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The behavior of the Mathieu functions is illustrated by using a variety of plots with representative
examples taken from mechanics. We show how Mathieu functions can be applied to describe
standing, traveling, and rotating waves in physical systems. Some background is provided on
notation and analogies with other mathematical functions. Our goal is to increase the familiarity
with Mathieu functions in the scientific and academic community using visualization. For this
purpose we adopt a strategy based on visual recognition rather than only looking at equations and
formulas. © 2003 American Association of Physics Teachers.
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I. INTRODUCTION

Increasing attention is being given to scientific and en
neering problems that lead to differential equations of
Mathieu type.1 Their solutions, known as Mathieu function
were first discussed by Mathieu in 1868 in the context of
free oscillations of an elliptic membrane.2 These functions
were further investigated by a number of researchers w
found a considerable amount of mathematical results
were collected more than 60 years ago by McLachlan.3 Dur-
ing the last decade there have been several articles devot
new analytical results, numerical techniques, a
applications.4–9

Mathieu equations occur in two main categories of phy
cal problems. First, in applications involving elliptic geom
etries, for example in the analysis of the vibrating modes
elliptic membranes, the propagating modes in elliptic pip
and the oscillations of water in a lake of elliptic shap
Mathieu equations arise after separating the wave equa
using elliptic coordinates.10,11 Second, Mathieu equation
arise in problems involving periodic motion, such as the t
jectory of an electron in a periodic array of atoms, the m
chanics of the quantum pendulum, and the oscillations
floating vessels.12–17

Despite the existence of many applications, what attra
our attention is that Mathieu functions are barely mention
in modern textbooks of mathematics for physics a
engineering,18 others just present a limited discussion,19–23

and older texts that gave some account of Mathieu functi
are now out of print.3,24–26Nevertheless, when facing a prob
lem that leads to the Mathieu differential equations, we c
always consult the invaluable handbooks by Abramowitz a
Stegun27 and by Gradshteyn and Ryzhik.28 However, this ex-
perience can be rather painful if one is trying to learn ab
Mathieu functions for the first time. In most books we find
high density of equations which, from a didactic point
view, can be scary for the unfamiliar reader.

We believe that this lack of literature compared to that
other special functions is because the behavior of Math
functions is relatively rich and consequently more difficult
understand. Moreover at least five different nomenclatu
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are in use~see Appendix A!, and the computation of the
Mathieu functions and their eigenvalues still presents so
numerical difficulties.8,9

The purpose of this article is to facilitate the understand
of some of the qualitative features of Mathieu functions a
their applications. We believe that the visualization
Mathieu functions will be helpful in achieving a better com
prehension of their basic characteristics. This work is
tended for students, teachers, and researchers who are
miliar with Mathieu functions, and who are interested
gaining visual insight. We shall restrict ourselves to inclu
ing the minimum formulas needed to explain the basic ch
acteristics, the different notation, and the classification
these functions. The behavior of the Mathieu functions
illustrated by using a variety of plot types with representat
examples taken from mechanics. We show how Math
functions can be applied to describe standing, traveling,
rotating waves in physical systems.

II. VISUALIZING MATHIEU FUNCTIONS

Over the years the visualization of Mathieu functions h
been limited to simple curves for a few values of their p
rameters. Jahnke and Emde29 were perhaps the first author
to include three-dimensional surface representations of
Mathieu functions, whereas Abramowitz and Stegun27 pro-
vide many useful two-dimensional plots. At present, mo
sophisticated computational tools are available, and he
far more complicated behavior of Mathieu functions can
explored in a variety of two- and three-dimensional plots

If the two-dimensional Helmholtz equation

]2U

]x2 1
]2U

]y2 1k2U50, ~1!

is transformed from rectangular coordinates (x,y) to elliptic
coordinates~j,h! by the formulas

x5 f coshj cosh, y5 f sinhj sinh, ~2!

and a solution of the formU5R(j)F(h) is sought, it is
found thatR(j) andF~h! must satisfy the equations
233jp/ © 2003 American Association of Physics Teachers



g
q

ed

s,
he
r
s
u
tic
i-

ci
-
lip

he
e
on
c

se

r
n
ie

om
by

or

d,
able
al

f

ic
e
r
ro-

re
is,

vi-

ns

e-
of

the

F
-

l,

a-
d2F

dh2 1~a22q cos 2h!F50, ~3!

d2R

dj2 2~a22q cosh 2j!R50, ~4!

where q5 f 2k2/4 and a is the separation constant arisin
from the eparation of variables method. In the literature, E
~3! and ~4! are known as the ordinary and the modifi
Mathieu equations, respectively.27 However, in applications
involving the Helmholtz equation in elliptic coordinate
Eqs. ~3! and ~4! are better identified as the angular and t
radial Mathieu equations.24 Their solutions are the angula
Mathieu functions~AMF! and the radial Mathieu function
~RMF!, respectively. This nomenclature becomes obvio
when we observe in Fig. 1 the similarity between the ellip
coordinates~j,h! and the polar coordinates. The elliptic var
ableh has a domain 0<h,2p and plays a similar role to a
polar angle, whereas the variablej, with domain 0<j,`
behaves as a radial variable. The line joining the fo
(6 f ,0) corresponds toj50. Notice that the polar coordi
nates could be considered to be a special case of the el
coordinates in the limitf→0 when the foci of the elliptic
coordinates collapse to a point at the origin. In this limit, t
angular and the radial Mathieu equations become the w
known harmonic equation and the Bessel equati
respectively.3,27As a consequence, the angular Mathieu fun
tions transform into the trigonometric functions cosh and
sinh and the radial Mathieu functions become the Bes
functions.

A. Angular Mathieu functions

The angular Mathieu equation~3! is a linear second-orde
differential equation that has two families of independe
solutions, namely the even and the odd angular Math
functions,

Fm5H cem~h;q!, m50,1,2,... ,

sem~h;q!, m51,2,3,... ,
~5!

Fig. 1. Elliptic cylindrical coordinate system. The curvesj5constant are
confocal ellipses and the curvesh5constant are orthogonal hyperbolas.
234 Am. J. Phys., Vol. 71, No. 3, March 2003
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where m is the order. The notation ce and se comes fr
cosine-elliptic and sine-elliptic, and was first suggested
Whittaker.22 Nowadays, it is a widely accepted notation f
the AMF ~see Appendix A!.

The behavior of Mathieu functions is fairly complicate
particularly because we need to understand both the vari
h and the parameterq dependence of the functions. Physic
considerations are usually such that AMF are periodic30 with
period p or 2p. The values ofa in Eq. ~3! that satisfy this
condition are the eigenvalues of the equation; for cem the
eigenvalues are usually denoted asam(q), whereas for sem
they are represented asbm(q). According to the Sturm–
Liouville theory,18 the eigenvalues form an infinite set o
countable real values that have the propertya0,b1,a1

,b2¯ . Each function cem and sem is associated with an
eigenvalueam or bm which in turn depends onq.

In Fig. 2 we plot the functions cem(h;q) and sem(h;q) for
several values ofm over the plane (h,q).31 Note that Eq.~3!
becomes the harmonic equation whenq→0, when it is evi-
dent that cem and sem become equal to the trigonometr
functions cosmh and sinmh asq vanishes. The range of th
plots has been limited to@0,p#, because their entire behavio
can be deduced from the parity and symmetry relations p
vided in Table I.

The parity, periodicity, and normalization of the AMF a
exactly the same as their trigonometric counterparts. This
cem is even and sem is odd, and they have periodp whenm
is even or period 2p whenm is odd. The AMF havem real
zeros in the open intervalhP(0,p), but they cluster around
p/2 asq increases. The normalization for the AMF is

E
0

2p

cepceq dh5E
0

2p

sepseq dh5H p if p5q,

0 if pÞq.
~6!

The physical meaning of the parameterq depends on each
application. For instance, the classical problems of the
brating modes in an elliptic membrane10 and the probability
distributions in an elliptic quantum billiard32 are mathemati-
cally equivalent, that is, in both cases Mathieu equatio
arise after separating the wave equation or Schro¨dinger equa-
tion in elliptic coordinates. However, as we will discuss b
low, in the first caseq is related to the eigenfrequencies
the vibrating modes, whereas in the second caseq is associ-
ated with the characteristic energies of the eigenstates in
billiard.

An interesting one-dimensional example where the AM
occur is the quantum pendulum.14–16 Consider a plane pen
dulum of lengthL and massM oscillating under the action
of gravity. The time-independent Schro¨dinger equation cor-
responding to this problem is

2
\2

2ML2

d2C

du2 1@V~u!2E#C50, ~7!

where u is the angular displacement from the vertica
V(u)52MgL cosu is the potential energy, andC~u! is the
wave function associated with the energyE. The boundary
condition to be imposed onC is that it be single valued inu,
that is, C~u! has period 2p: C(u12p)5C(u). Equation
~7! can be rewritten in the form of an angular Mathieu equ
tion ~3!, by defining

u52h, ~8a!
234Gutie´rrez-Vegaet al.



u
Fig. 2. Graphical visualization of angular Mathie
functions cem(h;q) and sem11(h;q) over the (h,q)
plane. The function ce0(h;q) is never negative, al-
though oscillatory.
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, ~8b!

q52
2MgL

~\2/2ML2!
. ~8c!

In view of Eq. ~8a!, the boundary condition isC@2(h
1p)#5C@2h#, that is, as a function ofh, the wave func-
tion has to be periodic with periodp. From Table I, such
solutions are AMF of even order: ce2r(h;q) and
se2r 12(h;q) for r 50,1,2,... . All other AMF are excluded b
the periodicity condition. We note further that characteris
values of the energyEm are defined by the eigenvaluesam of
the Mathieu equation; from Eq. ~8b! we find
Em(\2/8ML2)am .

Also, we can see from Eq.~8c! that, for the quantum pen
dulum, the parameterq depends only on the given physic
constants of the problem, and that Eq.~7! really corresponds
to a Mathieu equation with negativeq. To satisfy the usua
definition of the Mathieu functions, we must perform th
change of variableh→(p/22h) according to Table I.

When visualizing mathematical functions, a suitable p
depends on the purpose. For example, the surfaces show
Fig. 2 were done following a mathematical point of vie
These diagrams allow us to appreciate at a glance the ev
tion of ce and se as functions ofh or q. In Fig. 3 we adopt a
physical point of view to show the probability distribution
235 Am. J. Phys., Vol. 71, No. 3, March 2003
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C2 of the quantum pendulum. As stated, the wave functio
are written in terms of AMF of even order, ce2r(h;q) and
se2r 12(h;q). We might plot these solutions against the po
coordinateu in a rectangular system (u,C2), but a more
meaningful picture is usually a polar diagram. In Fig. 3, w
can visualize how the probability distributions of a quantu
pendulum vary withu.

B. Radial Mathieu functions

The solutions of Eq.~4! when q is positive are the even
(e) and odd (o) oscillatory radial Mathieu functions of the
first and second kind,

R5H Jem~j;q!, Jom~j;q!, first kind,

Nem~j;q!, Nom~j;q!, secondkind.
~9!

For q,0 the solutions are known as the evanescent ra
Mathieu functions

R5H Iem~j;q!, Iom~j;q!, first kind,

Kem~j;q!, Kom~j;q!, secondkind.
~10!

In elliptic coordinates the radial Mathieu equation~4!
plays a similar role as the Bessel equation in circular cy
drical coordinates. Because Bessel functions are be
known than Mathieu functions, visualizing their analogies
a practical way to gain an insight into the qualitative beha
Table I. Symmetry relations for AMF.

Function
r 50,1,... Period

Parity
abouth50

Parity
abouth5p/2

AMF
with q,0

ce2r(h;q) p Even Even ce2r(h;2q)5(21)rce2r(p/22h;q)
ce2r 11(h;q) 2p Even Odd ce2r 11(h;2q)5(21)rse2r 11(p/22h;q)
se2r 12(h;q) p Odd Even se2r 12(h;2q)5(21)rse2r 12(p/22h;q)
se2r 11(h;q) 2p Odd Odd se2r 11(h;2q)5(21)rce2r 11(p/22h;q)
235Gutie´rrez-Vegaet al.
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ior of the RMF. It is known that Bessel equations have fo
families of independent solutions,18 namely the ordinary
Bessel functionsJm andNm , and the modified Bessel func
tions I m andKm . Each Bessel family splits into two Mathie
families, for example, the Bessel functionJm splits into the
even Jem and the odd Jom Mathieu functions. Thus there ar
eight independent families of RMF. This abundance of ell
tic solutions has provoked confused notations in the lite
ture which often complicates the recognition of the RMF a
their relations. We refer the interested reader to Appendix
where a comparative table of notation for the Mathieu fu
tions is provided.

In Fig. 4 we show the first-order RMF for different value
of q. Similar to the Bessel functions, the RMF have a d
creasing, oscillatory non-periodic behavior. Conversely

Fig. 3. Polar diagrams of the probability distributions of a quantum pen
lum as a function ofu.
236 Am. J. Phys., Vol. 71, No. 3, March 2003
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the AMF, the radial solutions oscillate faster asq increases.
In Fig. 5 we plot the RMF Je0 for q55 in two different
views. Adopting a mathematical point of view, we show
Fig. 5~a! Je0 as a function of the argumentj. The Bessel
analogy of Je0 is indeed the lowest-order Bessel functionJ0 .
Like J0 , the function Je0 is oscillatory, decreasing, and non
periodic. By comparing Je0 with respect toJ0 , we can ob-
serve that the maximum at the origin of Je0 is not as domi-
nant as in the case ofJ0 , and that Je0 oscillates faster asj
increases.

Figure 5~b! shows again Je0 , but now physical insight is
gained by plotting it as a function of sinh(j) instead ofj. For
instance, as we will see below, Je0 could represent the radia
dependence of a vibrating mode in an elliptic membrane.10 In
this case the argumentj is associated with the radial ellipti
coordinate~which is dimensionless!. However, to visualize
the spatial behavior of the mode, it is required to plot
against a coordinate with a length dimension such asx or y.
Let us consider they axis. By settingh5p/2 in Eq.~2!, it is
clear that they axis is written asy5 f sinhj. In this manner,
the plot in Fig. 5~b! could show the behavior of the vibratin
mode as a function of the normalized coordinatey/ f .

The plot in Fig. 5~b! reveals an important property of th
radial Mathieu functions: they tend to be damped perio
functions when they are plotted against a spatial coordin
like x;coshj or y;sinhj. This characteristic is interestin
because often the physical patterns are associated with
asymptotic behavior of the mathematical functions.

III. VISUALIZING STANDING WAVES IN AN
ELLIPTIC MEMBRANE

As stated, the angular and the radial Mathieu equati
can be expected to appear in any problem involving
Helmholtz equation expressed in elliptic coordinates.10,32

Consider the free oscillations of an elliptic membrane w

-

Fig. 4. Plots of radial Mathieu functions withq51
~solid line!, q52 ~dashed line!, andq53 ~dotted line!.
236Gutie´rrez-Vegaet al.



Fig. 5. Two views of the Je0 radial Mathieu function:
~a! plotted againstj ~mathematical view!, and~b! plot-
ted against sinhj ~physical view!.
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semiaxesa and b, and focal distancef ~see Fig. 1!. The
boundary of the membrane is expressed in elliptic coo
nates asj5j05arctanh(b/a)5constant.

If Z(x,y,t) is the vertical displacement as a function
time of a point located at (x.y), then Z satisfies the two-
dimensional wave equation

]2Z

]x2 1
]2Z

]y2 5
1

v2

]2Z

]t2 , ~11!

wherev25F/s, with s the surface mass density andF the
uniform tension per unit length in each point of the me
brane. By assuming a harmonic time dependenceZ(x,y,t)
5U(x,y)cos(vt), the wave equation becomes the Helmho
equation~1!, wherek5v/v. After applying Eq.~2! to trans-
form the Helmholtz equation into elliptic coordinates, a
taking the separable solutionU(j,h)5R(j)F(h), we ob-
tain the angular and the radial Mathieu equations~3! and~4!.
In this case, the parameterq is given by

q5
f 2

4
k25

f 2

4

v2

v2 5
f 2v2s

4F
. ~12!

A vibrating mode can be considered as a standing wa
that is, each point on the surface vibrates harmonically w
an amplitudeU(x,y), but all points have the same fre
quency. The modes are given by appropriate products o
dial and angular Mathieu functions, namely, the even Zm

and odd Zom solutions:33

Zem5Jem~j;q!cem~h;q!cos~vmt !, ~13!

Zom5Jom~j;q!sem~h;q!cos~vmt !, ~14!

where m>0 for even modes, andm>1 for the odd ones.
These wave solutions must satisfy the Dirichlet condition
the elliptic boundary, that is,Z(j0 ,h,t)50. This occurs only
if the radial functions vanish at the boundary, namely,

Jem~j0 ,q!5Jom~j0 ,q!50. ~15!
237 Am. J. Phys., Vol. 71, No. 3, March 2003
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As seen in Figs. 4 and 5, the RMF are decreasi
oscillatory nonperiodic functions. As a consequence, fo
given orderm, there are an infinite set of possible values
q that satisfy Eq. ~15!. Let qm,n be the nth zero (n
51,2,...) of the radial functions Jem or Jom . According to
Eq. ~12! for eachqm,n , there exists a corresponding eige
frequency given byvm,n5(4Fqm,n /s f 2)1/2.

In Fig. 6 we show the first even and odd vibrating mod
in the elliptic membrane. Notice the symmetry and the an
symmetry with respect to thex axis of the even and odd
modes, respectively. The radial nodal lines~elliptic lines! are
defined by the zeros of the radial functionsem and Jom ,
whereas the zeros of the angular functions cem and sem de-
fine the angular nodal lines~straight or hyperbolic lines!. We
can see thatUm,n has m angular nodal lines andn radial

Fig. 6. Plots of the first even and odd standing modes in an elliptic m
brane. The shaded regions represent crests~maxima! or valleys~minima! on
the membrane surface. For instance, the even mode Ze11 presents one cres
and one valley.
237Gutie´rrez-Vegaet al.
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nodal lines including the boundary as a nodal line. The cr
points between radial and angular nodal lines correspon
nodal points of the membrane. In particular, the modeUm,n

hasm14m(n21) nodal points. The origin is a nodal poin
of Um,n only if m is odd.

To gain some intuition about the numerical values
volved, we show in Table II the first natural frequencies
an elliptic membrane witha55 cm, andb53 cm. To make
appropriate comparisons, the corresponding eigenfrequen
for a circular membrane with radiusa55 cm are included as
well.34 For numerical purposes, without loss of general
we have choose the tension and density of the memb
such thatAF/s51. Note that for each circular mode, the
are two corresponding elliptic modes, the even one and
odd one. From Table II we can see that, for a givenUm,n , the
even and odd modes vibrate with different frequencies
fact, the even modes have lower frequencies than the
modes. The reason is that the even modes vibrate along
largest axis of the ellipse, whereas odd modes vibrate a
the shortest axis.

IV. VISUALIZING TRAVELING AND ROTATING
WAVES IN AN ELLIPTIC LAKE

Finding the oscillations of water in an elliptic lake is
classic problem. The oldest references to this problem m
date back to 1924 and 1927 by Jeffreys35 and Goldstein,36

respectively. To show the interesting phenomenon of rota
waves inside the lake, we extend their analysis by includ
a confocal elliptical wall inside the lake.

The geometry of the confocal annular elliptic lake
shown in Fig. 1. In terms of elliptic coordinates, the inn
and outer walls correspond to curvesj5j15constant and
j5j05constant, respectively. IfZ(j,h,t) is the vertical dis-
placement of the water surface from its equilibrium positio
then Z satisfies the wave equation~11!, but now v25gd,
whereg is the acceleration due to gravity andd is the un-
disturbed depth. By following the same procedure descri
above for the membrane, the oscillating modes in the l
are given by

Zem5@Jem~j!1ANem~j!#cem~h!cos~vmt !, ~16a!

Zom5@Jom~j!1BNom~j!#sem~h!cos~vmt !, ~16b!

where A and B are constants to be determined,m>0 for
even modes, andm>1 for the odd modes.

The wave solutions~16! must satisfy the Neumann cond
tion at both elliptic boundaries. This condition states that
normal derivatives of Zem and Zom vanish at each point o
the boundaries. For even modes we have Zem8 (j0 ,h,t)
5Zem8 (j1 ,h,t)50, where the prime denotes the derivati

Table II. Eigenfrequenciesvm,n in rad/s for the circular and the elliptic
membranes;a55 cm, b53 cm.

Order
m

Circular Even elliptic Odd elliptic

n51 n52 n51 n52 n51 n52

0 48.1 110.4 65.9 168.5
1 76.6 140.3 91.5 191.2 116.5 220.7
2 102.7 168.3 118.9 215.0 139.8 243.0
238 Am. J. Phys., Vol. 71, No. 3, March 2003
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with respect to the radial variablej. By evaluating the de-
rivative of Eq.~16a! at both elliptic boundaries, we see th
the Neumann condition is fulfilled only if

Jem8 ~j0 ;q!1ANem8 ~j0 ;q!50, ~17a!

Jem8 ~j1 ;q!1ANem8 ~j1 ;q!50. ~17b!

This is a set of two linear equations with a unknown c
efficientA. According to linear algebra, a nontrivial solutio
to this set exists only if the following characteristic equati
for the unknown parameterq is satisfied:

Jem8 ~j0!Nem8 ~j1!2Jem8 ~j1!Nem8 ~j0!50. ~18!

This characteristic equation can only be solv
numerically.31 Let us denoteqm,n as thenth zero of Eq.~18!.
Once the value ofqm,n has been determined, the correspon
ing value ofA can be calculated using any of the bounda
condition equations ~17!, and thus A52Jem8 (j0 ;q)/
Nem8 (j0 ;q). Finally, recalling thatv5kv, the frequency of
the mode (m,n) is given by vm,n5@4v2qm,n / f 2#1/2

5@4g dqm,n / f 2#1/2.
For numerical computations, let us choose the valuesj1

50.5 and j251.5. The eigenvalues of frequency corr
sponding to the first oscillating modes are listed in Table
in units of A4gd/ f 2. We can see that the odd modes ha
lower frequencies than the even modes (ovm,n,evm,n).
Note that this behavior is contrary to the results obtained
the modes in the membrane~see Table II!, where evm,n

,ovm,n . There is a simple physical explanation for this fa
for the membrane the even modes oscillate without obst
tion along the largest axis of the ellipse, whereas the o
modes oscillate along the shorter axis. In the confocal an
lar elliptic lake the even modes tend to vibrate along
largest axis as well; however, now the internal wall is
obstacle that changes the relative distances. With regar
Fig. 1, let us denote asa8 the horizontal separation betwee
the outer and the inner elliptic boundaries along thex axis,
and b8 the vertical separation along they axis. We now
apply Eq.~2! to show thatb8 is always greater thana8. We
have a85a02a15 f coshj0 cos(0)2f coshj1 cos(0)
5f(coshj02coshj1). Analogously for b8 we obtain b8
5 f (sinhj02sinhj1). The differenceb82a8 gives

b82a85 f @~sinhj02coshj0!2~sinhj12coshj1!#.
~19!

By expressing the hyperbolic functions in terms of expon
tial functions, we can write Eq.~23! in the simpler form

b82a85
f

2
@exp~2j1!2exp~2j0!#.0. ~20!

Table III. Eigenfrequencies inA4gd/ f 2 units.

m

evm,n ovm,n

n51 n52 n53 n51 n52 n53

0 0 1.0849 2.0583
1 0.3508 1.2748 2.2629 0.3151 1.1017 2.05
2 0.6458 1.4586 2.4499 0.6396 1.3667 2.26
3 0.9222 1.6973 2.6099 0.9213 1.6665 2.48
238Gutie´rrez-Vegaet al.
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We now can appreciate thatb8 is greater thana8 for any
j0.j1.0. Hence, the inclusion of an internal elliptic wa
leads to even modes to vibrate in shorter distances than
modes, and consequentlyovm,n,evm,n .

In Fig. 7 we plot several patterns corresponding to the fi
standing modes. In particular, the modee,oum,n has 2m(n
21) nodal points. In Fig. 8 we show a three-dimensio
plot of Ze12(j,h). Observe that the Neumann condition
satisfied at both elliptic boundaries.

A. Traveling elliptic waves in the confocal annular
elliptic lake

Similar to the propagating waves in a rope, the stand
patterns shown in Fig. 7 may be regarded as the resu
traveling waves propagating in opposite directions. To
precise, outgoing and incoming elliptic waves propagate
dially while reflecting at the elliptic walls.

To understand this traveling behavior of the Mathieu so
tions, it should be mentioned that analogous to the Han
functions Hm

(1),(2) occurring in Bessel equations, the sol
tions of Eq.~4! can be expressed in terms of the even and
odd Mathieu–Hankel functions of the first and second ki

Fig. 7. Plots of the first even and odd standing waves in an confocal ann
elliptic lake.

Fig. 8. Surface plot of Ze12 . A top view is shown in Fig. 7.
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Hem
(1),(2)~j;q!5Jem~j;q!6 iNem~j;q!, ~21a!

Hom
(1),(2)~j;q!5Jom~j;q!6 iNom~j;q!, ~21b!

where the super-index~1! is associated with the positive sig
and ~2! with the negative one. Similar to the Hankel fun
tions which are often used to represent outgoing and inc
ing cylindrical waves,18 the Mathieu–Hankel functions ca
represent elliptical waves propagating radially in the posit
and negative direction ofj. By making use of these func
tions, the wave solutions in Eq.~16! can be rewritten in a
traveling wave format

Zem5Hem
(1),(2)~j!cem~h!exp~2 ivmt !, ~22a!

Zom5Hom
(1),(2)~j!sem~h!exp~2 ivmt !, ~22b!

where the time dependence has been expressed in com
form.

We can more easily visualize the traveling wave behav
by analyzing the asymptotic expansions of the Mathie
Hankel functions asq increases. For instance, for even fun
tions He(1),(2)(j,q);v21/2exp(6iv), wherev5exp(j). The
substitution of this approximation into Eq.~22a! yields

Zem;
cem~h!

Av
cos~6v2vt !. ~23!

Equation~23! can now be recognized as a wave traveling
the positive or negative direction of the coordinatev. We
may imagine that the outer boundary reflects the outgo
wave generating an incoming wave. Similarly, the incomi
wave is reflected by the inner boundary producing again
outgoing wave. In Fig. 9 we plot the Mathieu–Hankel fun
tion He0

(1)5Je01 iNe0 in a three-dimensional complex spac
This graphical representation of He0

(1) is unusual in the lit-
erature. Whereas we had to link up in our mind the sepa
and disconnected characteristics of the real and imagin
parts of the complex function, we can now see the relation
a glance. Observe in the plot the tendency of the RMF to
periodic as the coordinate sinhj increases.

lar

Fig. 9. Evolution of the zero-order Mathieu–Hankel function Je01 iNe0 in
the complex space. The separation of the three-dimensional curve wit
spect to the axial axis is the modulus of the function.
239Gutie´rrez-Vegaet al.



an

b

te
a

e
w

rly
er
es

th
se
is
il
nt
w
W

eu
ca-

ior
to

of
ow
d
c-
e-
on

ted
as

gia

of
m-
on
of

s
the
he
a-
ct,
ed
re
ch
y.

us,
of

i

B. Superposition of modes: Rotating waves

We now are interested in the superposition of an even
an odd mode, that is,Zm,n5Zem,n1Zom,n . Because their
oscillating frequencies are different, the pattern produced
the superposition varies in time. In Fig. 10 we plotZ12 at six
increasing times; each constituent mode is plotted separa
in Fig. 7. The resulting wave is a rotating perturbation th
has angular momentum different from zero.37

The cross points between the nodal lines of Zem,n and
Zom,n correspond to nodal points of the resulting wave. If w
stay on the water surface at a fixed point on a nodal line,
can observe that this point moves harmonically. Simila
the motion of any point outside of a nodal line is the sup
position of two harmonic motions with different frequenci
and amplitudes.

V. CONCLUSIONS

We have graphically presented some properties of
Mathieu functions. Our main goal is to motivate their u
and familiarity. As with many other special functions, it
not necessary to know them in great mathematical deta
order to use them in applications. The approach prese
here can be used whether one wishes to become familiar
the functions or as a starting point for a deeper analysis.

Fig. 10. Plot of the superpositionZ125Ze121Zo12 at six different times. The
resulting is a anticlockwise rotating wave. The time values are given
Af 2/4 dg units.
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have illustrated in a diversity of plot types those Mathi
functions that appear more frequently in physical appli
tions.

In our experience, the best way to visualize the behav
of Mathieu functions when one is beginning their study is
think in terms of their more familiar analogies:~a! AMF are
analogous to trigonometric functions and~b! the RMF be-
have like Bessel functions. The variety and peculiarities
these functions are so rich that it is not possible to sh
them all within this article. Instead, we provide detaile
mathematical information and more plots of Mathieu fun
tions via Ref. 38. We believe that the Mathieu functions d
serve the attention of the authors of future textbooks
mathematics for scientists and engineers.
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APPENDIX A: COMPARATIVE NOTATIONS OF
MATHIEU FUNCTIONS

As a quick reference for those beginning their study
Mathieu functions, we summarize in Table IV the most co
mon notations used in the literature. The two most comm
nomenclature conventions for Mathieu functions are those
McLachlan3 and Morse.25 McLachlan’s nomenclature has it
origins in the notation used by the first researchers of
Mathieu functions and is arbitrary. This arbitrariness in t
notation, in addition to the existence of different normaliz
tions, often leads to a confusion. Despite this fa
McLachlan’s terminology is the most commonly employ
notation in the scientific literature. Morse’s nomenclatu
was created by thinking about the connection of ea
Mathieu function with its corresponding Bessel analog
From this point of view, Morse’s notation is advantageo
because it facilitates the visualization and classification
the Mathieu functions.

n

Table IV. Comparative notations of the Mathieu functions.

This paper

McLachlan
~Ref. 3!

Gradshteyn
~Ref. 28!

Erdelyi
~Ref. 26!

Morse
~Ref. 25!

Abramowitz
~Ref. 27!

Stratton
~Ref. 24! Refs. 19–23

ce ce ce Se ce Se ce
se se se So se So se
Je ce ce Je Mc(1) Re(1)

Jo Se Se Jo Mc(1) Ro(1)

Ne Fey Fey Ne Mc(2) Re(2)

No Gey Gey No Ms(2) Ro(2)

Ie Ce(2q)
Io Se(2q)
Ke Fek
Ko Gek
He(1),(2) Me(1),(2) Me(1),(2) He(1),(2) Mc(3),(4) Re(3),(4)

Ho(1),(2) Ne(1),(2) Ne(1),(2) Ho(1),(2) Ms(3),(4) Ro(3),(4)
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APPENDIX B: MATHIEU FUNCTIONS AND THEIR
COEFFICIENTS

Because the angular Mathieu functions cem and sem are
periodic, they can be expanded in terms of Fourier ser
The corresponding expansions fall into four classes, acc
ing to their symmetry or antisymmetry, abouth50 andh
5p/2, namely,

ce2r~h;q!5 (
k50

`

A2k~q!cos@2kh#, ~B1a!

ce2r 11~h;q!5 (
k50

`

A2k11~q!cos@~2k11!h#, ~B1b!

se2r 12~h;q!5 (
k50

`

B2k12~q!sin@~2k12!h#, ~B1c!

se2r 11~h;q!5 (
k50

`

B2k11~q!sin@~2k11!h#, ~B1d!

wherer 50,1,2,... . The recurrence relations between the
efficients can be derived by substituting these series in
Mathieu equation~3!. For instance for the functions ce2r , we
obtain

aA05qA2 , ~B2a!

~a24!A25q~2A01A4!, ~B2b!

@a2~2k!2#A2k5q~A2k221A2k12!, ~B2c!

wherek>2.
There are two common approaches to finding the coe

cients of the Fourier series. The first one is based on tra
forming the recurrence relations in Eq.~B2! into continued
fractions and to apply further algebraic methods to find
roots; see the details in Refs. 3 and 27. The second meth
based on constructing an infinite matrix starting from t
recurrence relations. The eigenvalues and eigenvector
this matrix are the eigenvaluesa of the Mathieu equation and
the coefficientsA of the Fourier series; see the details
Refs. 8 and 9.

The RME in Eq.~4! is obtained from the AME in Eq.~3!
by setting the change of variableh5 i j. Therefore, we can
apply this change of variable to the AMF in@Eq. ~B1!# to
obtain the following expansions:

Je2n~j;q!5 (
k50

`

A2k~q!cosh@2kj#, ~B3a!

Je2n11~j;q!5 (
k50

`

A2k11~q!cosh@~2k11!j#, ~B3b!

Jo2n12~j;q!5 (
k50

`

B2k12~q!sinh@~2k12!j#, ~B3c!

Jo2n11~j;q!5 (
k50

`

B2k11~q!sinh@~2k11!j#. ~B3d!
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Bladder Glass. Nineteenth century students saw many demonstrations involving the effects of atmospheric pressure. In the bladder glass, a pienimal
bladder is tied with twine over the top of a vessel open at both ends. The lower end is placed on the bottom plate of a vacuum pump, and only a f
of the pump are needed to produce a pressure differential of essentially one atmosphere. The bladder bursts inward with a bang loud enough
sleepers in the back of the classroom. This demonstration was last done at Washington and Lee University about 1900, and then it was set a
discovered it eighty years later.~Photograph and notes by Thomas B. Greenslade, Jr., Kenyon College!
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