Algebraic approach to the radioactive decay equations
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The radioactive decay equations are solved using an algebraic approach that is simple and easily
extensible to branching systems. Two examples are included to show the nature of the
approach. ©2003 American Association of Physics Teachers.
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[. INTRODUCTION -\ 0 0 0 0

A radioactive decay chairX;—X,—---—X;—--—X,,
with decay constants; (i=1 ton) is described by the fol- [A]= 0 N — N3 0 0
lowing set of differential equations:

Nj=—x\;Ny, (1a) 0 0 0 IR S R W

N2=X1N;3—X\oNo, (1b) If we follow the standard methotsee, for example, Ref.
3) for solving a homogeneous system of linear differential
equations with constant coefficients, we obtain the following
compact solution:

[N]=[VI[AIV]™INo], (6)

where[A] is thenXxn diagonal matrix,

N/ =Np 1Ny 1= NNy, (10

whereN; = N;(t) represents the amount of thia nuclide at
time t, andN/ =dN;(t)/dt is its time derivative. The solu-
tion of Eq.(1) is fixed by specifying the initial amount of the [A]=Diag e t!,er2!, ... ent], (7)
nuclides in the sample,

Aqi,A5,...,A, are the eigenvalues of the matfiR], and

[VI=(va|vq| . . |vp). (8)

The general solution of Eq$l) and (2) was obtained by
Bateman by performing a Laplace transform and its subse-That is, then columnsv,v,,...,v, of the matrix[ V] are the
guent inverse transform using a path integral in the compleeigenvectors of A]:
plane. This procedure has been recently shortened in Ref. 2.

In this paper, we solve Eq$l) and (2) by a direct alge- [Alvi= Ay (i=1,...n). 9
braic approach. This approach is also applicable to branching
systems. Section Il contains the basic equations of thé&inally, [V]™is the inverse matrix ofV].
method. In Sec. Ill we discuss two examples to illustrate the We have assumed that no pair of decay constants are
nature of this approach; the first example deals with a chaigequal. (This condition is also implicitly assumed in Bate-
and the second with a branching system. Finally, in Sec. Ivman’s solution’) This assumption can be verified by exam-
we summarize the method. ining a table of nuclide$.

Note that, in Eq(6), [V][A][V] ! acts as the time evo-
lution matrix of this system. In other words, when this matrix
acts on the vectofNgy], which represents the set of initial

Il. BASIC EQUATIONS values, it produces the vectdd], which represents the num-
ber of nuclei in the sample at an arbitrary time.

For radioactive chain without branching, the ingredients of
Eqg. (6) can be symbolically calculated, and we obtain

Nl’OZNl(O) (|:1,,n) (2)

Equation(1) can be expressed compactly using matrices,

[N"]=[A][N], 3)
Ai:_)\i (i:].,...,n) (10)
where[N], [N’], and[Ngy] are vectors witm components:
1 0 0 0 0
Nl Nl Nl,O SZ 1 1 0 e 0 O
_ N2 1 Né _ N2,0 '
[N]= K [N']= aE [Nol= . @4 [V]= S31 Ss» 1 0 0],
Nn Nr,,l Nnyo .........................
, _ , St Sz Sis S
[A] is thenXxn matrix defined by (11
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1 0 0 0 0 N, 1 0 0 O
Tos 1 0 0 0 No| [Sea 1 0 O
[VI7'=| Ts1 Ta2 1 0 o[, N3 S0 &2 10
N
......................... .. 4 Si1 Sz Suz 1
Tn,l Tn,Z Tn,3 Tn,n—l 1 12 e Mt 0 0 0
(12 0 e 0 0
where the symbol§; ; andT; ; may be represented as finite % 0 0 e 0
products of fractions of the form 0 0 0 e Mt
A 1 0 0 O
FP = (13) N1
Ag=Ap T, 1.0 O 0
% Tge T 1 0 0 an
In particular, 31 732 0
‘ A , Tar Tap Tuz 1
. —F. N = . .
S Fli-aFioai-2Fey, (14 The matrix element§; ; andT; ; are calculated using Egs.
and (13), (14), and(5). Several examples are
| | Spim (189
Tii=FjiFienerFionioa (15 Ve
The result of inserting Eqg13)—(15) into Eq. (6) is the S, __ M N (18b)
general solution of the chain system, which coincides with D VR WD W W
Bateman’s solution.
Bateman’s approach cannot be extended to branching sys- T..= Ay (193
tems. However, the algebraic approach used here and ex- 21 \;—\,’
pressed in Eq(6) is applicable to any radioactive system.
The only difference with the simple chain is that to calculate _ M Ao A3 (19b
[V] and its inverse matrikVV] ™%, it might be better to pro- D Ve VD VS VD Ve
ceed numerically using, for exampl@ATHEMATICA . Thus, we finally obtain:
Ny(t)=e " Ny, (209
[ll. EXPLICIT EXAMPLES N1
Na(t)=[e Mal—e 2] ———Ny,, (20b)
Let us first consider an example of a radioactive chain. 2 M
Radon 222 T4,,=3.8235 daykis an a-emitting, chemically e Mt e Mot
inert gas that seeps out of the soil and can sometimes accu- Na(t)=N Ay ~—— ST = —
mulate in houses. It is an intermediate product in the radio- (A2~ A)(As=h1) - (M= A2) (A= A2)
active series of uranium 238. Radon and its radioactive g
daughters are known carcinogens. In this radioactive series, + (Ni—Na)(Ao—Ng) N0, (200
radon 222 decays into polonium 2187 (,=3.10 min), bonennz s
which decays into lead 214T(,,=26.8 min), which in turn 3 e Mt
decays into bismuth 214T¢,,=19.9 min). We denote the Na(t)=X1hoh3 (A= N)(Ng— A1) (Ag—Nyp)
number of Rn 222X,), Po 218 K,), Pb 2_14 X3), and Bi o2t
214 (X,) asN;, N,, N3, andN,, respectively. +
We assume that at=0 there areN; o nuclei of X; and no (N=N2)(N3—N2)(Ag—N2)
nuclei of its daughters, and we want to calculate hdyy e \at
N,, N3, and N, change with time. From the relation + U VAT; VAT
=In2/T,;, and the values of the half-lives just given, we (AM1=R3)(A2=Ag)(ha=hg)
obtain the respective decay constants i=1,...,4. Thus, g Mt N (20d)
i ; ; + .
the matrix[A] in Eq. (5) is expressed as (A—Aa)Aa—Na)(Na—Ng)| 2O
-x, O 0 0 If we substitute the values af; into Eq.(20), the result is
N —Ap O 0 Ny(t)=e 075N, 4, (213
[A]l= , (16)
0O X —A3 O N,(t)=0.000563 4e 0007554 g~ 13418)N,  (21b)
0 0 A N Na(t)=(0.004 894 °%7 554+ 0.000 637 & 1341¢
and Eq.(6) becomes —0.005538 151N, 4, (210
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Xy 1 00

/\i/ N I s S 9
N— N, '
x2 1011

Xy, —m X3 Thus the result is
Fig. 1. Branching scheme of Example 2. N,(t)=e~ 001 45N1’0, (269
Nz(t):0019 0$e—0.01145_e—0.2270)N1’0, (26b)
N4(t)=(0.003 648 %0974 0,000 087 28~ 13414 N3(t)=(1-1.0190& *%1%+0.019 08 ***"I)N, ,,
(260

—0.0159% 1°°18+0.012 3@ 209N,
(210

where the timet is measured in hours. Thus, for a specific V. SUMMARY

value ofN; o, we know the evolution of the nuclide popula-
tion at any time.

where the timd is in minutes.

As explained in Sec. Il and illustrated in Sec. lll, the three

Our second example starts with the decay of Bi 2155teps of the method are as follows. The decay constants of
(T4»=160.55 min). This nuclide is an intermediate productthe huclides are used to construct the majy and the

that is almost at the end of the radioactive series of Th 232'.”'“"’_II conditions are use(_:l to construct the_ vedidl]. By
In 64.06% of the time, Bi 212 decays via beta emission into>°!Ving the equation of eigenvalues and eigenvectofspf
Po 212 {T1,=0.299% 10-° s), which decays into Pb 208 via one obtains matr|>K/}]l and matrix[V], and inverting matrix
alpha emission and is stable. For 35.94% of the time, Bi 212V]: One obtaingV]~=. , _ _
decays via alpha emission into Tl 208 ;(,=3.053 min), The matrix[A] can b_e written by mere!y inspectirid\], .
which subsequently decays into Pb 208. becaus¢A] always maintains the lower triangular form with
Because the half-life of Po 212 is extremely short, we can-A1,---,— A in the diagonal positions. This fact implies
assume that 64.06% of the time, Bi 212 decays directly intdhat Eq.(10) is always satisfied. As discussed at the end of
Pb 208, and 35.94% of the time, Bi 212 decays into TI 208Sec. Il, there are cases where these algebraic tasks can be
which decays into Pb 208. And hence, this example willdone symbolically, which may simplify the calculations. In
effectively consider only the population of three nuclei: Bi any case, these tasks can always be carried out numerically
212 (X4), TI 208 (X;), and Pb 208Xs). The decay constant by means of a standard algebraic routine.
of X, is written as follows:\;=\1+\2, \}=0.3594\,, If we substitute[ V], [A], [V]™", and[No] into Eq. (6),
X2=0.6406., . This branching system is illustrated in Fig. 1. "¢ Solution of the problem is obtained. Thus students can
1Again welwill assume that 40 only N, o is nonzero solve the equations of any radioactive system if they know
' _ 1,0 .

: . ) C : how to diagonalize and invert matrices.
For this system, the set of differential equations is g
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