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Abstract
It is shown that highly elliptical orbits, such as those of comets, can be
explained well in terms of energy rather than forces. The principle of
conservation of energy allows a comet’s velocity to be calculated at aphelion
and periheilon. An example asks students to calculate whether they can run
fast enough to escape from a small asteroid.

If only because energy is a scalar, it is easier to
explain physical phenomena in terms of energy
rather than forces. Despite this, teachers usually
explain the orbit of comets in terms of forces.
They will say that, when the comet is making
its closest approach to the Sun, it will be
travelling fastest to avoid crashing into the Sun’s
surface. This borrows from Isaac Newton’s
‘thought experiment’ in which he imagined firing
a cannon ball from a hill. The Earth’s surface,
being curved, falls away beneath the cannon ball
and so the ball will travel further than if the Earth
were flat. Fire it fast enough and the cannon
ball will never reach the Earth. It will remain in
orbit. However, in my experience, pupils are not
always happy with this explanation. Indeed, I get
the impression that some invent more comfortable
explanations. Some believe that comets speed up
on their approach to the Sun because, by the time
they get there, much of the ice has ‘evaporated’.

A more visually appealing explanation relies
on the Sun’s distortion of the fabric of space-time
but, alas, this perhaps introduces more problems
than it solves. Another way to tackle the problem
is to explain that angular momentum is conserved.
This has the advantage that it can be shown using
video footage of an ice skater or demonstrated by
spinning on a swivel chair. Outstretched limbs
increase the moment of inertia and reduce the
rate of spin. Pulling in one’s arms increases the
speed, directly analogous to the increasing speed

of the comet as it approaches the Sun. Alas, linear
momentum, let alone angular momentum, does not
appear in 14–16 specifications. Besides, while
some pupils will gain an intuitive understanding
from these more visual approaches, they might
well find that they are left unable to articulate
this understanding in the context of answering
examination questions.

I have found it much easier to resort to the
principle of conservation of energy. When the
comet is at its farthest point from the Sun (its
aphelion), the comet is high above the Sun’s
surface where much of its energy is in the form
of gravitational potential energy. As the comet
approaches the Sun, its height falls and the
difference in gravitational potential energy will be
converted into kinetic energy. Hence a comet will
be travelling fastest at its perihelion (i.e. when
it is closest to the Sun). Of course, this is best
explained with the help of sketches (figure 1).
Strictly speaking, the ‘height’ of the comet is its
distance from the centre of the Sun.

Indeed, a discussion of energy is perhaps
also the best way to start the more sophisticated
explanations suitable for A-level students and
beyond. The total mechanical energy (ME) of
a comet, or any orbiting body, is the sum of its
kinetic energy (KE) and its gravitational potential
energy (PE):

ME = KE + PE = constant (1)

0031-9120/03/050429+04$30.00 © 2003 IOP Publishing Ltd P H Y S I C S E D U C A T I O N 38 (5) 429



M Follows

a b

Sun

orbit of comet

a = distance at aphelion
b = distance at perihelion

surface of Sun

height (or distance) at aphelion

PE of
comet at
aphelion

Where has this energy gone?
The difference in PE has
been transferred into KE
according to the principle of
conservation of energy

PE of comet
at perihelion

height (or distance) at perihelion

}
Figure 1. Variation of the height and the gravitational
potential energy (PE) of a comet.

ME = 1
2mv2 − m

GM

r
= constant (2)

where M is the mass of the Sun (1.99 × 1030 kg),
m is the mass of the comet, r is its instantaneous
distance from the Sun and G is the universal
gravitational constant.

The relative magnitude of the kinetic and
potential energies determines the shape of the
orbit. If the velocity of the comet is too great then
its KE � PE. Consequently, the comet will escape
the clutches of the Sun on a parabolic or hyperbolic
orbit, never to return. Assuming that PE > KE
then the comet will have a bound elliptical orbit
with its total mechanical energy given by

MEbound = −m
GM

2a
. (3)

Derivation of equation (3) is best left to
undergraduates or very keen A-level students who
are also confident mathematicians. It can be found
at www.ac.wwu.edu/∼vawter/PhysicsNet/Topics/
TopicsMain.html. However, there is no reason why
students should not be asked to substitute equation

Table 1. Various parameters for comet Halley.

Perihelion distance (AU) 0.587
Aphelion distance (AU) 35.11
Semi-major axis (AU) 17.84
Dimensions (km) 16 × 8 × 8
Density (kg m−3) 100
Mass (kg) ∼1 × 1014

Note that AU denotes astronomical units.
1 AU = 1.49 × 1011 m, the distance between the
Sun and Earth. I encourage students to calculate
this roughly for themselves by telling them that
it takes approximately eight minutes for sunlight
to reach us.

(3) into (2) to get

−m
GM

2a
= 1

2mv2 − m
GM

r
= constant (4)

in order to show that, as a function of its distance
from the Sun, a comet has a velocity given by

v =
√

GM

a

(
2a

r
− 1

)
(5)

where a is the mean radius of its orbit (sometimes
referred to as the semi-major axis). Notice that,
when a = r , equation (5) reduces to

v =
√

GM

a
(6)

as would be expected for a circular orbit.
There is no reason why equation (5) cannot be

given to advanced-level students in order that they
can confirm that the velocity of a comet is less than
its escape velocity. If students plug appropriate
values from table 1 into equation (5) they will find
that comet Halley has a velocity of 5.46 × 104

m s−1 when it is closest to the Sun (perihelion),
reducing to approximately 900 m s−1 when it is
at its most distant (aphelion). Students should be
able to work out comet Halley’s escape velocity
by equating KE and PE:

1
2mv2 = m

GM

r
(7)

and rearranging for v:

v �
√

2GM

r
. (8)

At perihelion this isv � 5.51×104 m s−1, only just
in excess of the actual speed of Halley calculated
using equation (5).
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Table 2. KE, PE and ME at the perihelion and
aphelion of comet Halley’s orbit.

At perihelion At aphelion

KE (J) 1.49 × 1023 4.06 × 1019

PE (J) −1.52 × 1023 −2.54 × 1021

ME (J) −2.47 × 1021 −2.49 × 1021

The velocity of comet Halley, already
calculated using equation (5), can be substituted
into the equation for KE (the left-hand term in
equation (7)). PE can be worked out using the
right-hand term of equation (7). The values
of KE and PE at perihelion and aphelion can
be substituted into equation (1) to get the ME.
Table 2 shows that ME remains unchanged, within
rounding errors, confirming that mechanical
energy is conserved.

The mass of comet Halley is uncertain. Its
uncertain density and volume imply that Halley
has a mass of about 1 × 1014 kg. Its low
density suggests that it is porous with much of its
interstitial ice sublimated away. The uncertainty in
its mass translates to an uncertainty in the values of
KE, PE and ME for comet Halley shown in table 2.
Despite this it should be clear that, at perihelion,
KE is at a maximum while PE is at a minimum.

Figure 2. Comet Halley as seen in 1976.

The reverse is true at aphelion. Students might
need to be reminded that gravitational potential
energy is taken as zero at infinity so it is actually
less negative and therefore bigger at aphelion, as
expected.

Comet Halley loses about 3 × 1011 kg at each
perihelion passage. While this reduces its ME, its
dynamics does not change. Its (escape) velocity
is independent of its mass, which might come as
a surprise to those pupils who reasoned that it
speeded up because it was losing material as it
approached the Sun.

Some students may be tempted to use
PE = mgh, the equation for a uniform field,
mysteriously plugging in the gravitational field
strength, g, for the Earth’s surface. This is an
excellent opportunity to remind students that the
value of g falls off as the square of the distance
from a massive body. It is also a chance to
revise that g = F/m, where F is the force of
attraction due to Newton’s law of gravitation. This
gives g = GM/r2 which, when substituted into
PE = mgh, reduces to the equation for PE for a
radial field that appears on the right-hand side of
equation (7). Pupils might need to be reminded
that r can be substituted for h. After all, both
symbols denote distance, h in a uniform field and
r in a radial field.

I ask students to imagine that a particular
comet is on a collision course with Earth. How
much more kinetic energy would be needed in
order to send the comet into an escape trajectory?
How might this be achieved? Well, it should be
possible to put a lander onto the surface of a comet.
This is what is planned for the Rosetta spacecraft.
A little research will show that the dramatic
scenario portrayed in the film Armageddon would
not be necessary, provided the Spaceguard Survey
or other searches ‘catch’ Near Earth Objects in
good time. As teachers we ought to be tapping into
this popular interest. For example, why not ask A-
level students to identify a comet or asteroid from
which they could launch themselves into orbit
simply by running. My experience suggests that,
by making physics more ‘personal’ in this way,

Table 3. Data students need to answer the question on
Toro.

Gravitational constant, G 6.673 × 10−11 N m2 kg−2

Mass of Earth, M 5.98 × 1024 kg
Radius of Earth, r 6.38 × 106 m
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Table 4. Selected asteroids.

Asteroid Asteroid Radius Mass Gravitational field Escape velocity
number name (km) (1012 kg) strength (N kg−1) (m s−1)

1685 Toro 5.0 2880.0 7.68 × 10−3 8.8
1566 Icarus 0.7 7.9 1.08 × 10−3 1.2
1620 Geographus 1.0 23.0 1.53 × 10−3 1.8
1862 Apollo 0.8 11.8 1.23 × 10−3 1.4

physics can be perceived as less abstract. Here is
an example of a question I use.

• The asteroid Toro (number 1685),
discovered in 1964, has a radius of about
5 km. Suppose it has the same density as the
Earth, find its mass and the gravitational
field strength at its surface. Would you be
able to run fast enough to launch yourself
into orbit around Toro?

The data in table 3 are provided. Students
may have forgotten the equation for the volume
of a sphere so they may need to be reminded. In
order to save time, the mean density of the Earth,
approximately 5.5 × 103 kg m−3, can be given to
them. This gives a mass for Toro of 2.88×1015 kg.
Students should know how to derive equation (8)
and confirm that they would need to run at a speed
of 8.77 m s−1. The calculations are outlined as
follows.

Finding the mass of Toro:

MToro = ρVToro = ρ 4
3πR3

Toro

= 5500 kg m−3 × 4
3π(5 × 103 m)3

= 2.88 × 1015 kg.

The gravitational field strength on the surface of
Toro:

g = GMToro

r2
Toro

= 6.673 × 10−11 N m2 kg−2 × 2.88 × 1015 kg

(5 × 103 m)2

= 7.68 × 10−3 N kg−1.

The escape velocity:

v =
√

2GMToro

rToro

=
√

2 × 6.673 × 10−11 N m2 kg−2 × 2.88 × 1015 kg

5 × 103 m

= 8.77 m s−1.

Those who are not quite as nimble on their
feet might want to choose one of the asteroids
listed in table 4, which is taken from a catalogue
of asteroids at nssdc.gsfc.nasa.gov/planetary/fact
sheet/asteroidfact.html. The final three columns of
table 4 list the values that students should get.

An army on the march might expect to cover
four miles in an hour. Get students to work out
that this equates to a speed of a little under 2 m s−1

and comment on the hazards of simply walking on
these asteroids.

No matter what the academic level, the
behaviour of orbiting bodies is often more
fruitfully dealt with in terms of energy, while
the significance of comets goes beyond the fact
that they are ‘dirty snowballs’. Recent research
suggests that, by colliding with Earth, comets
might well have been responsible for watering our
planet and seeding it with life. On the other hand
they have also been implicated in mass extinctions.
The demise of the dinosaurs 65 million years ago
is generally accepted to coincide with the latest
major cometary impact. Meteor showers are the
funeral pyres of comets. The Perseids, the most
spectacular, appear in early August and are all
that remains of the comet Swift-Tuttle. Comets
also have potential for cross-curricular links. For
example, they appear in Shakespeare and history
as portents of future misfortune—Halley’s comet
appeared just months before the Battle of Hastings
in 1066. Perhaps alluding to the wider significance
of physical phenomena in this way might go some
way to stemming the exodus from physics.
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