Using a digital camera as a measuring device
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We present several experiments that can be done using a digital camera or a webcam, including
the shapes of shadows cast by lampshades, the trajectories of water jets, the profile of a hanging
chain, and caustic figures produced by the reflection of light on mirrors of different forms.
The experiments allow for a simple and direct quantitative comparison between theory and
experiment. © 2006 American Association of Physics Teachers.

[DOL: 10.1119/1.2210487]

I. INTRODUCTION

The main objective of this paper is to discuss a variety of
instructive experiments that can be done using a low cost
digital camera (or webcam). The experiments are either
novel or the setup is new. Those that have been done previ-
ously with a different experimental setup have been reformu-
lated. The associated theory ranges from elementary topics in
mechanics and the ray theory for light to more advanced
subjects that require the solution of differential equations.

We first discuss the shapes of shadows produced by a
lampshade on a wall. This activity is used to illustrate the
general approach that is used in the other projects, that is,
take photographs of physical phenomena and compare them
with the corresponding theoretical predictions. We then dis-
cuss the trajectory of projectiles in two dimensions, an easy
arrangement to explore the shape of a hanging chain sup-
ported at its extremes when it is subjected to different load-
ing, how to build a simple and inexpensive device to explore
the relation between an arbitrary shaped mirror and its cor-
responding reflection caustic figure, and suggest a number of
other applications of a digital camera that can be done using
similar experimental techniques, such as the study of beam
deflection and Chladni plate figures.

Some of these phenomena are not commonly discussed in
introductory textbooks, although they are understandable to
undergraduate students. We have implemented them so that
they can be easily studied in a more quantitative manner,
using the advantages of digitized images. The projects dis-
cussed here require a resolution of 480 X 640 pixels or better
and a modest personal computer, and may be particularly
useful to schools and universities with modest experimental
facilities. Most new digital cameras also allow the generation
of short movies at rates of 15 and 30 frames per second
(fps). In this way it is possible to record the position of
objects at different times, which is particularly useful for
studying the kinematics of objects. This use constitutes an
alternative to stroboscopic photography and time exposure
techniques. This useful feature of digital cameras will not be
discussed in the present work.'?
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II. EXPERIMENTAL PROCEDURE

We follow a common procedure for all the experiments,
which is to digitally record and analyze the data acquired in
two-dimensional (2D) images. The procedure works for any
experiment where the relevant physical features are entirely
contained in a single plane of the photograph. Care must be
taken to obtain photographs with a minimum of distortion by
ensuring that the camera is parallel and along (or close to)
the normal to the plane that defines the figure of interest; the
distance of the camera to the object of interest should be
much larger than the characteristic dimension of the object.
If the camera has a zoom, pin cushion and barrel distortions”
are minimized when the zoom is set about halfway between
wide (W) and telephoto (T).

It is convenient to place vertical and horizontal scales with
easily identifiable marks in the same plane as the object of
interest. An alternative is to use a grid of known dimensions
in the background that is coincident or close to the plane of
the object being studied and perpendicular to the axis of the
camera. In this way each photograph records all the neces-
sary information to convert the pixel coordinates of the digi-
tal photograph into a real coordinate system. There are sev-
eral ways to perform this transformation. A straightforward
way is to use a graphics program, such as PHOTOEDITOR or
COREL DRAW. By placing the mouse on the reference scale, it
is simple to convert from pixel coordinates to real dimen-
sions. There are also several commercial' ™ and shareware®
programs that can directly convert the pixel coordinates of
the picture into real coordinates. Alternatively, it is possible
to write a spreadsheet program so that by clicking on a digi-
tal image imported into the program, the pixel coordinate
will be given in the spreadsheet. Another possibility is to
trim the digital image to a well-known real size and then
create a graph with the same dimensions. Importing the
trimmed digital image into the plot area of this graph will
automatically produce a plot in real coordinates. This ap-
proach allows for a direct comparison of the model and the
actual data. This technique has been used by one of the au-
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thors to quantitatively study the Bernoulli equation in the
drainage of vessels.

III. CHARACTERIZING THE GEOMETRY
OF A SHADOW

The shadows cast by a lampshade can present regular and
1nterest1ng patterns. Recently, Horst® discussed this problem
using a visual method to characterize the shape of the
shadow. The light emerging from a lampshade forms a cone,
with the vertex at the position of the light bulb filament and
an angular aperture defined by the rim of the lampshade.
Depending on the orientation of the axis of the light cone
relative to the wall, we expect to observe a shadow with
hyperbolic, parabolic, or other conical shapes. By using a
digital photograph it is possible to quantitatively test this
expectation.

Once the coordinates of the shadow are known, it is
straightforward to compare the results with the correspond-
ing theoretical prediction. In Figs. 1(a) and 1(b) we show the
case where generatrix of the light cone is parallel to the wall.
We create this condition by inclining the lamp so that the
edge of the shadow on the ceiling is right above the lamp. In
this case the shape of the shadow on the wall is fitted using
a parabola. By visually comparing the overlap of the theo-
retical curve with the rim of the shadow, we can extract the
relevant parameters of the model (in this case the coefficients
of the quadratic).” In Fig. 1(c) the axis of the light cone is
parallel to the wall. The expected shape of the shadow is a
hyperbola that results from the intersection of the light cone
with the wall. We can superpose onto the digital image the
result of the model developed in Ref. 8.

IV. THE TRAJECTORY OF A WATER JET
FROM A HOSE

Our setup is similar, but simpler than an earlier arrange-
ment that required a system to generate and shoot drops of
water, in combination with stroboscopic hght % In our setup
a nozzle is introduced to discharge the water and the hose is
directly connected to a faucet. With a little practice it is easy
to obtain a uniform jet of water. It is important to maintain
the flow of water so that the initial velocity v of the jet is
constant. While one student maintains the exit nozzle at a
fixed angle, another student takes a picture of the trajectory
of the jet. It is convenient that the complete trajectory of the
jet is captured by a single frame so that it contains all the
useful information about the system: the initial angle, maxi-
mum height, range, and shape of the trajectory. We used a
background grid of 20 cm X 20 cm to provide a convenient
reference scale.

If the effect of friction air is negligible, the trajectory can
be described by the equation of motion of a projectile,

8
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y(x) = yo + tan 6(x —xo) —
where (x,,y,) are the coordinates of the exit of the nozzle, 6,
and v, are the initial angle and speed of the jet, and g rep-
resents the gravitational field, which is antiparallel to the y
axis. The range x,,,, and the maximum height y, .. of the jet
are xmax=vg sin(26,)/2g and ymax=v(2) sin? 6,/2g, so that
ymax/xma,;% tan ). Therefore, the ratio of the maximum
height to the range characterizes the initial angle of the jet. If
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Fig. 1. (a) and (b). Shadow cast by a lampshade on the wall when the
generatrix of the cone of light is parallel to the wall. (a) The crosses are the
theoretical expectation of the shadow and (b) the photograph of the shadow.
(c) Shadow cast by a lampshade on the wall, with the axis of the lamp (and
its cone of light) parallel to the wall. The continuous lines represent the
asymptotes of the hyperbola fitted to the shadow. The crosses denote the
theoretical hyperbola that best fits the shape of the shadow.

we vary the initial velocity v, it is simple to fit the actual
trajectory of the jet to Eq. (1). In Fig. 2 we give an example
of this analysis. In our case variations of a few percent in the
value of v, produce noticeable discrepancies between the
actual trajectory and the theoretical prediction. The value of
v, can be determined with an uncertainty of about 4%. Near
the nozzle we observe a well-defined jet of water, whereas
far from the nozzle, the jet breaks into drops of different
sizes. Nonetheless, the jet and the drops follow the same
trajectory. This observation may be useful for confronting
students with the misconception that liquids and solids fol-
low different laws of physics.7

The value of v, can be compared with an independent
measurement of the velocity obtained by measurements of
the water flux, that is, the time it takes the hose to fill a
known volume. Because the exit area A of the nozzle can be
measured directly, the value of v, can be obtained from the
flux of water, Q=Av,. We found that the values of v, ob-
tained by these two methods agree within a few percent.
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Fig. 2. Trajectory of a water jet. (a) The digital image superposed on the
prediction according to Eq. (1), represented by crosses. The parameters vy,
and 6, can be obtained from the fit to the actual trajectory; (b) plain photo-
graph of the jet.

The fact that the observed trajectory and the theoretical
prediction, Eq. (1), coincide indicates that the effect of air
friction can be disregarded in this case.

V. CATENARIES

The shapes of hanging chains have intrigued many scien-
tists. Galileo claimed, erroneously, that this shape was a pa-
rabola. Leibniz, Huygens and Johann Bernoulli seem to have
solved this problem in response to a challenge by Jakob Ber-
noulli in 1691."* We call this curve a catenary (from the
Latin word for chain). Its solution can be found in many
textbooks.'' In Appendix A we reproduce a simple justifica-
tion and highlight the ideas used in determining the shape of
a catenary.

For a chain of length L. with uniform mass density hang-
ing from two points located at the same height / and sepa-
rated by a distance L in a uniform gravitational field, the
catenary is given by

1
y(x) = ~(cosh(Ax) — 1), 2)
where N can be found by solving
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Fig. 3. Superposition of the image of a hanging chain and the prediction
(heavy continuous line) given by Egs. (2) and (3). For comparison we show
the parabola (dashed lines) that goes through the vertex and hanging points.
We see that the catenary describes the shape of the chain more precisely.

_Me =tanh(\L/2). (3)
2N+ 1)

In Fig. 3 we show the digital image of a chain and the
catenary obtained using Egs. (2) and (3). For comparison, we
also show the shape of the parabola that has the same vertex
and the same hanging points. The catenary clearly gives a
much better description of the actual shape.

In Fig. 4 we show the image of a uniformly loaded chain.
Here the loads (150 g each) were uniformly distributed hori-
zontally (x axis) on a 125-g chain, so that mass per unit of
horizontal length, dm/dx= const. Also shown is the catenary
and a parabola. In this case the parabola gives a better de-
scription of the shape of the chain, in agreement with theory
(see Appendix Ag. This situation can also be tested on actual
hanging bridges1 and used to test the theory for the shape of
nonuniform cables."

The forces along the hanging chain (loaded or unloaded)
are pure tensile forces because the chain cannot support any
compression due to its flexibility. If the system were flipped,
all the forces due to weight would be reversed and the curve
along the chain would be subject to pure compression forces.
Because many traditional construction materials, such as
bricks and stone, can withstand great compression but small
tensile forces, the catenary would make a perfect arch using
these types of materials. The same idea can be used for de-
signing a loaded arch. The famous Catalan architect Antoni
Gaudi used this principle to design some of the beautiful and
astonishing structures he built in Barcelona.

VI. REFLECTION CAUSTICS

When we observe a cup of white tea or coffee, we often
see an illuminated heart-like figure, particularly if there is a
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Fig. 4. Image of a uniformly loaded chain. The heavy line is a parabola and
the dashed line is a catenary. The parabola gives a better description of the
shape of this chain.

single light source illuminating the cup obliquely from
above. This same figure can be observed inside a gold
ringl‘"15 under the same illumination conditions. These fig-
ures are examples of the caustic figures produced by the
envelope of the rays reflected from the circular surface of the
cup or the ring (see Fig. 5). Many great scientists have
worked on this interesting problem, including Huygens and
Bernoulli.

It is possible to find the form of the caustic for any type of
reflecting curve. If a beam of horizontal parallel rays shines
onto the surface of a concave reflecting surface described by
y=f(x), it can be shown that the parametric equations for the
caustics, produced by a light source located at x — —oc, are'®
(see Appendix B)

Incident rays-.

~ Reflecting
BN Surface
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>
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Mirror axis Focus——~" %
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Fig. 5. Schematic of the formation of the caustic (catacaustic). The envelope
of the reflected rays is the caustic of the reflecting surface. The region
enclosed between the caustic and the reflecting surface is enhanced as a
result of the superposition of incident and reflected rays that pass through
this space.
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Fig. 6. Schematic of the experimental arrangement for building a mirror
with a given shape.
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The experimental setup is illustrated in Fig. 6. We drew the
profiles of differently shaped mirrors on paper using a one-
to-one scale. Then we glued this plot to an expanded poly-
carbonate slab, 0.75 in. Then we carefully cut the silhouette
of the curve out of the plate, with a thin hot wire (heated by
an electrical current) using the plot as a reference. A strip of
aluminized Mylar, about 2 cm wide and 20 wm thick, was
glued onto the wall.

In Fig. 7 we show the image of a circular mirror illumi-
nated from the left. The image of the caustic is very clear.
Overlapped on this image is the curve that describes the
shape of the mirror and its corresponding caustic according
to Eq. (4). The agreement between theory and observation is
very good. We found that using the Sun as the light source
produced the best results. In Fig. 8 we show the results for an
exponential mirror and its caustic.

VII. BEAM DEFLECTION AND ELASTICA

The deﬂectron of a beam is another 1nterest1ng classical
problem ? The case of small and large transverse deflec-
tions of a horizontal beam, fixed at one end and subject to
varying loadmg, is discussed in many textbooks on
elastlclty By taking digital photographs, it is possible to
compare the shape of the beam for different loadings with
theory % The details of the theory have been discussed re-
cently in Ref. 20. In Fig. 9 we present the case of large
deflection of a plate. For this experiment we used a plate of
high molecular weight, polystyrene, thickness 0.3 cm, width
3 cm, and length 40 cm. The shape of the plate can be
readily compared with the theoretical curve, known as the
elastica.” Flgure 9 shows that the theoretical curve describes
the observed deflection of the plate. The unknown parameter
is the Young’s modulus of the material which can be deter-
mined by overlapping the deformed material with the best
theoretical fit.
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Fig. 7. (a) Superposition of the caustic for a circular mirror (catacaustic) and
the theoretical prediction given by Eq. (4); (b) photograph of the
phenomenon.

VIII. OTHER PROJECTS

There are a number of other experiments that can profit
from the advantages of a digital image for quantitative analy-
sis and comparison with theory. For example, most students
are familiar with nodes and antinodes in a vibrating string.
The generalization of this idea to the vibration of a two-
dimensional plate is relatively simple, where the nodes of the
string are replaced by nodal curves. Spreading white sand on
a vibrating plate can easily reveal these shapes. Sand accu-
mulate along the nodal lines known as Chladni figures,
which are produced at different resonance frequencies. B f
we take a digital photograph of the patterns produced at each
resonant frequency, it is possible to compare the experimen-
tal figures with theory. Recently this technique has been used
to study the drop formation in a falling stream of liquid.24
Other experiments that benefit from the use of a digital cam-
era are interference and diffraction patterns produced by pin-
holes and slits. By using a solid state or a HeNe laser, it is
easy to project the diffraction or interference pattern on a
wall. If we take a digital photograph of the pattern, we can
use software such as MAPLE OR MATHEMATICA to obtain the
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Fig. 8. (a) Superposition of the caustic for an exponential mirror and the
theoretical prediction given by Eq. (4); (b) photograph of the phenomenon.

intensity along a line. We can then compare the intensity
patterns with the corresponding theoretical models. A de-
tailed description of this technique is in Ref. 25.
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APPENDIX A: CATENARY

We briefly review the assumptions that lead to the equa-
tion of the catenary. Consider a chain of length L. and mass
M . suspended by its ends as indicated in Fig. 10. The weight
of an infinitesimal element of length ds in a uniform gravi-

x(cm)

0 10 20 30
z(cm)

Fig. 9. Elastica of a flexible plastic strip of length L=51.2 cm. The theoret-
ical curve obtained using the algorithm discussed in Ref. 20 describes the
shape of the beam.
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Fig. 10. (a) Chain or flexible rope suspended by its ends. The coordinates of
the hanging points are (-L,,h) y (L,,h), with L;+L,=L. (b) Forces that act
on an infinitesimal element of chain of length ds.

tational field is dP=p(x)g ds, where g is the acceleration of
gravity and p(x) is the local mass density per unit of length
of the chain. If H(x) and V(x) are the horizontal and vertical
components of the tension of the chain at the point with
coordinate x, the equilibrium of the forces along the x and y
axes leads to

H(x +dx)=H(x) = H, (A1)

and

V(x+dx)—V(x)=dV=dP = p(x)gds, (A2)

where H, represents the tension of the chain at the vertex
(where dy/dx=0). The tension of the chain at the point with
coordinate x is tangent to the curve y(x) and thus

Vi) _dy

H(x) dx’ (A3)

Equation (A3) is based on the physical condition that the
chain is subject only to tensile forces. If we differentiate Eq.
(A3) and combine it with Egs. (A1) and (A2), we obtain
d*y
dV=—=Hdx = p(x)gds. (A4)
dx
If dm/dx=p(x)ds/dx=const., it follows that the shape of the
chain y(x) is a pure parabola. This situation holds if on a
chain of negligible weight, we hang masses that are uni-
formly distributed horizontally as in the example shown in
Fig. 4 or in hanging bridges, where most of the weight is on
the platform of the bridge. In general, this condition is not
satisfied and Eq. (A4) must be solved explicitly for each
function p(x). Because ds=dxy1+(dy/dx)?, we can write

Eq. (A4) as

dzy (dy)2
=A@+ =),
dx? (x) dx

where \(x)=p(x)g/H,. Equation (A5) can be integrated by
substituting z(x)=dy/dx,

(AS)

X dz fx
= | \x)ax, (A6)
f \r 1 + Z2
which implies that
d
7= @y =sinh(u(x)) + ¢y, (A7)
dx |,

where u(x)=[*N(x')dx’. For constant mass density p(x)
=M_/L., \=M_g/(H,L,) is a constant, and Eq. (A7) reduces
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Fig. 11. By conventional point geometry, the curve is characterized by the
relation y=g(x). Equivalently, the same locus can be characterized by a set
of tangent lines to the curve determined by the relation ¢=i(p).

to dy/dx=sinh(\x)+c;. If we choose the origin to coincide
with the vertex of the chain (where dy/dx=0), then ¢,=0.
The integration of Eq. (A7) yields y(x)=1/\ cosh(Ax)+c.
The condition y(x=0)=0 leads to
1

y(x) = X(cosh()\x) -1). (A8)
The constant N\ can be obtained from the boundary condi-
tions, namely the position of the ends with a chain length L..

If the ends are at the same height 4 and separated by a
distance L, then from Eq. (A8) we have

1
= X(cosh()\L/Z) -1). (A9)
The length of the chain is
Li2
—_— 2
Le= Zf V1 + (dyldx)*dx = N sinh(AL/2). (A10)
0
If we combine Egs. (A8) and (A9), we obtain
AL,
——— =tanh(\L/2), All
20+ 1) - AnhAL2) (All)

which relates the parameters \, L, L., and h.

APPENDIX B: THE CAUSTIC

The caustic is the envelope of a family of rays transmitted
(diacaustic) by a lens or reflected (catacaustic) by a mirror.
We briefly summarize the relation between the shape of the
caustic and the reflecting surface. There are several ways to
obtain the equations of the caustic of a mirror."*™"7 We sum-
marize the argument originallgf discussed in Ref. 18 based on
the Legendre transformation. 627

By means of conventional point geometry, a curve is char-
acterized by the relation y=g(x). Equivalently, a family of
tangents to the curve can characterize the same curve (see
Fig. 11). Because each line can be described by its slope p
[=dg(x)/dx] and the intersection ¢ with the y axis, the rela-
tion ¢=f(p) can be used to represent a family of tangents to
the curve. This representation is known as the Pliicker line
geometry.”’ It can be shown that y=g(x) and = y{(p) are two
equivalent representations of the curve.”” From Fig. 11(a), it
follows that
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Fig. 12. Schematic of the relation between the reflecting surface, repre-
sented by y=f(x) and the caustic characterized by y.(x.). The incident rays
come from a source on the far left.

pz—), or Yr=yy— pxp. (B1)

Therefore, if we know the family of tangents expressed by
y=1p), according to Eq. (B1) di/ dp=—x. The conventional
point representation, y=g(x), can be obtained from Eq. (B1),

y=g(x)=xp+i(p). (B2)

This type of transformations is often used in mechanics when
we go from the Lagrangian formulation to a Hamiltonian
formulation.

Consider a concave reflecting surface characterized by y
=f(x) and a beam of horizontal parallel rays incident from
the left (see Fig. 12). If 6 is the angle of incidence on the
mirror relative to the normal to the reflecting surface, then
tan #=—1/f"(x). The slope of the reflected ray is p=tan(26)
and its intersection with the y axis is . The equation of the
reflected ray can be written as

Y - f(x) =p(X-x), (B3)
where
p=tan(26) =2f"(x)/(1 - (f'(x))?), (B4)

Y and X are the coordinates of any point on the reflected ray,
and (x,f(x)) is the point of incidence of the incoming ray on
the mirror. We can write

(p) =Y(X=0) =f(x) - xp. (B5)

Equation (B5) can be regarded as the expression of the fam-
ily of tangent lines that characterize the locus of the caustics
in Pliicker line geometry.18’27 To convert to the conventional
point geometry of the caustic, y.=g(x.), we can use the Leg-
endre transformation

dx
xe==dldp=(p-f(x)——+x. (B6)
dp
We combine Egs. (B4) and (B6) and obtain
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From Fig. 12 we can write

Ye=Xcp + x). (B8)

If we replace Egs. (B4), (B5), and (B7) in Eq. (B8), we have

(W2

Ye= f/(x) +f(x)~ (B9)

Therefore the parametric equations of the caustics are

’ 2
3e(8) = £(x) + (’;fo)))

F @ = (' ()%
2f"(x)

x.(x) = (B10)
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