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We discuss an experiment on coupled RLC circuits with variable coupling strength. The inductive
coupling can be easily varied and measured for different configurations. The experiment allows us
to explore the variation of the resonance frequencies as a function of the coupling strength between
the oscillators. The system illustrates the effect of eigenfrequency repulsion when an interaction
couples different modes of oscillation. The experiment is conceptually simple, and its results can be
compared quantitatively with theoretical predictions. © 2007 American Association of Physics Teachers.
�DOI: 10.1119/1.2787017�
I. INTRODUCTION

The study of coupled oscillators is of interest in many
areas of physics and related areas. An interesting and impor-
tant phenomenon in these systems is the frequency repulsion
effect. A system of two coupled oscillators has two natural
frequencies or eigenfrequencies.1 As the coupling strength
increases, the lower eigenfrequency decreases and the higher
increases; the effect is a “repulsion” between the eigenfre-
quencies. The quantum mechanical analog of this repulsion
effect �level repulsion� is known as the Wigner–von Neu-
mann anticrossing rule,2 which is important in molecular,
atomic, nuclear, and particle physics.3–5 An interesting ex-
ample is the ammonia molecule in an electric field.3 Other
examples include the hyperfine splitting of the hydrogen
atom in a magnetic field,3 the Nilsson model for deformed
nuclei,6,7 and the neutrino oscillation between flavors.8

There are few experiments that illustrate the consequences
of level repulsion.9,10 The experimental system we will dis-
cuss is an inductively coupled RLC circuit. This system is
easy to understand by beginning and intermediate students,
and the experiment is low cost and readily accessible. The
coupling strength can be easily measured and modified in a
continuous and convenient way. A simple theoretical model
accounts for the experimental data. Previous studies9 with
different experimental setups and techniques lacked the nec-
essary sensitivity and accuracy9 but paved the way for the
present approach.

There are several ways to perform this experiment. We
employ a lock-in amplifier.11 Lock-in amplifiers are versatile
and useful instruments and are increasingly used in research
and industrial settings. Lock-in amplifiers are particularly
useful for detecting small signals of known frequency in the
presence of a noisy environment. There have been several
developments that have made lock-in amplifiers available to
teaching laboratories with modest budgets.12,13 Although a
lock-in amplifier is a useful tool for this experiment, it is not
essential and a good oscilloscope could be used instead, at
the expense of making the experiment more time consuming
and much less sensitive to small signals.

II. THEORETICAL CONSIDERATIONS

The theory of the frequency repulsion effect has been ex-
3–5
tensively discussed. The basic physical process involved
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in frequency repulsion can be illustrated for two coupled
harmonic oscillators. We briefly review the two inductively
coupled LC circuits indicated schematically in Fig. 1.

We apply Kirchhoff’s law to the circuit of Fig. 1 and ob-
tain

Q1

C1
+ L1

dI1

dt
± M

dI2

dt
= 0, �1�

and

Q2

C2
+ L2

dI2

dt
± M

dI1

dt
= 0. �2�

Here Qk�t� and Ik�t�=dQk�t� /dt are the charges and the
currents in circuits 1 �left� and 2 �right�, and M is the mutual
inductance coefficient. The different signs for M are related
to the relative orientation of the induction coils14 L1 and L2.
The condition M2�L1L2 must be satisfied.14 To solve this
system of coupled differential equations we assume that

Qk�t� = Ak exp�i�t� . �3�

We substitute this form into Eqs. �1� and �2�, yielding

A1

C1
− L1A1�2 � MA2�2 = 0, �4�

and

A2

C2
− L2A2�2 � MA1�2 = 0. �5�

We define

�10
2 =

1

L1C1
and �20

2 =
1

L2C2
, �6�

and cast Eqs. �4� and �5� in the matrix form:

���10
2 − �2� �

M

L1
�2

�
M

�2 ��20
2 − �2� ��A1

A2
� = 0. �7�
L2
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The solution to Eq. �7� differs from the trivial solution
�A1=A2=0� only if the determinant of this matrix is zero,
that is,

	��10
2 − �2� �

M

L1
�2

�
M

L2
�2 ��20

2 − �2� 	 = ��10
2 − �2���20

2 − �2�

−
M2

L1L2
�4 = 0. �8�

If we define

� =
M2

L1L2
, �9�

with 0���1, the natural frequencies of the coupled system
are

�̃2 =
1

2�1 − ��
���10

2 + �20
2 �

± 
�10
4 + �20

4 − 2�1 − 2�� · �10
2 �20

2 � . �10�

It follows from Eq. �10� that

��̃1
2 − �̃2

2� � ��10
2 − �20

2 � . �11�

Equation �11� implies that the difference between the eigen-
frequencies in the coupled system is larger than that of the
uncoupled case. The ratio ��̃1

2− �̃2
2 � ÷ ��10

2 −�20
2 � increases

monotonically with � and is independent of the sign of cou-
pling strength M.

The quantum analog of this phenomenon is the level re-
pulsion effect.3–5 A simple explanation of this effect can be
given by considering a two level system. Assume that in the
absence of interaction there is the Hamiltonian H0 with
eigenenergies E1

0 and E2
0:

H0�i
0 = Ei

0�i
0, �i = 1,2� , �12�

where �i
0 is the eigenfunction of H0 corresponding to the

eigenvalue Ei
0. Suppose that an interaction V is introduced

that mixes the states 1 and 2 such that

�� j
0�V��i

0
 = V0�1 − � j,i� . �13�

The perturbed Hamiltonian H=H0+V has eigenenergies Ei
given by3–5

E1,2 =
1

2
��E1

0 + E2
0� ± 
�E2

0 − E1
0�2 + 4V0

2� . �14�

Fig. 1. Inductively coupled LC circuits.
The energy difference has the following property:
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�E2 − E1� = 
�E2
0 − E1

0�2 + 4V0
2 � �E2

0 − E1
0� . �15�

Equation �15� indicates that the energy difference increases
monotonically with the magnitude of the coupling strength
V0.3–5

III. THE EXPERIMENT

We built a coupled classical RLC resonator �see Figs. 2
and 3�. Here x is the axial distance between the two coils
with x� 0 corresponding to the two coils being side by side.
Figure 3 is the physical realization of the circuit shown in
Fig. 2. The presence of the resistances in the circuits has a
double origin. Inductances always have some internal resis-

tance, and the external resistances R̃i are useful for monitor-
ing the responses �currents� of the circuits. In a single RLC
�series� circuit the resonance frequency coincides with the
natural frequency.14 To characterize the natural frequencies
of a coupled RLC circuit we built an apparatus, illustrated in
Fig. 3, that allowed us to study the resonance curve in this
circuit. The parameters of the two coupled RLC circuits are
given in Table I. The internal resistance of the AC source
�function generator� is r; the internal resistances of the in-
ductances L1 and L2 are r1 and r2, respectively. We denote by

Fig. 2. Inductively coupled RLC circuits. The resistance r is the internal
resistance of the AC source, and r1 and r2 are the internal resistances of
inductors having inductances L1 and L2, respectively. The voltage drop in
the resistances of the primary and secondary circuits is measured directly by

the lock-in amplifier. Vi is the voltage drop in the resistance R̃i and is used to
monitor the currents in each network.

Fig. 3. Schematic of the experimental setup. The two coils move along a
wooden rod. Here x is the separation between the coils. An AC source is

connected to the primary circuit.
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R̃1 and R̃2 the external resistors in the primary and secondary
circuits and the total resistance in these circuits by R1 and R2.
The voltage drops across the external resistances, V1 and V2,
are used alternatively as input for the lock-in amplifier. The
currents in the primary and secondary circuit are equal to the

ratios V1 / R̃1 and V2 / R̃2, respectively. The internal oscillator
of the lock-in amplifier is used to power the primary loop.

The values of all the parameters of the circuit were mea-
sured independently, including the internal resistance of the
coils and the internal resistance of the AC power supply. The
coils were made of copper wires gauge #26 �diameter
=0.4 mm� of 1040 turns. The coils had an internal diameter
of 2.5 cm, an external diameter of 5.2 cm, and a width of
2 cm. The two coils could snugly move over a common
wooden rod. This arrangement allowed us to conveniently
varying the distance between the coils and consequently the
mutual induction M �coupling strength� of the system.

The value of M as a function of the distance x between the
two coils was determined independently. For this purpose we
measured the induced voltage in the secondary inductance L2
alone with no other component connected. From the defini-
tion of M we have14

	2 = − M
dI1

dt
. �16�

Because we excited the circuit with a sinusoidal signal of
frequency �0, the amplitude of the induced emf 	2

0 is given
by

	2
0 = − M�0

V1
0

R̃1

. �17�

Equation �17� allows us to obtain M from measurements of

the amplitude of the voltage drop V1
0 across R̃1 and the am-

plitude of the induced emf in the secondary inductance. This
procedure was used to determine how M varies with x. After
we obtained M for different values of x, we measured the

voltages drops across both R̃1 and R̃2 in the same geometry
we used for M. In this way we obtained V1

0 and V2
0 as a

Table I. Values of the parameters used. The second column shows the values
of the parameters obtained by direct measurements. The third column shows
the results obtained from a fit of the data, as illustrated in Fig. 6. In this case
the model provides only the total resistance of the circuit.

Direct
measurement

From best fit to
the model

R̃1
15±1 


R̃2
7±1 


r 50±2 


r1 18±1 


r2 19±1 


R1 83±3 
 90±4 


R2 26±3 
 31±4 


L1 32.4±0.2 mH 32±5 mH
L2 33.5±0.2 mH 34±5 mH
C1 99.1±0.2 nF 99±7 nF
C2 108±0.2 nF 108±3 nF
function of the frequency.
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To characterize the frequency response of our coupled os-
cillator, we used a digital lock-in amplifier SR830 controlled
by a computer. This arrangement allowed us to measure the
magnitude of the current for each excitation frequency. The
computer allowed us to sweep the excitation frequency be-
tween 1 to 40 kHz at the preset step of 500 Hz. As indicated
in Fig. 3, the reference output of the lock-in amplifier was
used to feed the circuit �AC source�. Further technical details
of this experiment are available.15

IV. RESULTS AND DISCUSSION

In Fig. 4 we show the variation of M as a function of x and
an empirical fit to the data. The diamonds represent the val-
ues obtained by the measurement of the emf in the secondary
self inductance.

Figure 5 shows the results of the response of the primary
circuit, that is, the amplitude of the current in the primary

circuit V1 / R̃1 for different values of x. For a large separation
of the coils �uncoupled system� we observe the response of
the primary circuit alone. By adjusting the parameters of the
model to the experimental results, it is possible to obtain the
parameters of the system. In Table I the values thus obtained
are compared to those obtained by direct measurements of
the individual components. The values agree within a few
percent, indicating the consistency of the methods employed.

In Fig. 6 we show the response of the secondary circuit
using V2 as the input for the lock-in amplifier for different
values of x. We also include in Fig. 6 the response of the
secondary circuit when the system is uncoupled. To obtain

Fig. 4. Experimental results for the mutual inductance M as a function of
the separation x. The diamond symbols are the results for M obtained by
direct measurements of x. The continuous line is an empirical fit to the data
using an exponential function.

Fig. 5. The observed current amplitude in the primary circuit as a function
of frequency for different separations between the coils. The frequency sepa-
ration of the maxima of these curves increases for smaller distances, that is,

stronger coupling.
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the resonance curve for this case we excited the secondary
circuit �alone� with the reference output of the lock-in am-
plifier. The broadening in the uncoupled curve is due to the
presence of the internal resistance of the function generator
�r�50 
� used to excite the secondary circuit. Note that as
the coupling decreases �x increases�, the amplitude of the
signal in the secondary diminishes. The larger signal ob-
served in the uncoupled case is a consequence of the direct
way we used to excite this system. Despite these differences,
the frequencies of the maxima in the uncoupled and weakest
coupling cases coincide as expected.

Figures 5 and 6 show that when the coupling between the
two systems is nonzero, there is a bimodal resonance curve.
The positions of the maxima separate for smaller distances
between the coils �larger coupling strength� in agreement
with the theoretical expectation, Eq. �10�.

In Fig. 7 we present the results of the current amplitude
for the primary and secondary circuits for x=0. The symbols
indicate the measured current amplitude in the primary and
secondary circuits �see Fig. 2�. We also plotted in Fig. 7 the
corresponding theoretical prediction from Eqs. �A10� and
�A11�. Figure 7 shows how well the theory reproduces the
experimental data. The adjustable parameters of the model
are the values of M ,Ri ,Li, and Ci. The values of these pa-
rameters obtained from this fit are given in the third column
of Table I. The fit of the model to the data provides another
way of determining M and the other parameters. As Table I
indicates, the results of these parameters thus obtained are
consistent with those obtained from direct measurements.

Fig. 6. The observed current amplitude in the secondary circuit as a function
of frequency for different separations between the coils. As in Fig. 5, the
frequency separation of the maxima increases for smaller distances.

Fig. 7. The observed current amplitude as a function of the frequency in the
primary �crosses� and secondary �circles� circuits for x=0. The continuous
lines are fits to the data using Eq. �A10� with the mutual induction coeffi-
cient M�x� as the only adjustable parameter. The values of M obtained for

each value of x are shown in Fig. 4.
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Figure 8 shows that as the coupling strength increases, the
repulsion effect is enhanced �that is, the difference between
the eigenfrequencies increases�, in agreement with Eq. �10�.
For large separations between the coils the eigenfrequencies
converge to the uncoupled values. The theoretical result,
Eq. �10�, is indicated by the heavy lines.

V. CONCLUSIONS

The experimental setup is a simple way to study the basic
characteristics of coupled oscillators with variable coupling
strength. The effect of eigenfrequencies repulsion is readily
observable. The model provides an excellent description of
the data. The experiment and the model can be generalized to
several coupled oscillators. Finally, the experiment provides
an instructive and useful application of the lock-in amplifier
for studying interesting phenomena. A recent submission to
this journal has been brought to our attention by the Editor.17

It studies the same system from a somewhat different per-
spective. Their findings are in keeping with the effect de-
scribed in our study.
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APPENDIX: FORCED COUPLED RLC CIRCUITS

Consider the circuit in Fig. 2. An AC source powers the
left network �primary�. We characterize the voltage gener-
ated by the AC power source as v1�t�=V10 exp�−i�t−��,
where V10 is the amplitude of the signal, � is the angular
frequency, and � is the phase difference with the current in
the primary. If we measure the voltage drop across the resis-

tances R̃1 and R̃2, we can monitor the current in each loop. In

Fig. 8. Observed maximum response frequencies as a function of x. The
heavy lines are the result of Eq. �10�. The dotted horizontal lines indicate the
uncoupled eigenfrequencies. The square symbols and triangles represent
the eigenfrequencies �frequencies of the maxima in the secondary circuit
of Fig. 6�.
the following R1 and R2 are the total resistance of the pri-
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mary and secondary loops, including the internal resistance
of the source �primary� and the resistance of the inductances.

To solve this circuit we assume that14,16

I1�t� = I10 exp�i�t� and I2�t� = I20 exp�i�t + �2� .

�A1�

The complex impedances of the left and right loop are
respectively:14,16

Z1��� = R1 + i�L1� − 1/�C1� = R1 + iX1��� , �A2�

and

Z2��� = R2 + i�L2� − 1/�C2� = R2 + iX2��� . �A3�

According to Kirchhoff’s laws we have

V10 exp�i�t − �� = Z1���I1�t� − Mi�I2�t� , �A4�

and

Z2���I2�t� − Mi�I1�t� = 0. �A5�

The solution for i2�t� yields:

V10 exp�i�t − �� = I1�t��Z1��� + �2M2Z2����

= I1�t�Z1���� , �A6�

with

Z1���� = �R1 +
�2M2R2

R2
2 + X2

2 � + i�X1 −
�2M2X2

R2
2 + X2

2 �
= Re + iXe��� . �A7�

The solutions for I1 and I2 are

I1�t� = I10 exp�i�t�

= V10 exp�i�t − ���Z2����Z1���Z2��� + �2M2�� ,

�A8�

and

I2�t� = I20 exp�i�t + �2� = iV10 exp�j�t − ��


�M��Z1���Z2��� + �2M2�� . �A9�

The magnitude of the current amplitudes, I10 and I20, can be
written as

I10 = V10�
R2
2 + X2

2

D
� and I20 = V10��M

D
� , �A10�

with
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D2 = ��R1R2 − X1X2 + �2M2�2 + �R1X1 + R2X1�2� . �A11�

Equations �A19� and �A11� are the stationary solutions of the
coupled circuit and can be directly compared with the results
of our measurements. The continuous lines in Figs. 6 and 10
were obtained using Eqs. �A10� and �A11�.
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