Mathieu functions, a visual approach
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The behavior of the Mathieu functions is illustrated by using a variety of plots with representative
examples taken from mechanics. We show how Mathieu functions can be applied to describe
standing, traveling, and rotating waves in physical systems. Some background is provided on
notation and analogies with other mathematical functions. Our goal is to increase the familiarity
with Mathieu functions in the scientific and academic community using visualization. For this
purpose we adopt a strategy based on visual recognition rather than only looking at equations and
formulas. © 2003 American Association of Physics Teachers.
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[. INTRODUCTION are in use(see Appendix A and the computation of the
Mathieu functions and their eigenvalues still presents some

Increasing attention is being given to scientific and engiumerical difficulties’® N _
neering problems that lead to differential equations of the The purpose of this article is to facilitate the understanding
Mathieu typet Their solutions, known as Mathieu functions, of some of the qualitative features of Mathieu functions and
were first discussed by Mathieu in 1868 in the context of tnéheir applications. We believe that the visualization of
free oscillations of an elliptic membradeThese functions Mathieu functions will be helpful in achieving a better com-
were further investigated by a number of researchers wha@rehension of their basic characteristics. This work is in-
found a considerable amount of mathematical results thdended for students, teachers, and researchers who are unfa-
were collected more than 60 years ago by McLachIBur- miliar with Mathieu functions, and who are interested in

ing the last decade there have been several articles devoted%ﬁ'qwg r\T/1I'?1L'jr$1I “;]S;g:]:n \I/\éi izzl(lj:jsttg% Olljazsneltﬁisbtgs!gcc!?]g_r-
new analytical results, numerical techniques, an 9 inimu u xplal :

application -9 acteristics, the different notation, and the classification of

Mathieu equations occur in two main categories of ph Si_these functions. The behavior of the Mathieu functions is
qual ' o . ategories ot PNYSlyy strated by using a variety of plot types with representative
cal problems. First, in applications involving elliptic geom-

. examples taken from mechanics. We show how Mathieu

etries, for example in the analy3|_s of the V|br_at|ng ”_‘Od?S MNunctions can be applied to describe standing, traveling, and
elliptic membranes, the propagating modes in elliptic p'pesrotating waves in physical systems
and the oscillations of water in a lake of elliptic shape. '

Mathieu equations arise after separating the wave equation

using elliptic coordinate®!! Second, Mathieu equations

arise in problems involving periodic motion, such as the tradl. VISUALIZING MATHIEU FUNCTIONS

jectory of an electron in a periodic array of atoms, the me- ] o ] )

chanics of the quantum pendulum, and the oscillations of Over the years the visualization of Mathieu functlon_s has

floating vessel$27 been limited to simple curves for a few values_ of their pa-
Despite the existence of many applications, what attractiameters. Jahnke and Enftievere perhaps the first authors

our attention is that Mathieu functions are barely mentioned® Include three-dimensional surface representations of the
in modern textbooks of mathematics for physics andVathieu functions, whereas Abramowitz and Stegupro-

engineerind® others just present a limited discussidn?® vide many useful two-dimensional plots. At present, more

and older texts that gave some account of Mathieu functionSOPhisticated computational tools are available, and hence
24 ar more complicated behavior of Mathieu functions can be

are now out of print**~?Nevertheless, when facing a prob- lored i oty Of fw d threedi nal piot
lem that leads to the Mathieu differential equations, we carfXP'0red in a variety ot two- and three-dimensional plots.
d If the two-dimensional Helmholtz equation

always consult the invaluable handbooks by Abramowitz an
Stegui’ and by Gradshteyn and RyzHkHowever, this ex- PU - PU
perience can be rather painful if one is trying to learn about WJF (9_y2+ k‘U=0, (1)
Mathieu functions for the first time. In most books we find a
high density of equations which, from a didactic point of is transformed from rectangular coordinatesy) to elliptic
view, can be scary for the unfamiliar reader. coordinateg¢, ) by the formulas

We believe that this lack of literature compared to that for _ i :
other special functions is because the behavior of Mathieu x=Tfcoshécosn, y=fsinhésina, @
functions is relatively rich and consequently more difficult toand a solution of the forn=R(§)®(#) is sought, it is
understand. Moreover at least five different nomenclaturefound thatR(¢£) and ®(#) must satisfy the equations
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wherem is the order. The notation ce and se comes from
--------------- cosine-elliptic and sine-elliptic, and was first suggested by
Whittaker?> Nowadays, it is a widely accepted notation for
the AMF (see Appendix A
o4 The behavior of Mathieu functions is fairly complicated,
particularly because we need to understand both the variable
n and the parameter dependence of the functions. Physical
considerations are usually such that AMF are peritidigth
period 7r or 27. The values ofa in Eqg. (3) that satisfy this
condition are the eigenvalues of the equation; fqy, tiee
eigenvalues are usually denotedeggq), whereas for sg
they are represented ds,(q). According to the Sturm-—
Liouville theory!® the eigenvalues form an infinite set of
countable real values that have the propeaty<b;<a;
<b,---. Each function cg and sg, is associated with an
eigenvaluea,,, or b, which in turn depends oqg.
In Fig. 2 we plot the functions g »;q) and sg(#;q) for
several values ah over the plane £,q).%! Note that Eq(3)

Fig. 1. Elliptic cylindrical coordinate system. The curvés constant are becomes the harmonic equation WI’[an»O, Wher.] it is eVi'.
confocal ellipses and the curves=constant are orthogonal hyperbolas. ~ dent that cg and sg, become equal to the trigonometric
functions cosnzn and sinrmz asq vanishes. The range of the
plots has been limited t®,#], because their entire behavior
42D can be deduced from the parity and symmetry relations pro-
+(a-2 27\ = vided mT:_;\bIe I._ N o
d»? (a—2qcos2y) 0, @ The parity, periodicity, and normalization of the AMF are
4?R exactly the same as their trigonometric counterparts. This is,
—— —(a—2qcoshZ)R=0 (4)  C&nis even and sgis odd, and they have period whenm
dé is even or period 2 whenm is odd. The AMF haven real

where q=f2k?/4 and a is the separation constant arising Z€ros in the open intervaje (0,7), but they cluster around
from the eparation of variables method. In the literature, Eqs7/2 asq increases. The normalization for the AMF is

(3) and (4) are known as the ordinary and the modified . . T if p=q

Mathieu equations, respectivélyHowever, in applications J c%c%dn:J sepsqqdy;:{ | ,

involving the Helmholtz equation in elliptic coordinates, 0 0 0 if p#q.
Egs. (3) and (4) are better identified as the angular and the ) )

radial Mathieu equatior. Their solutions are the angular ~ The physical meaning of the parametedepends on each
Mathieu functions(AMF) and the radial Mathieu functions application. For instance, the classical problems of the vi-
(RMF), respectively. This nomenclature becomes obvioudrating modes in an elliptic membrafiend the probability
when we observe in Fig. 1 the similarity between the ellipticdistributions in an elliptic quantum billiafd are mathemati-
coordinateg ) and the polar coordinates. The elliptic vari- cally equivalent, that is, in both cases Mathieu equations
able 7 has a domain & <2 and plays a similar role to a arise after separating the wave equation or Sginger equa-
polar angle, whereas the variabfewith domain 0<¢<o  tion in elliptic coordinates. However, as we will discuss be-
behaves as a radial variable. The line joining the foci !0W. in the first case is related to the eigenfrequencies of
(=f,0) corresponds t&=0. Notice that the polar coordi- the vibrating modes, whereas in the second cpEeassoci-
nates could be considered to be a special case of the elliptRt€d with the characteristic energies of the eigenstates in the

coordinates in the limif —0 when the foci of the elliptic Pilliard. _ . .
coordinates collapse to a point at the origin. In this limit, the AN intéresting one-dimensional example where the AMF

. _16 .
angular and the radial Mathieu equations become the welRCCUr i the quantum penduluthi:® Consider a plane pen-
known harmonic equation and the Bessel equationdU|Um of lengthL and mas3dM oscillating under the action

respectively»?’ As a consequence, the angular Mathieu func-0f gravity. The time-independent Scliiager equation cor-
tions transform into the trigonometric functions epsand  ésponding to this problem is

-

\,__
<

P2
PR A

S

|

ﬁl

n=3mn2 a

(6)

siny and the radial Mathieu functions become the Bessel K2 d2y
functions. - mz W + [V( 0) - E]\P =0, (7)
A. Angular Mathieu functions where 6 is the angular displacement from the vertical,

_ o _ V(6)=—MgL cosé is the potential energy, andi(6) is the

_The angular Mathieu equatid8) is a linear second-order wave function associated with the energy The boundary
d|ﬁer.ent|al equation that has two families of mdepende_ntcondition to be imposed ol is that it be single valued if,
solutions, namely the even and the odd angular Mathieghat is W(g) has period 2 W (6+2m)=¥(6). Equation

functions, (7) can be rewritten in the form of an angular Mathieu equa-
ceq (7;9), m=0,12,..., tion (3), by defining
" se(ma), m=123,.., © 6=27, (8a)
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Fig. 2. Graphical visualization of angular Mathieu
functions cg(7;q) and sg..(%;q) over the (,q)
plane. The function ¢€7;q) is never negative, al-
though oscillatory.

4E W2 of the quantum pendulum. As stated, the wave functions

a= (H212ML2)” (8D  are written in term's of AMF of even Qrder, z‘?(f_ﬁ;CI) and
se, +»(7;q). We might plot these solutions against the polar

__ 2MgL 80 coordinated in a rectangular systemd(¥?), but a more
q (ﬁ7/2M Lz)' meaningful picture is usually a polar diagram. In Fig. 3, we

can visualize how the probability distributions of a quantum

In view of Eq. (8a), the boundary condition i&V'[2(% pendulum vary withd.

+m)]=V¥[27n], that is, as a function of, the wave func-

tion has to be periodic with period. From Table I, such

solutions are AMF of even order: g£€7;q) and B. Radial Mathieu functions

se, 2(7;q) forr=0,1,2,... . All other AMF are excluded by

the periodicity condition. We note further that characteristic

values of the energk,, are defined by the eigenvaluag of

the Mathieu equation; from Eq.(8b) we find

Em(A2/8ML?)a,,. Jen(&:9), Jan(§;9), first kind,
Also, we can see from E@8c¢) that, for the qgantum pen- = Ne.(£q), Non(¢&q), secondkind.

dulum, the parameteg depends only on the given physical

constants of the pr0b|em, and that m rea”y Corresponds For q<0 the -SO|Uti0nS are known as the evanescent radial

to a Mathieu equation with negative To satisfy the usual Mathieu functions

definition of the Mathieu functions, we must perform the [ len(&0q), loy(&q), first kind,

change of variable;— (7/2— ) according to Table I. = .
When visualizing mathematical functions, a suitable plot Ken(£:0), Koy(§q), secondkind.

depends on the purpose. For example, the surfaces shown inin elliptic coordinates the radial Mathieu equatid#)

Fig. 2 were done following a mathematical point of view. plays a similar role as the Bessel equation in circular cylin-

These diagrams allow us to appreciate at a glance the evoldrical coordinates. Because Bessel functions are better

tion of ce and se as functions gfor g. In Fig. 3 we adopta known than Mathieu functions, visualizing their analogies is

physical point of view to show the probability distributions a practical way to gain an insight into the qualitative behav-

The solutions of Eq(4) whenq is positive are the even
(e) and odd () oscillatory radial Mathieu functions of the
first and second kind,

9

(10

Table I. Symmetry relations for AMF.

Function Parity Parity AMF

r=0,1,... Period  aboutn=0 aboutn=7/2 with q<0
c&(7:9) ™ Even Even cg (7, —q)=(—1)"cey(m/2— 7,q)
ey 1(7:0) 2w Even Odd cg1(7—a)=(—1)"s& 1 (7/2— 7;q)
S&r+2(7;) ™ Odd Even S8 4 2(7 — ) =(—1)"s&y 1 (72— 7,0)
S&r+1(7:9) 2m Odd Odd sg - 1(7 —a)=(—1)'cey 1 (72— 7,0)
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ce,(6; q) the AMF, the radial solutions oscillate faster @sncreases.
In Fig. 5 we plot the RMF Jefor g=5 in two different
views. Adopting a mathematical point of view, we show in
Fig. 5@ Jg as a function of the argumert The Bessel
analogy of Jgis indeed the lowest-order Bessel functin
Like Jgy, the function Jgis oscillatory, decreasing, and non-
sez(e; q) periodic. By comparing Jewith respect taJ,, we can ob-
serve that the maximum at the origin ofyde not as domi-
nant as in the case dfy, and that Jg oscillates faster a§
increases.

Figure 8b) shows again Jg but now physical insight is
gained by plotting it as a function of sirf)(instead ofé¢. For
instance, as we will see below,Jeould represent the radial
dependence of a vibrating mode in an elliptic membr&ne.
this case the argumeitis associated with the radial elliptic
coordinate(which is dimensionlegs However, to visualize
the spatial behavior of the mode, it is required to plot it
against a coordinate with a length dimension suck asy.

Let us consider thg axis. By settingp=7/2 in EqQ.(2), itis

Fig. 3. Polar diagrams of the probability distributions of a quantum pendu-Cl€ar that they axis is written ag/=f sinh§. In this manner,

lum as a function o#. the plot in Fig. %b) could show the behavior of the vibrating
mode as a function of the normalized coordinaté.

The plot in Fig. %b) reveals an important property of the
ior of the RMF. It is known that Bessel equations have fourradial Mathieu functions: they tend to be damped periodic
families of independent solutiont§, namely the ordinary functions when they are plotted against a spatial coordinate
Bessel functiond,, andN,,, and the modified Bessel func- like x~cosh¢ or y~sinhé. This characteristic is interesting
tions!,, andK,,. Each Bessel family splits into two Mathieu because often the physical patterns are associated with the
families, for example, the Bessel functidp, splits into the ~ asymptotic behavior of the mathematical functions.
even Jg and the odd Jg Mathieu functions. Thus there are
eight independent families of RMF. This abundance of ellip-

tic solutions has provoked confused notations in the litera-

ture which often complicates the recognition of the RMF andill. VISUALIZING STANDING WAVES IN AN

their relations. We refer the interested reader to Appendix AELLIPTIC MEMBRANE

where a comparative table of notation for the Mathieu func-

tions is provided. As stated, the angular and the radial Mathieu equations
In Fig. 4 we show the first-order RMF for different values can be expected to appear in any problem involving the

of g. Similar to the Bessel functions, the RMF have a de-Helmholtz equation expressed in elliptic coordindf&s.

creasing, oscillatory non-periodic behavior. Conversely toConsider the free oscillations of an elliptic membrane with
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Fig. 4. Plots of radial Mathieu functions with=1
(solid line), g=2 (dashed ling andq=3 (dotted ling.
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Fig. 5. Two views of the Jeradial Mathieu function:
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semiaxesa and b, and focal distancé (see Fig. 1L The As seen in Figs. 4 and 5, the RMF are decreasing-
boundary of the membrane is expressed in elliptic coordioscillatory nonperiodic functions. As a consequence, for a
nates as= £y,=arctanh(b/a)=constant. given orderm, there are an infinite set of possible values of
If Z(x,y,t) is the vertical displacement as a function of g that satisfy Eq.(15). Let qn,, be the nth zero f
time of a point located atx(y), thenZ satisfies the two- =1,2,..) of theradial functions Jg or Jq,. According to
dimensional wave equation Eqg. (12) for eachqy, ,, there exists a corresponding eigen-
27 27 l 27 frequency given bypmvn=(.4qu’n/crf2)1’2. o
=5 —s (12) In Fig. 6 we show the first even and odd vibrating modes
oxs dy 2 ot® in the elliptic membrane. Notice the symmetry and the anti-

symmetry with respect to the axis of the even and odd
modes, respectively. The radial nodal lifefliptic lines) are
defined by the zeros of the radial functiorg and Jg,,
whereas the zeros of the angular functiong eed sg, de-
fine the angular nodal lingstraight or hyperbolic linesWe
can see that,, , hasm angular nodal lines and radial

wherevzzF/o, with o the surface mass density akdthe
uniform tension per unit length in each point of the mem-
brane. By assuming a harmonic time dependeffey,t)
=U(X,y)cost), the wave equation becomes the Helmholtz
equation(1), wherek= w/v . After applying Eq.(2) to trans-
form the Helmholtz equation into elliptic coordinates, and
taking the separable solutidd (&, 7)=R(&)P (%), we ob-
tain the angular and the radial Mathieu equati@)sand(4).
In this case, the parametaris given by even {U 1 even (0,2) odd (1,1) odd (1.2)

£2 £2 2 f-\ /‘/‘ \ r./fiﬂ\\1

f2w?c
DR - @@

A vibrating mode can be considered as a standing wave,

that is, each point on the surface vibrates harmonically with  even (1,1) even (1,2) odd (2, 1} odd (2,2)
an amplitudeU(x,y), but all points have the same fre- - =
quency. The modes are given by appropriate products of ra- . } /f. N //. '.". [ - -
dial and angular Mathieu functions, namely, the even, Ze K J k . ./» E‘;
and odd Zg, solutions* S~ e
Zen=Jen(&;0)Cen(7;0)cog wmt), 13 even (1,3) even i2 1) odd (2, odd (3,1)
Z00=J0u(£01)S6( 7:0)COS ), (19 / - -\ ( =S Avs
wherem=0 for even modes, anth=1 for the odd ones. ‘ ) ;': T:_ *’I n\\__“_!!,f

These wave solutions must satisfy the Dirichlet condition at
the elliptic boundary, that iZ(&p, 7,t) =0. This occurs only  Fig. 6. Plots of the first even and odd standing modes in an elliptic mem-

if the radial functions vanish at the boundary, namely, brane. The shaded regions represent ci@s#ima or valleys(minima) on
the membrane surface. For instance, the even moggepZesents one crest
Jen(€0,9)=J0an(&0.,9)=0. (15 and one valley.
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Table Il. Eigenfrequencies,, in rad/s for the circular and the elliptic Table Ill. Eigenfrequencies iN4gd/f? units.
membranesa=5cm, b=3 cm.

e®Wmn o®Wm,n
Circular Even elliptic Odd elliptic
Order m n=1 n=2 n=3 n=1 n=2 n=3
m n=1 n=2 n=1 n=2 n=1 n=2
0 0 1.0849 2.0583

0 48.1 110.4 65.9 168.5 1 0.3508 1.2748 2.2629 0.3151 1.1017 2.0588
1 76.6 140.3 91.5 191.2 116.5 220.7 2 0.6458 1.4586 2.4499 0.6396 1.3667 2.2693
2 102.7 168.3 118.9 215.0 139.8 243.0 3 0.9222 1.6973 2.6099 0.9213 1.6665 2.4875

nodal lines including the boundary as a nodal line. The cross

. : : ith respect to the radial variabl¢ By evaluating the de-
ﬁgg‘;ls s);mfi? trhag'ﬂe?rr]]gr:r?gU:ﬁrpgiggalg?efhgogﬁzzond t\ré}lvative of Eq.(16a at both elliptic boundaries, we see that
. , n

he N ition is fulfill ly if
hasm+4m(n—1) nodal points. The origin is a nodal point the Neumann condition is fulfilled only i

of Uy, only if mis odd. J€.(&9:9) +ANeL(&9;q) =0, (179
To gain some intuition about the numerical values in- _ .o
volved, we show in Table II the first natural frequencies for ~ J&n(£1;0) +ANey(£1;9)=0. (17
an elliptic membrane wita=5 cm, andb=3 cm. To make This is a set of two linear equations with a unknown co-

appropriate comparisons, the corresponding eigenfrequenciggicient A. According to linear algebra, a nontrivial solution
for a circular membrane with radies="5 cm are included as  tg this set exists only if the following characteristic equation

well.>* For numerical purposes, without loss of generality,for the unknown parametey is satisfied:
we have choose the tension and density of the membrane

such thatyF/o=1. Note that for each circular mode, there  J&(&0)Ney(&1) — g (&1)Ne (&) =0. (18
are two corresponding elliptic modes, the even one and thepis  characteristic equation can only be solved

odd one. From Table Il we can see that, for a gikp,, the . mericallv3 Let us denot as thenth zero of Eq(18
even and odd modes vibrate with different frequencies, i Y Hmn a(18).

fact, the even modes have lower frequencies than the ogg nc\?a'iﬂg \é?*i;gmb’é k::islcz?aetgc?it;:\mlgid;??hceoggjgggf_
modes. The reason is that the even modes vibrate along ted Ve ) 9 X . y
largest axis of the ellipse, whereas odd modes vibrate alongPndition —equations (17), and thus A= —Je(£o;0)/

the shortest axis. Ne'(£5;q). Finally, recalling thatw=kuv, the frequency of
the mode (n,n) is given by wy,=[4v%qn /]2
=[4g dqm,n/fz]llz-

IV. VISUALIZING TRAVELING AND ROTATING For numerical computations, let us choose the valfies

WAVES IN AN ELLIPTIC LAKE =0.5 and ¢&=1.5. The eigenvalues of frequency corre-

Finding the oscillations of water in an elliptic lake is a _sponding to the first oscillating modes are listed in Table IlI

classic problem. The oldest references to this problem ma}?‘ units of y4gd/f*. We can see that the odd modes have
date back to 1924 and 1927 by Jeffrfyand Goldsteid® fower frequencies than the even modegof,n<e®m,p)-
respective|y_ To show the interesting phenomenon of rotatin@lote that this behavior is Contrary to the results obtained for
waves inside the lake, we extend their analysis by includinghe modes in the membrarigee Table I, where cwp
a confocal elliptical wall inside the lake. <,wmn- There is a simple physical explanation for this fact:
The geometry of the confocal annular elliptic lake is for the membrane the even modes oscillate without obstruc-
shown in Fig. 1. In terms of elliptic coordinates, the innertion along the largest axis of the ellipse, whereas the odd
and outer walls correspond to curvés ¢;=constant and modes oscillate along the shorter axis. In the confocal annu-
&= &,=constant, respectively. E(&, »,t) is the vertical dis-  lar eIIiptic'Iake the even modes tend to vibrate along the
placement of the water surface from its equilibrium position largest axis as well; however, now the internal wall is an
then Z satisfies the wave equaticil), but nowv2=gd,  obstacle that changes the relative distances. With regard to
whereg is the acceleration due to gravity anddis the un-  Fi9- 1, let us denote &’ the horizontal separation between

disturbed depth. By following the same procedure describedhe Olfter and the inner elliptic boundaries along thaxis,
above for the membrane, the oscillating modes in the lak@nd b’ the vertical separation along the axis. We now

are given by apply Eq.(2) to show thath’ is always greater thaa’. We
_ have a’' =ag—a,=f cosh&, cos(0)-f cosh¢; cos(0)
= +
Z8m=[Jan( &)+ ANem(&) Jcen( ) cos wnt), (163 =f(cosh&,—coshé;). Analogously for b’ we obtain b’
Z0,=[Ja, (&) +BNoy(€)]sen( 7)cog wmt), (16b) =f(sinh&—sinh¢;). The differenceb’ —a’ gives
where A and B are constants to be determinad=0 for b’ —a’'=f[(sinh&,— coshéy) — (sinhg; — coshéy)].
even modes, anth=1 for the odd modes. (19

The wave solution$16) must satisfy the Neumann condi-
tion at both elliptic boundaries. This condition states that th
normal derivatives of Zg and Zq, vanish at each point of
the boundaries. For even modes we havé, (Zg,7,t)
=Ze (&1,71,1)=0, where the prime denotes the derivative

By expressing the hyperbolic functions in terms of exponen-
Sial functions, we can write Ed23) in the simpler form

f
b’_alzz[exq_fl)_exﬂ_fo)]>o- (20)
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even (0.2) even (1.1) edd (1.1) odd (1,2)

=1

even (1,2) even (2.1) odd (1,3) odd (2,1)

O

even (2,3) even (3,2) odd (2,3) odd (3,2)

O

Fig. 7. Plots of the first even and odd standing waves in an confocal annular

sinh(&)

Fig. 9. Evolution of the zero-order Mathieu—Hankel functiog-JeNe, in
the complex space. The separation of the three-dimensional curve with re-
pect to the axial axis is the modulus of the function.

elliptic lake.

We now can appreciate that is greater thara’ for any HeD B &:0)=Jey(&:0) = iNen(£0), (219
£0>£&,>0. Hence, the inclusion of an internal elliptic wall (1).(2) . _ , _

leads to even modes to vibrate in shorter distances than odd HOm’"“(&,0)=Jan(&;0) =iNon(£;9), (21b

modes_, and consequentyy,n<e@m, - . . where the super-inded) is associated with the positive sign
In Fig. 7 we plot several patterns corresponding to the firsh g (2) with the negative one. Similar to the Hankel func-
standing modes. In particular, the mogdgum,, has 2n(n tjons which are often used to represent outgoing and incom-
—1) nodal points. In Fig. 8 we show a three-dimensionaling cylindrical waves?® the Mathieu—Hankel functions can
plot of Ze (&, 7). Observe that the Neumann condition is represent elliptical waves propagating radially in the positive

satisfied at both elliptic boundaries. and negative direction of. By making use of these func-
tions, the wave solutions in Eq16) can be rewritten in a
A. Traveling elliptic waves in the confocal annular traveling wave format
elliptic lake 1.2 .
Zen=Hel} @& cen(mexp —iwnt), (229

Similar to the propagating waves in a rope, the standing
patterns shown in Fig. 7 may be regarded as the result of = Zo,=Ho{" 2 &)sg,(7)exp —iwyt), (22b
traveling waves propagating in opposite directions. To be
precise, outgoing and incoming elliptic waves propagate rawhere the time dependence has been expressed in complex
dially while reflecting at the elliptic walls. form.

To understand this traveling behavior of the Mathieu solu- We can more easily visualize the traveling wave behavior
tions, it should be mentioned that analogous to the Hankdby analyzing the asymptotic expansions of the Mathieu—
functions H%)'(Z) occurring in Bessel equations, the solu- Hankel functions ag increases. For instance, for even func-
tions of Eq.(4) can be expressed in terms of the even and théions HéY(3)(£,q) ~v ~2exp(*iv), wherev =exp(). The
odd Mathieu—Hankel functions of the first and second kind substitution of this approximation into E(R29 yields

~Cen(n)

Vo

Equation(23) can now be recognized as a wave traveling in
the positive or negative direction of the coordinate We
may imagine that the outer boundary reflects the outgoing
wave generating an incoming wave. Similarly, the incoming
wave is reflected by the inner boundary producing again an
outgoing wave. In Fig. 9 we plot the Mathieu—Hankel func-
tion HeM = Jg +iNg, in a three-dimensional complex space.
This graphical representation of §iis unusual in the lit-
erature. Whereas we had to link up in our mind the separate
and disconnected characteristics of the real and imaginary
parts of the complex function, we can now see the relation at
a glance. Observe in the plot the tendency of the RMF to be
Fig. 8. Surface plot of Zg. A top view is shown in Fig. 7. periodic as the coordinate sighincreases.

Ze, coq *v— wt). (23

239 Am. J. Phys., Vol. 71, No. 3, March 2003 Gutiez-Vegaet al. 239



t=1.2758 t=2338 have illustrated in a diversity of plot types those Mathieu

t=0
functions that appear more frequently in physical applica-
tions.
In our experience, the best way to visualize the behavior
of Mathieu functions when one is beginning their study is to
think in terms of their more familiar analogie&® AMF are

t = 34022 t= 42578 t=5316 analogous to trigonometric functions afi) the RMF be-
have like Bessel functions. The variety and peculiarities of

these functions are so rich that it is not possible to show
them all within this article. Instead, we provide detailed
mathematical information and more plots of Mathieu func-
tions via Ref. 38. We believe that the Mathieu functions de-
serve the attention of the authors of future textbooks on

mathematics for scientists and engineers.
Fig. 10. Plot of the superpositiafy,= Ze,,+ Z0,, at six different times. The

resulting is a anticlockwise rotating wave. The time values are given in

JF4dg units.
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We now are interested in the superposition of an even an
an odd mode, that isZ, ,=Zen,+Z0y,,. Because their
oscillating frequencies are different, the pattern produced b
the superposition varies in time. In Fig. 10 we pIgb at six
increasing times; each constituent mode is plotted separately
in Flg 7. The resulting wave is a rotatin perturbation thatAPPENDD( A: COMPARATIVE NOTATIONS OF
has angular momentum different from zéfo. MATHIEU EUNCTIONS

The cross points between the nodal lines of,£eand

Zop, , correspond to nodal points of the resulting wave. If we  As a quick reference for those beginning their study of
stay on the water surface at a fixed point on a nodal line, w&/athieu functions, we summarize in Table IV the most com-
can observe that this point moves harmonically. Similarly,mon notations used in the literature. The two most common
the motion of any point outside of a nodal line is the supernomenclature conventions for Mathieu functions are those of
position of two harmonic motions with different frequencies McLachlar? and Morse®® McLachlan’s nomenclature has its

and amplitudes. origins in the notation used by the first researchers of the
Mathieu functions and is arbitrary. This arbitrariness in the
V. CONCLUSIONS notation, in addition to the existence of different normaliza-

tions, often leads to a confusion. Despite this fact,
We have graphically presented some properties of thélcLachlan’s terminology is the most commonly employed
Mathieu functions. Our main goal is to motivate their usenotation in the scientific literature. Morse’s nomenclature
and familiarity. As with many other special functions, it is was created by thinking about the connection of each
not necessary to know them in great mathematical detail iMathieu function with its corresponding Bessel analogy.
order to use them in applications. The approach presentderom this point of view, Morse’s notation is advantageous,
here can be used whether one wishes to become familiar withecause it facilitates the visualization and classification of
the functions or as a starting point for a deeper analysis. Weéhe Mathieu functions.

Table IV. Comparative notations of the Mathieu functions.

McLachlan
(Ref. 3
Gradshteyn Erdelyi Morse Abramowitz Stratton
This paper (Ref. 28 (Ref. 26 (Ref. 29 (Ref. 27 (Ref. 29 Refs. 19-23

ce ce ce Se ce Se ce
se se se So se So se
Je ce ce Je Mo Reb
Jo Se Se Jo MY Rd)
Ne Fey Fey Ne M Re?
No Gey Gey No Me) Ro®
le Ce(—q)
lo Se(—q)
Ke Fek
Ko Gek
HeW:(@) Me(D.(2) Me(D.(2) HeL.() Mc®-(4) R @
Ho: (@) NelL):(2) NelL).(2) Ho(D.(2) Ms(®)-(®) RO3)(4)
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APPENDIX B: MATHIEU FUNCTIONS AND THEIR
COEFFICIENTS

Because the angular Mathieu functions,cnd sg, are

periodic, they can be expanded in terms of Fourier seriess
The corresponding expansions fall into four classes, accord-

ing to their symmetry or antisymmetry, aboyt=0 and »
= /2, namely,

C%(?MFKEO Ag(q)cog 2k 7],

(B1a)
cleH(n;q):éO Ax+1(a)cog (2k+1) 7], (Blb)
592r+2(7];C1):k§0 Bak+2(a)sin[(2k+2) 7], (B1o)
SQrJrl(n;q):éo Bok+1(Q)sin(2k+1) 7], (B1d)
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Bladder Glass. Nineteenth century students saw many demonstrations involving the effects of atmospheric pressure. In the bladder glass)imalece of a
bladder is tied with twine over the top of a vessel open at both ends. The lower end is placed on the bottom plate of a vacuum pump, and only a few strokes
of the pump are needed to produce a pressure differential of essentially one atmosphere. The bladder bursts inward with a bang loud enough to wake the
sleepers in the back of the classroom. This demonstration was last done at Washington and Lee University about 1900, and then it was set aside until |

discovered it eighty years latdPhotograph and notes by Thomas B. Greenslade, Jr., Kenyon Qollege

242 Am. J. Phys., Vol. 71, No. 3, March 2003 Gutiez-Vegaet al. 242



