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We present the results of an experimental study of the implications of the Neumann and Dirichlet
boundary conditions on the solution of two-dimensional electrostatic problems. The experimental
setup is simple and low cost. The experimental results are compared with theoretical expectations
using a spreadsheet program to solve Laplace’s equation with the appropriate boundary conditions.
Excellent agreement is found between the experimental results and the calculations. The simplicity
of the experiment and of the theoretical interpretation makes this experiment accessible to beginning
students. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

The study of the solution of Laplace’s equation with dif-
ferent types of boundary conditions is one of the most fun-
damental topics in intermediate and advanced courses on
electromagnetism. In particular, the study of Neumann and
Dirichlet boundary conditions is often presented in advanced
courses.1,2 Nonetheless, there is a relative scarcity of pub-
lished experiments that illustrate their implication in practi-
cal situations and are suitable for use in teaching laborato-
ries.

We present an experimental study of a two-dimensional
electrostatic problem that clearly illustrates the importance of
the Neumann and Dirichlet boundary conditions. Further-
more, the experimental results can be readily compared
quantitatively with the numerical solution of Laplace’s equa-
tion obtained by the relaxation method with the appropriate
boundary conditions implemented in a spreadsheet.3–6 The
simplicity of the experiment and the technique for obtaining
the solutions of Laplace’s equation with different types of
boundary conditions makes it possible to include these im-
portant topics earlier in the curricula.

The experimental setup we employ in our study of the
field lines and equipotential surfaces is a dipolar configura-
tion consisting of two electrodes immersed in a conducting
media, distilled water in our case, which is contained in a
rectangular basin. Typically, the conductivity,�, of the water
used ranged between 10�4 to 10�3 ��1 m�1. To prevent
electrolysis, which would alter the chemical properties of the
media over time, alternating current is used, with frequency,
f , in the range of 50 Hz to 1 kHz. In this way the effective
potential distribution does not change with time and hence is
stationary. At the chosen frequencies,�, the wavelength as-
sociated with the electromagnetic field is several hundred
kilometers (��c/n f �106 m, wherec is the speed of light
in vacuum andn2�k is the dielectric constant of the liquid
at the corresponding frequency�. Because the wavelength is
much larger than the linear dimensions of the experimental
setup, the electric field configuration is essentially quasistatic
and equivalent to the electrostatic case. Also, because the
rate of change of the applied field is slow compared to the
typical relaxation time of the media,2,3 	r�k
0 /�

(	r�10�6 s), at each instant of time the potential distribu-
tion is the same as the electrostatic distribution. However, it
changes with time at the applied alternating frequency.

Because we are considering stationary conditions
(1/ f �	r), we have thatJ��E at all times, where� is the
conductivity of the liquid media andJ is the current density.
Also the net charge density in the liquid is negligible,�
�0, and therefore the equation of continuity becomes

“•��E��0. �1�

For quasistatic conditions, we have“�E�0 and
E��“V. Therefore

“•��“V ���“2V�0, �2�

and the potentialV satisfies Laplace’s equation

“2V�0. �3�

A similar result can be obtained from the wave equation for
the scalar potential
,1,3

“2
�
1

c2

�2


�t2 �0. �4�

If 
(r,t)�V(r)exp(i�t), where��2� f , then in the long
wavelength approximation, that is,� much larger than the
characteristic length of the system, we have

“2V�
1

�̄2
V→0 if �̄�

�

2�
→�. �5�

Because the basin that contains the water is nonconducting
�acrylic�, the current densityJ in the water can only flow
parallel to the walls of the container. Therefore the perpen-
dicular component of the currentJ is zero at the surface of a
nonconducting wall. On these surfaces we have

�V

�n
�0, �6�

wheren indicates the direction perpendicular to the surface.
This type of constraint on the potential is known as a Neu-
mann boundary condition.1
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On the other hand, if we have a water–metal interface,
then because of the continuity equation,

J1n�J2n , �7�

we have

�1E1n��2E2n . �8�

Here 1 and 2 refer to the liquid media and the metal, respec-
tively, andn(p) indicates the normal�parallel� component of
the electric field. Because the conductivity of the metal
��A1�3.7�107 (�m)�1� is much larger than that of the
liquid medium��water�10�3(�m)�1�, we find

� �1

�2
�E1n�E2n�0. �9�

Therefore, we expect the electric field inside the conductor to
be much smaller than the electric field in the water. In other
words, the metal is essentially an equipotential volume. If we
apply the Faraday induction law to the metal–liquid
interface,1,3 we obtain

E1p�E2p . �10�

Because the metal is at a�almost� constant potential,E1p

�0, and the electric field in the liquid is perpendicular to the
water–metal interface. In summary, the metallic conductors
constitute equipotential volumes, that is,

Vcond�constant. �11�

This type of constraint on the potential is known as the Di-
richlet boundary condition.1

The experimental setup can be arranged to have a Dirich-
let or a Neumann boundary condition on the edge of the
basin by simply placing a conductor on the rim or leaving the
nonconducting material uncovered. It is also possible to con-
struct a combination of the two types of boundary conditions
with the same setup.

II. NUMERICAL SOLUTION OF THE LAPLACE’S
EQUATION IN TWO DIMENSIONS

There are several methods to solve Laplace’s equation in
two dimensions.3,7 The numerical technique that we will use
is the relaxation method4–6,8 which can easily be imple-
mented using almost any spreadsheet program.

“2V�x,y ��
�2V�x,y �

�x2 �
�2V�x,y �

�y2 �0. �12�

The relaxation technique in two dimensions has been exten-
sively discussed in the literature,3,5,6,8and is an example of a
finite difference method. It consists of dividing the region
over which we wish to find the solution of Laplace’s equa-
tion into a regular square mesh grid of dimensionh�h. In
particular, for a rectangular region of dimensionsa�b, the
interval of lengtha is divided inton�a/h segments and the
interval of lengthb is divided intom�b/h segments. The
center of each square is characterized by the indexi (1�i
�n) and j (1� j�m). For simplicity, we use the notation
that (i, j) indicates the coordinates (xi ,y j). The three point
approximation is used for the second derivative

�2V�x0 ,y0�

�x2 �
V�x0�h,y0��2V�x0 ,y0��V�x0�h,y0�

h2 .

�13�

If we use the equivalent expression for�2V(x0 ,y0)/�y2, it is
easy to see that Eqs.�12� and �13� lead to

V�x0 ,y0�� 1
4 �V�x0�h,y0��V�x0�h,y0��V�x0 ,y0�h �

�V�x0 ,y0�h ��, �14�

or in our simplified notation

V� i, j �� 1
4 �V� i�1,j ��V� i�1,j ��V� i, j�1��V� i, j�1��.

�15�

The solution of Laplace’s equation can be obtained by an
iteration procedure that is repeated until the maximum rela-
tive change in the functionV(i, j) from one iteration to the

Fig. 1. Schematic representation of a lower corner of the basin, limited by a
mixed boundary condition. The lower horizontal rim is nonconducting, and
therefore satisfies the Neumann boundary condition, while the left vertical
rim is metallic �conducting� and has been set to a potentialV0 . Therefore
this wall of the basin satisfies a Dirichlet boundary condition.

Fig. 2. Schematic diagram of the experimental setup. The dashed line
around the rim of the basin indicates the different types of boundary condi-
tions imposed on the system. If the vertical walls of the container are cov-
ered with a metallic�conducting� shim, we generate an equipotential surface
on the rim, that is, Dirichlet boundary conditions are imposed. If the metallic
shim is removed, Neumann boundary conditions are obtained.
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next is less than a prescribed tolerance oft. In our case we
have chosent�0.001. The boundary conditions are satisfied
by requiring that on the surface of the conductor�Dirichlet
boundary condition�, characterized byi�0 in Fig. 1, the
potential is set to a constant value, determined by the nature
of the problem. Similarly, on the surface of a nonconducting
material we require that

�V

�n
�0, �16�

that is, the Neumann boundary condition.
To illustrate how this technique can be implemented in a

spreadsheet program, each mesh region (i, j) is represented
by a corresponding cell in the spreadsheet where the value is
the potentialV(i, j) at each point. As an example of the way
that the boundary conditions are satisfied, let us assume that
a given corner of the problem is limited on the left by a

conducting electrode at a potentialV0 along they axis �Di-
richlet boundary condition�, characterized byi�0 in Fig. 1,
and a nonconducting wall on the lower horizontal axis�Neu-
mann boundary condition�, characterized byj�N in Fig. 1.
The value of any point in the mesh that is not on the bound-
ary is obtained using Eq.�15�. Those points that belong to a
Dirichlet boundary are held to the applied potentialV0 , that
is

V� i�0,j ��V0 . �17�

The Neumann boundary condition in this example is satisfied
by requiring

V� i, j�N ��V� i, j�N�1�, �18�

where V(i, j�N�1) is calculated using Eq.�15�. The
spreadsheets developed for this study are available and can
be downloaded.9

Fig. 3. Experimental�left-hand side� and theoretical�right-hand side� result of the potential for the Dirichlet boundary condition.

Fig. 4. Experimental�left-hand side� and theoretical�right-hand side� result of the potential for the Neumann boundary condition.
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Although the finite difference technique based on Eq.�15�
is not the most efficient procedure for the convergence of the
solution,3,8 it is simple to understand by beginning students,
and with current personal computers a reasonable matrix size
of 100�200 cells can be iterated 1000 times in less than a
second. Therefore, it is usually not important to resort to
more sophisticated techniques, such as over-relaxation, that
are not so straightforward to implement with a spreadsheet.

III. EXPERIMENT

The experimental setup adopted to study the electrostatic
potential is illustrated schematically in Fig. 2, and is similar
to the one used by other authors7 in the past. It consists of a
transparent rectangular acrylic tray, 24 cm�34 cm and 2 cm
in height, with millimetric paper attached to the bottom, al-
lowing the rectangular coordinates of each point to be re-
corded. Two aluminum electrodes of different shapes are
connected to the secondary of a transformer that provides an
AC voltage ofV0,eff�10 V �effective� at 50 Hz. The acrylic
basin is filled with distilled water to approximately 1 cm

depth. A standard digital AC voltmeter is used to measure the
potential at each point of the basin relative to one of the
electrodes that is taken as a reference.

For the configuration indicated in Fig. 2, the equipotential
line that bisects the axis that joins the center of the electrodes
is at the effective potentialV0/2. By symmetry, this equipo-
tential line extends to infinity. Therefore, if we want our
potential to satisfy the usual convention ofV�0 at infinity,
we must normalize our measured values,Vmeas, and take
V(x,y)�Vmeas(x,y)�V0/2. It should be emphasized that
what is physically meaningful is the potential difference. In
all the figures, the quoted potential has been normalized in
this manner.

IV. RESULTS AND DISCUSSION

One of the most interesting advantages of the experimen-
tal setup used in this experiment is its versatility. It is very
straightforward to study several types of configurations using
different geometries for the electrodes as well as a variety of
boundary conditions with only minor changes.

We first present our result for the geometry indicated in
Fig. 2, using an electrically isolated metallic shim on the rim
of the basin. This configuration corresponds to the Dirichlet
boundary condition withV�0 (Vmeas�V0/2) on the rim. The
three-dimensional plot10 on the left-hand side of Fig. 3 illus-
trates the experimental results, whereas the plot on the right-
hand side corresponds to the solution of Laplace’s equation,
obtained by the relaxation method. The semiquantitative
similarity between the two figures is clear.

To study the effect of changing the boundary conditions,
we simply remove the metallic shim from the rim. The
boundary conditions are now reduced to the Neumann
boundary condition. The results are depicted in Fig. 4. On
the left-hand side of this figure we have plotted the experi-
mental results and on the right-hand side the theoretical pre-
diction obtained by solving Laplace’s equation. Again, the
similarity between theory and experiment is clear. Further-

Fig. 5. Comparison of the potential as a function of they coordinate for
fixed values ofx�2 cm andx�32, for both the Dirichlet and Neumann
boundary conditions. The square symbols indicate the experimental result
for the case of Dirichlet boundary condition and the triangular symbols
indicate the Neumann boundary condition. The dotted curve is the predic-
tion of the relaxation technique using the Dirichlet boundary condition, and
the solid curve is the corresponding solution for the Neumann boundary
condition. The dashed curve corresponds to the solution, ignoring the rim,
that is, when the only requirement is thatV→0 as any of the coordinates
approaches infinity.

Fig. 6. Comparison of the potential as a function of thex coordinate for
fixed value of y�20 cm, for both the Dirichlet and Neumann boundary
conditions. The square symbols indicate the experimental result for the case
of Dirichlet boundary condition, and the triangular symbols indicate the
Neumann boundary condition. The dotted curve is the prediction of the
relaxation technique using the Dirichlet boundary condition and the solid
curve is the corresponding solution for the Neumann boundary condition.
The dashed curve corresponds to the solution, ignoring the rim, that is, when
the only requirement is thatV→0 as any of the coordinates approaches
infinity.
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more, the difference in the result of both experiment and
theory between Figs. 3 and 4 is very striking, making quite
evident the physical implications of changing the boundary
conditions of the system.

To make a more quantitative comparison of our results, we
present two-dimensional plots in Figs. 5 and 6 of the varia-
tion of the potential along cuts parallel to thex andy axis. In
particular, Fig. 5 illustrates the variation along an axis paral-
lel to they axis, at symmetrical distances from the electrodes
(x�2 cm andx�32 cm) that correspond to an axis at about
the mid-point between each electrode and the nearest wall. In
Fig. 5 we have plotted the experimental results for both
boundary conditions, together with the corresponding theo-
retical predictions. For comparison purposes, we have also
plotted the theoretical results obtained by requiring that the
potentialV�0 at infinity. This situation is commonly made
implicitly, when for instance we use as a model for the
system of Fig. 2, the potential corresponding to a dipole

configuration.7 As is clear from Figs. 5 and 6, this last model
of the potential does not agree with either of the configura-
tions measured. Moreover, these figures illustrate the impor-
tance of the boundary condition in determining the potential
of the system.

In Figs. 7 and 8 we present three-dimensional plots of the
potentials obtained for two different arrangements of the
electrodes. Figure 8 illustrates an interesting configuration of
mixed boundary conditions, and Fig. 7 shows a configuration
of electrodes that produces a typical quadrupole field that is
very useful in situations that require focusing a beam of
charged particles. The corresponding configuration is indi-
cated at the center of these figures. On the left-hand side of
each figure we present the experimental results and on the
right-hand side we show the corresponding numerical solu-
tion of Laplace’s equation. The similarities between theory
and experiment are self-evident. Furthermore, they illustrate

Fig. 7. A three-dimensional plot of the potential for the configuration shown at the center of this figure. On the left-hand side we show the experimentalresults
and on the right-hand side we show the solution of Laplace’s equation obtained by the relaxation method. The basin dimension used in this measurement was
35 cm�45 cm.

Fig. 8. Three-dimensional plot of the potential for the configuration shown at the center of this figure. On the left-hand side we show the experimental results
and on the right-hand side we show the result of Laplace’s equation obtained by the relaxation method. The basin dimension used in this measurement was
35 cm�45 cm.
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the implication of the two types of boundary conditions on
the potential configuration of the system.

V. CONCLUSIONS

The experiments discussed in this paper clearly show the
importance of the Neumann and Dirichlet boundary condi-
tions for the solutions of Laplace’s equation for actual ex-
perimental situations. The experimental setup is very simple
and very low cost. The experimental results can be quantita-
tively compared with realistic theoretical models. In particu-
lar, using the relaxation technique, the solutions for a whole
variety of boundary conditions, Dirichlet, Neumann or mixed
boundary conditions, can be obtained in a straightforward
manner. In fact, arbitrary and complex boundary conditions
as well as different shapes of electrodes can be implemented
experimentally and solved numerically with the relaxation
method. The results of the theoretical calculations are in
good agreement with the experimental results.

An interesting laboratory project would be to ask students
to measure the potential distribution of a dipolar configura-
tion, similar to the ones depicted in Fig. 2, and compare the
results with the prediction of a naive model of a dipolar
configuration withV�0 at infinity. In particular we would
ask the students to perform a quantitative comparison of the
experimental results and the theoretical prediction along
lines similar to those shown in Figs. 5 and 6. The two-
dimensional plots would clearly indicate the shortcomings of
the naive approach and the need to adequately account for
the boundary conditions in order to obtain quantitative agree-
ment with the theory. Finally, as an application and extension
of solving potential problems, it would be interesting to ask

students to devise their own set of boundary conditions, pref-
erentially defining the boundary along segments parallel to
the coordinate axis. This selection will simplify the solution
of Laplace’s equation using the relaxation method.
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