 Q05 QI 0I5 020 025

Reduced Temperature T/@q
Fic. 1.1, Variation of #p/8. with temperature. Her
6. is the asymptotic Debye temperature st high ten
peraturs {5).  The face-centered metals Cu, Al, and A
and dizmond are shown as examples.

It iz to be expected that some improvement shoul
result ‘rom the use of a discrete lattice model rath
than s continuum one. Unfortunately the theor
becomss much more complicated. No simple un
versal formulas for thermodynamic properties see
to exiss, each example being a special case. T
discretz model was first analyzed by Born and v
Kdrmzdn {25).




