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The radioactive decay equations are solved using an algebraic approach that is simple and easily
extensible to branching systems. Two examples are included to show the nature of the
approach. ©2003 American Association of Physics Teachers.
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I. INTRODUCTION

A radioactive decay chain,X1→X2→¯→Xi→¯→Xn ,
with decay constantsl i ( i 51 to n) is described by the fol-
lowing set of differential equations:

N1852l1N1 , ~1a!

N285l1N12l2N2 , ~1b!

]

Nn85ln21Nn212lnNn , ~1c!

whereNi5Ni(t) represents the amount of thei th nuclide at
time t, andNi85dNi(t)/dt is its time derivative. The solu
tion of Eq.~1! is fixed by specifying the initial amount of th
nuclides in the sample,

Ni ,05Ni~0! ~ i 51,...,n!. ~2!

The general solution of Eqs.~1! and ~2! was obtained by
Bateman1 by performing a Laplace transform and its subs
quent inverse transform using a path integral in the comp
plane. This procedure has been recently shortened in Re

In this paper, we solve Eqs.~1! and ~2! by a direct alge-
braic approach. This approach is also applicable to branc
systems. Section II contains the basic equations of
method. In Sec. III we discuss two examples to illustrate
nature of this approach; the first example deals with a ch
and the second with a branching system. Finally, in Sec
we summarize the method.

II. BASIC EQUATIONS

Equation~1! can be expressed compactly using matrice

@N8#5@A#@N#, ~3!

where@N#, @N8#, and@N0# are vectors withn components:

@N#5F N1

N2

]

Nn

G , @N8#5F N18

N28

]

Nn8

G , @N0#5F N1,0

N2,0

]

Nn,0

G . ~4!

@A# is then3n matrix defined by
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@A#5S 2l1 0 0 ¯ 0 0

l1 2l2 0 ¯ 0 0

0 l2 2l3 ¯ 0 0

••••• ••••• ••••• ••••• ••••• •••••

0 0 0 ¯ ln21 2ln

D .

~5!

If we follow the standard method~see, for example, Ref
3! for solving a homogeneous system of linear different
equations with constant coefficients, we obtain the followi
compact solution:

@N#5@V#@L#@V#21@N0#, ~6!

where@L# is then3n diagonal matrix,

@L#5Diag@eL1t,eL2t,...,eLnt#, ~7!

L1 ,L2 ,...,Ln are the eigenvalues of the matrix@A#, and

@V#5~v1uv2u . . . uvn!. ~8!

That is, then columnsv1 ,v2 ,...,vn of the matrix@V# are the
eigenvectors of@A#:

@A#vi5L ivi ~ i 51,...,n!. ~9!

Finally, @V#21 is the inverse matrix of@V#.
We have assumed that no pair of decay constants

equal. ~This condition is also implicitly assumed in Bate
man’s solution.1! This assumption can be verified by exam
ining a table of nuclides.4

Note that, in Eq.~6!, @V#@L#@V#21 acts as the time evo
lution matrix of this system. In other words, when this mat
acts on the vector@N0#, which represents the set of initia
values, it produces the vector@N#, which represents the num
ber of nuclei in the sample at an arbitrary time.

For radioactive chain without branching, the ingredients
Eq. ~6! can be symbolically calculated, and we obtain

L i52l i ~ i 51,...,n! ~10!

@V#5S 1 0 0 ¯ 0 0

S2,1 1 0 ¯ 0 0

S3,1 S3,2 1 ¯ 0 0

••••• ••••• ••••• ••••• ••••• ••

Sn,1 Sn,2 Sn,3 ¯ Sn,n21 1

D ,

~11!
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@V#215S 1 0 0 ¯ 0 0

T2,1 1 0 ¯ 0 0

T3,1 T3,2 1 ¯ 0 0

••••• ••••• ••••• ••••• ••••• ••

Tn,1 Tn,2 Tn,3 ¯ Tn,n21 1

D ,

~12!

where the symbolsSi , j andTi , j may be represented as fini
products of fractions of the form

Fq,r
p 5

l r

lq2lp
. ~13!

In particular,

Si , j5Fi ,i 21
j Fi 21,i 22

j
¯F j 11,j

j , ~14!

and

Ti , j5F j , j
i F j 11,j 11

i
¯Fi 21,i 21

i . ~15!

The result of inserting Eqs.~13!–~15! into Eq. ~6! is the
general solution of the chain system, which coincides w
Bateman’s solution.

Bateman’s approach cannot be extended to branching
tems. However, the algebraic approach used here and
pressed in Eq.~6! is applicable to any radioactive system
The only difference with the simple chain is that to calcula
@V# and its inverse matrix@V#21, it might be better to pro-
ceed numerically using, for example,MATHEMATICA .

III. EXPLICIT EXAMPLES

Let us first consider an example of a radioactive cha
Radon 222 (T1/253.8235 days! is ana-emitting, chemically
inert gas that seeps out of the soil and can sometimes a
mulate in houses. It is an intermediate product in the rad
active series of uranium 238. Radon and its radioac
daughters are known carcinogens. In this radioactive se
radon 222 decays into polonium 218 (T1/253.10 min),
which decays into lead 214 (T1/2526.8 min), which in turn
decays into bismuth 214 (T1/2519.9 min). We denote the
number of Rn 222 (X1), Po 218 (X2), Pb 214 (X3), and Bi
214 (X4) asN1 , N2 , N3 , andN4 , respectively.

We assume that att50 there areN1,0 nuclei ofX1 and no
nuclei of its daughters, and we want to calculate howN1 ,
N2 , N3 , and N4 change with time. From the relationl
5 ln 2/T1/2 and the values of the half-lives just given, w
obtain the respective decay constantsl i , i 51,...,4. Thus,
the matrix@A# in Eq. ~5! is expressed as

@A#5S 2l1 0 0 0

l1 2l2 0 0

0 l2 2l3 0

0 0 l3 2l4

D , ~16!

and Eq.~6! becomes
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S N1

N2

N3

N4

D 5S 1 0 0 0

S2,1 1 0 0

S3,1 S3,2 1 0

S4,1 S4,2 S4,3 1

D
3S e2l1t 0 0 0

0 e2l2t 0 0

0 0 e2l3t 0

0 0 0 e2l4t

D
3S 1 0 0 0

T2,1 1 0 0

T3,1 T3,2 1 0

T4,1 T4,2 T4,3 1

D S N1,0

0
0
0
D . ~17!

The matrix elementsSi , j andTi , j are calculated using Eqs
~13!, ~14!, and~5!. Several examples are

S2,15
l1

l22l1
, ~18a!

S3,15
l1

l22l1

l2

l32l1
, ~18b!

T2,15
l1

l12l2
, ~19a!

T4,15
l1

l12l4

l2

l22l4

l3

l32l4
. ~19b!

Thus, we finally obtain:

N1~ t !5e2l1tN1,0, ~20a!

N2~ t !5@e2l1t2e2l2t#
l1

l22l1
N1,0, ~20b!

N3~ t !5l1l2F e2l1t

~l22l1!~l32l1!
1

e2l2t

~l12l2!~l32l2!

1
e2l3t

~l12l3!~l22l3!GN1,0, ~20c!

N4~ t !5l1l2l3F e2l1t

~l22l1!~l32l1!~l42l1!

1
e2l2t

~l12l2!~l32l2!~l42l2!

1
e2l3t

~l12l3!~l22l3!~l42l3!

1
e2l4t

~l12l4!~l22l4!~l32l4!GN1,0. ~20d!

If we substitute the values ofl i into Eq.~20!, the result is

N1~ t !5e20.007 554tN1,0, ~21a!

N2~ t !50.000 563 4~e20.007 554t1e213.416t!N1,0, ~21b!

N3~ t !5~0.004 894e20.007 554t10.000 637 0e213.416t

20.005 531e21.5518t!N1,0, ~21c!
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N4~ t !5~0.003 647e20.007 554t20.000 087 29e213.416t

20.015 95e21.5518t10.012 39e22.0899t!N1,0,

~21d!

where the timet is measured in hours. Thus, for a speci
value ofN1,0, we know the evolution of the nuclide popula
tion at any time.

Our second example starts with the decay of Bi 2
(T1/2560.55 min). This nuclide is an intermediate produ
that is almost at the end of the radioactive series of Th 2
In 64.06% of the time, Bi 212 decays via beta emission i
Po 212 (T1/250.29931026 s), which decays into Pb 208 vi
alpha emission and is stable. For 35.94% of the time, Bi 2
decays via alpha emission into Tl 208 (T1/253.053 min),
which subsequently decays into Pb 208.

Because the half-life of Po 212 is extremely short, we c
assume that 64.06% of the time, Bi 212 decays directly i
Pb 208, and 35.94% of the time, Bi 212 decays into Tl 2
which decays into Pb 208. And hence, this example w
effectively consider only the population of three nuclei:
212 (X1), Tl 208 (X2), and Pb 208 (X3). The decay constan
of X1 is written as follows:l15l1

11l1
2, l1

150.3594l1 ,
l1

250.6406l1 . This branching system is illustrated in Fig.
Again, we will assume that att50 only N1,0 is nonzero.

For this system, the set of differential equations is

FN18

N28

N38
G5S 2l1 0 0

l1
1 2l2 0

l1
2 l2 0

D FN1

N2

N3

G , ~22!

and its solution is expressed as@N#5@V#@L#@V#21@N0#.
Now,

@L#5Diag@e2l1t,e2l2t,1#, ~23!

@V#5S 1 0 0

l1
1

l22l1

1 0

l1
22l2

l22l1

21 1
D , ~24!

Fig. 1. Branching scheme of Example 2.
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@V#215S 1 0 0

l1
1

l12l2

1 0

1 1 1

D . ~25!

Thus the result is

N1~ t !5e20.011 45tN1,0, ~26a!

N2~ t !50.019 08~e20.011 45t2e20.2270t!N1,0, ~26b!

N3~ t !5~121.019 08e20.011 45t10.019 08e20.2270t!N1,0,

~26c!
where the timet is in minutes.

IV. SUMMARY

As explained in Sec. II and illustrated in Sec. III, the thr
steps of the method are as follows. The decay constant
the nuclides are used to construct the matrix@A# and the
initial conditions are used to construct the vector@N0#. By
solving the equation of eigenvalues and eigenvectors of@A#
one obtains matrix@L# and matrix@V#, and inverting matrix
@V#, one obtains@V#21.

The matrix@L# can be written by merely inspecting@A#,
because@A# always maintains the lower triangular form wit
2l1 ,...,2ln in the diagonal positions. This fact implie
that Eq.~10! is always satisfied. As discussed at the end
Sec. II, there are cases where these algebraic tasks ca
done symbolically, which may simplify the calculations.
any case, these tasks can always be carried out numeri
by means of a standard algebraic routine.

If we substitute@V#, @L#, @V#21, and @N0# into Eq. ~6!,
the solution of the problem is obtained. Thus students
solve the equations of any radioactive system if they kn
how to diagonalize and invert matrices.
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