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The origin of this work is threefold.
First, I have a lifelong interest in avia-
tion. Second, I have been teaching

first year-physics courses so long that I am
beginning to share my students’ mistrust of
any explanation that cannot be encapsulated
in a few well-chosen sentences and possibly a
little algebra. Third, I was charged last year
with creating the theoretical examination for
the International Physics Olympiad, hosted by
Canada, and my desire to include a question
on flight at first seemed prohibited by the
explicit exclusion of Bernoulli from the
Olympiad syllabus. What follows is the result
of my finding a way out of that impasse.

The science of flight has traditionally been
the preserve of two camps. It can be under-
stood in terms of some reasonably sophisticat-
ed mathematics, or it can be justifed using
data obtained by experiment and read off
tables and graphs. This dichotomy existed
right from the start; the development of the
first practical aircraft owed nothing to theoret-
ical physics. Between these two extremes is
the pedagogical physicist struggling to
explain the wonders of flight in concise yet
correct language.

From a teacher’s point of view, the
Bernoulli explanations of aerodynamic lift are
both a blessing and a curse, and have a check-
ered pedagogical history. Since childhood I
have read explanations of flight, or at least the
action of the wing of a bird or aircraft, in the
following terms: “The top of the wing is con-
vex, the bottom of the wing is flat, so air going
over the top has to accelerate to keep up with
air going underneath, so the pressure on the
top (thanks to Bernoulli) is reduced, etc. etc.”
I still see this version of events in many mod-
ern children’s books. I also heard it earlier this
year in an Air Canada in-flight video, which
was presented by an engineering professor
who cheerfully ignored the fact that his 250
viewers were then sitting on top of a super-
critical wing that was flat on the top and con-
vex on the bottom. It long puzzled me why the
air going on one side of the wing should care

what happened on the other, but it was many
years before I discovered the truth: it doesn’t.
(For the standard textbook treatment, see for
example, Acheson,1 and for a systematic
demolition of the common explanation, see
Raskin2). Anyone who has thrown a balsa or
paper glider with flat sheet wings can see the
logical difficulty.

Later in life, while learning to fly, I ran
across a version of events (also widespread)
that there are two effects that generate lift:
Bernoulli and air deflection.3

It seems reasonable that these two effects
are one and the same, since Bernoulli’s theo-
rem can be derived from Newton’s second
law. Proving it is harder, because we cannot
create a closed system in which we can con-
sider in isolation the pressures and forces
involved in aerodynamic lift. In recent years
there have been significant developments in
pedagogy of flight, and I warmly recommend
a short and profound book by Henk Tennekes,
The Simple Science of Flight.4 Also, a
straightforward resolution of Newton and
Bernoulli has been presented by Klaus
Weltner.5 I am grateful to the editor for point-
ing out an even earlier paper in this journal
that covers similar ground, although in a qual-
itative way.6

The Standard Treatment
Thin airfoil theory gives an approximate

form for the lift force L in terms of a coeffi-
cient of lift CL for a wing of area S and aspect
ratio A (the ratio of the span l to the mean
chord c), with an angle of incidence to the
airstream �.7 The air density is �.
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The only assumptions made to reach this
result are that there is a viscous boundary
layer and that there is a streamline fixed at the
sharp trailing edge of the wing. (This is the so-
called “Kutta” condition, which guarantees
circulation of air around the wing and there-

Chris Waltham has been
building model aircraft for 36
years, since the age of
seven. He has been a
physicist at the University of
British Columbia since 1980,
where he teaches and
works on neutrino astro-
physics. He finds the purest
professional pleasure at the
interface between flying and
physics.

Physics Department
University of British

Columbia
6224 Agricultural Road,

Vancouver, BC
Canada V6T 1Z1

Flight without Bernoulli
Chris Waltham

Photo by Susanna Waltham



458 THE PHYSICS TEACHER Vol. 36, Nov. 1998 Flight without Bernoulli

fore lift from a Bernoulli effect pressure difference.) The
induced drag D1 arises from the deflection of air down-
wards; since even a frictionless interaction with the wing
cannot increase the speed of the air, then a deflection
down must reduce the horizontal component of its veloci-
ty and thus cause a drag force. Its coefficient CD,i always
depends on the square of the lift coefficient:

D1 = �
1

2
�CD,i �v2S;    CD,i � �

�

CL
A

2
�          (2)

This expression is strictly applicable only to the ideal case
of a semi-elliptical lift distribution along the span of the
wing; however, the correction for other typical distribu-
tions encountered is small. 

The forms of Eqs. (1) and (2) can also be understood in
terms of a force arising from the rate at which fluid mass
is encountered (of order � vS) times the velocity imparted
to that fluid (of order v).

A Simple Model
The germ of this idea came from Bradley Jones’s

Elements of Practical Aerodynamics of 1942,8 although
its origins are much earlier and the basic principles can be
found in Rankine’s 1858 classic text A Manual of Applied
Mechanics.9

Birds and aircraft fly because they are constantly push-
ing air downwards:

L = �
d

d

p

t
� (3)

Here L is the lift force and dp/dt is the rate at which
downward momentum is imparted to the airflow. The lift
force can also be understood as the result of a pressure dif-
ference. Pushing air downwards naturally creates a pres-
sure differential above and below the wing. A region of
higher pressure beneath a wing will naturally slow down
the air entering it, even as a region of low pressure above
it will accelerate the incoming air. 

Consider a long thin wing on an aircraft as shown in
Fig. 1(a). The wing has a rectangular plan-form with span
l, chord (width) c, and the aircraft is traveling at a veloci-
ty v with respect to the air mass. The wing intercepts the
airflow with an angle �; see Fig. 1(b). We can consider a
slice of air of height x and length l intercepting this wing
and being deflected downward at a small angle � with
only a very small change in speed. The total mass of the
aircraft is M. The projected wing area is S = cl and the
aspect ratio is A = l / c.

In reality, the influence of the wing will not extend
merely to a well-defined slice of air like this, but to a
much larger volume of air (in principle of infinite size),
with the effect decreasing linearly with distance from the
wing. In fluid dynamics this is usually understood in terms
of the circulation, �, which is computed by integrating the
fluid velocity around a circle enclosing the wing:

� = �v .ds                         (4)

There is no restriction on the size of the path used to eval-
uate the circulation; in principle you can calculate the lift
of a balsa glider by integrating on a path around the Earth.
The physical reason for this is that any body, no matter
how small or slow, affects the entire body of air in which
it is moving, i.e., the whole atmosphere. This feature con-
tributes to the conceptual difficulty of flight since it pre-
vents us from defining a usable closed system.  

Considering the change in momentum of the air pass-
ing over the wing (with no change in speed), we can
derive expressions for the vertical lift force L and the hor-
izontal drag force D1 on the wing in terms of l, v, x, �, and
the air density �. For now we assume the wings are so long
that wing-tip effects can be ignored, as can the effects of
the fuselage and propeller wash; the flow is completely
two-dimensional.  The force F� required to  change  the 

Fig. 1.  Simple model of air flowing around a wing.

(a)  Top view of aircraft (in its own frame of reference).

(b) Side view of wing (in a frame of reference moving with the aircraft).

(c) Front view of aircraft.
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velocity ��� of a fluid whose flow rate is �
d

d

m

t
� is given by:
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In this case the flow rate is:
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d
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m

t
� = x l�� (6)

The vertical component of ��� is:

��V = � sin � (7)

The horizontal component of ��� is:

��H = � (1 – cos�)           (8)

We can now write expressions for the lift, L, and induced
drag, D1.

L = �� 2x l sin� (9)

D1 = �� 2x l(1 – cos�) (10)

If we were to do this more correctly, we would box in the
wing with a control volume10 of infinite vertical thick-
ness. The vertical dimension would be x and the deflection
� would be a function of x. Equation (9) would then look
like:

L = �� 2 l � 	


	
sin � (x)dx              (11)

This is still assuming two-dimensional flow and negligi-
ble changes in �. Equation (10) would take on a similar
form.

Now we turn to the full dynamical analysis of fluids to
understand the quantities x and �.

Substituting Eqs. (9) and (10) into (1) and (2) gives
expressions for the air deflection angle, �, in terms of the
angle of incidence, �, and also the height of the air stream
involved, x, in terms of the wing dimensions.
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Here are two interesting results:

• The downward deflection angle of the air
depends on the angle of incidence of the wing but
goes to zero in the limit of a long thin wing, since
the thickness of deflected air becomes infinite.

• The thickness of the deflected airstream is not
dependent on the chord but on the length of the
wing.

L =  �
�

4
�l 2�� 2 sin � (14)

D1 = �
�

8
�l 2�� 2(1 – cos�) (15)

Hence for a given deflection angle, the relevant wing area 

is not S but �
�

4
�l 2, which is  exactly  the  same area  that 

would be involved if the aircraft were a helicopter and the
wing was rotating. This is in contrast to writing these
expressions in terms of the angle of incidence, in which
case the area relevant to lift is S and that of induced drag
is c2. What happens to the lift if the chord is increased?
Does it increase? Yes, but the reason is that the deflection
angle increases, not the thickness of the deflected
airstream.

In fact our result does not require that the deflected air
be of uniform thickness along the wing, merely that the 

frontal area be �
�

4
�l 2 as shown in Fig. 1(c).

Within this result lies the reason why wings, against all
engineering sense, tend to be long and thin and not short
and broad. The more air deflected downwards, the less
drag incurred for a given lift force. In fact, many attempts
have been made to increase the depth of deflected air for
a given wingspan; the splaying of an eagle’s wingtip
feathers is nature’s response to the problem, and the
upturned wingtips on a Boeing 747-400 is an engineering
solution. We can also see the interference that occurs
between a biplane’s wings; the regions of influence of the
two wings overlap unless they are spaced apart by more
than the length of the span. It is not, however, practicable
to space them by more than a small fraction of this
distance.

Friction Drag
There is another drag force, D2, caused by the friction

of air flowing over the surface of the wing. The usual
expression for friction drag is as follows:

D2 = �
1

2
�CD,0� �2S                   (16)

The coefficient of friction CD,0 is defined here using the
area of the wing S as the relevant area. The zero subscript
refers to the attitude (�, �), which gives zero lift, and we
will assume that the drag varies very little with small
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changes in angle of attack; this is a reasonable approxi-
mation for a good airfoil section. For a real wing D2
would be a combination of friction and form drag (i.e.,
drag caused by air slowing in a direction parallel and per-
pendicular to the wing surface at any given point, respec-
tively). In our case of a very thin wing, friction drag is
dominant, and in any case both drags have the same form
and are usually coalesced into one (“profile”) drag
coefficient. In our model we can express D2 in terms of
the rate of change of momentum of the air flowing past the
wing due to friction:

D2 = �1 �
d
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m
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Here the subscripts 1 and 2 refer to the air mass before and
after passing the wing, respectively. Since the wing is nei-
ther a source nor a sink, the mass flow of air toward the 

wing ��
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Substituting �1 = � and �2 = � – �� :

D2 = vxl�� – (� – ��)xl�� = xl����

= �
�

4
�l2 � ��� (19)

If we wish to recover the standard form for the friction
drag, we can write:

�
�

�

�
� = �

2

�

CD
A

,0� = �
2C

�
D,0� �

c

l
� (20)

This result makes intuitive sense in that the slowing of the
air depends on the size of the chord and the inverse of the
thickness of the airstream.

D2 = �
�

4
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���2 l2 (21)

In comparing this with Eq. (16), we see that if we for-
mulate the drag in terms of the fractional velocity change
then the relevant area is l2, whereas in terms of the con-
ventional drag coefficient the relevant area is S. Typical
values for CD,0 for full-sized modern aircraft are around
0.02;11 this means that the magnitude of �� /� is a few
parts per thousand. Hence our assumption that �� /� is
small is a good one.

[This drag is necessarily along the wing surface;  when
the wing is at an angle � , the horizontal component is this
value multiplied by cos � :
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so to the order given, our simple answer is correct.]

Optimizing Flight Attitude
Total drag force D = D1 + D2 is dependent on deflec-

tion angle � and drag coefficient f:
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In making this approximation, D can be expressed in
terms of the mass, speed, and wing dimensions of the air-
craft. Note that for level flight the lift has to be equal to
the weight of the craft.
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Minimum Power Condition
We can now find the minimum power required to keep

this aircraft in the air. This occurs when the flight veloci-
ty is �0.
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Hence the flight velocity for minimum power is given by:
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Note that the velocity is proportional to the square root of
the wing loading Mg/S and the inverse of the square root
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of the air density. These and other dependencies are the
same as predicted by the full fluid dynamical theory. The
graph of power versus velocity is shown in Fig. 2.
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Substitute for �0:
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In this flight condition the induced drag (which
depends on 1/�2 is three times the size of the friction drag
(which depends on �2 ). The minimum power depends on
the mass of the aircraft to the three-halves power. Once
again, these and other dependencies are the same as pre-
dicted by the full theory.

Maximum Range Condition
A similar procedure allows us to maximize the range of

an aircraft with a certain amount of energy available in the
form of fuel, or height, in the case of a glider. Since work
done is simply drag times distance, this represents the
minimum drag condition. The necessary velocity can be
found by drawing the line tangent to the power curve, and
passing through the origin, which has the minimum slope.
At the new velocity, ��, the two contributions to the drag

can be shown to be equal and the value is given by:

��  =  31/4�0 � 1.3�0 (30)

The power for maximum range is given by:

P� = �
3
2

3/4
�Pmin � 1.14Pmin (31)

An Example
To illustrate the above analysis, let us estimate some

quantities for a real aircraft; I take the ubiquitous Cessna
152,12 a standard two-seat trainer.

Typical Mass, M = 700 kg
Span, l = 10.2 m; Wing area, S = 14.8 m2; Aspect

ratio, A = 7.0
Velocity for maximum range, �� = 31 m/s; Lift-to-

drag ratio at ��, (L/D)max = 11
Power rating of engine, Pmax = 82 kW

Now we can use the equations given above to derive
quantities used in formal aerodynamics. Equation (1) for
the maximum range condition gives CL = 0.81, � = 9.5
deg. Equations (2) and (16) and the recognition that in the
maximum range condition the two drag contributions are
equal, gives (L/D)max = [CL/(CD,0 + CD,i)]max = 11, hence 
CD,0 = CD,i = 0.037. The power P� = D�� = 19.3 kW, well
within the capability of the engine (maximum cruising
speed is 57 m/s, considerably higher than ��).

We can also, using our simple model, estimate how
much air is involved in flying the Cessna and what 
happens to it. The rate at which the aircraft encounters air
is given by dm/dt = �

�

4
�l2��� = 3000 kg/s (3 tonnes per sec-

ond!), and Eq. (12) gives the deflection angle, � , to be 4.2
deg, about half the value of the angle of incidence, �. The
downward velocity of the air (downwash) is ��sin � = 2.3
m/s.

Conclusions
We have used a very simple physical model relying

only on Newton’s second law to reproduce all the salient
features of a rigorous fluid dynamical treatment of flight:

• Lift and drag have their origins in the change in
momentum of the fluid flow.

• Induced drag is due to the deflection of the fluid.
• Frictional drag is due to the slowing of the fluid.
• In level, steady flight induced drag is proportion-

al to l/� 2.
• In level, steady flight frictional drag is propor-

tional to � 2.
• Optimal flight conditions are obtained by bal-

ancing the two forms of drag.

The model has its limitations; we cannot calculate real

Fig. 2. Dependence of power on flight velocity for level flight without
acceleration. The two velocities marked are those for minimum power (v0)
and maximum range (v�). The two types of drag responsible for power
consumption are induced drag (D1) and friction drag (D2).
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compounded by the need to choose the right reference
frame. The air deflection approach can help here too;
if you bear it in mind you will never get the sign
wrong!

3. Cessna Manual of Flight (Canada), (Jeppeson,
Denver, CO, 1979), p.1-18ff, and the Transport
Canada Flight Training Manual, 3rd ed., (Gage,
Toronto, 1981) p. 5.

4. H. Tennekes, The Simple Science of Flight (MIT Press,
Cambridge, MA, 1996).

5. K. Weltner, “A comparison of explanations of the aero-
dynamic lifting force,” Am. J. Phys. 55, 50-54 (1987). 

6. N. F. Smith, “Bernoulli and Newton in fluid dynam-
ics,” Phys. Teach. 10, 451-455 (1972).

7. F. M. White, Fluid Mechanics, 2nd ed. (McGraw-Hill,
New York, 1979), p. 427.

8. B. Jones, Elements of Practical Aerodynamics, 3rd ed.
(Wiley, New York, 1942) pp. 17-19. 

9. W. J. MacQ. Rankine, A Manual of Applied
Mechanics, 21st ed. (Griffin, London, 1921), p. 591 ff. 

10. I. H. Shames, Mechanics of Fluids, 2nd ed., (McGraw-
Hill, New York, 1982), p. 121ff.

11. J. D. Anderson Jr., Introduction to Flight, 3rd ed.,
(Wiley, New York, 1984), p. 269.

12. Cessna 152 Information Manual, Cessna Aircraft
Company, 1979.

performance with it. However, we have learned something
about the depth of air flow involved in generating the lift,
and how this affects induced drag. Above all, we can now
explain in simple terms why birds and aircraft cannot fly
by deflecting air with their bodies alone, and hence why
they have to have appendages we call wings.
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