Perturbation of a classical oscillator: A variation on a theme of Huygens
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The motion of a particle in different potentials is investigated theoretically and experimentally. The
dependence of the period of oscillation on the amplitude is studied for pendula associated with some
of these potentials. A technique is proposed to modify the trajectory of a pendulum bob so that it
moves along a predetermined curve, and a simple and low cost experiment to study the relation
between the period and amplitude for different potentials is discussed. We report on the motion of
several pendula whose periods decrease with increasing amplitude. In particular, we study the
effects of a perturbation of the form z* on the frequency of oscillation of a simple harmonic
oscillator. Our results agree with the expectation that any perturbation of a simple harmonic
oscillator destroys its isochronism. © 2006 American Association of Physics Teachers.
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Perturbation analysis is used extensively in physics and 2
engineering. However, only a few experiments that illustrate
and test the results of perturbation methods, are available in
the literature. Thus, it would be useful to consider simple
systems that can be analyzed using perturbation methods and
that can also be studied experimentally. The systems we will
discuss can also be used to establish a connection between
classical isochronism and the quantum mechanical equal &z 2
spacing of the energy levels in a harmonic oscillator." The —+ woz+ )\ 22 =0.
motion of a particle can be used to investigate the conse- dr do
quences of nonlinear effects in an oscillatory system.

We w111 first apply the Poincaré-Lindstedt perturbation
method*? to the classical harmonic oscillator with a pertur-
bation potential z*. Next we will review the classical motion
of a particle restricted to move along a predefined frictionless
trajectory and show how to determine its period of oscilla-
tion theoretlcally * We then will discuss a practical method
that allows us to carry out experimental studies on the dy-
namics of a particle restricted to move along a given trajec-
tory or potential. We show that a particle that moves along a
frictionless curve is equivalent to the motion of the bob of a
pendulum that moves along the same curve. This pendulum
can be used to explore the brachistochrone and tautochrone
properties of the cycloidal trajectories. We also develop a
mathematical formalism to construct a pendulum of this
kind. Then we present our experimental apparatus used to

I. INTRODUCTION 1 (dz)2 1 n
1

where m is the particle mass and z is its position. The quan-
tity mw(z) is the elastic constant of the restoring force, a; is a
characteristic length parameter, and N\ is a dimensionless
strength parameter of the perturbation potential. The corre-
sponding equation of motion is

(2)

Equation (2) is known as the Duffing equation without a
driving force and can be solved using the Poincaré-Lindstedt
perturbation method.>*” This method involves expressing
the solution z(7) as a series expansion in the parameter A,

2(1) = 2 N'z,(2).

n=0

3)

We introduce a new independent variable 7=w.t and express
w as a series of the form,

w= E Nw,. (4)
n=0

We then substitute Egs. (3) and (4) into Eq. (2) and collect

measure the variation of the period of a particle in different
potentials as a function of the amplitude of oscillation. We
report the motion of several pendula whose periods, contrary
to the simple pendulum, decrease with amplitude. Finally, we
compare our experimental results with the theoretical expec-
tations.

II. THEORETICAL CONSIDERATIONS

A. Classical perturbation on a harmonic oscillator

Consider a one-dimensional oscillator perturbed by a po-
tential of the form z*. The total energy of that system is
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terms of equal powers in A and obtain a set of second-order
differential equations in z,(¢) that can be solved recursively.
The first two equations are

d2
e > +20(1)=0 (5)
and
d*z,(7) ( o ) d zQ(T) 1
+7;+2 - 0. 6
a7t [T = ©
The solutions of Egs. (5) and (6) ar e’
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Fig. 1. Motion of a frictionless particle along a wire whose shape is de-
scribed by f(x). The y axis is chosen in the direction of the local gravita-
tional field, g.

7o(7) =A cos(7+ @) = A cos(wgt + @), (7)

where the constants A and ¢ depend on the initial conditions,
and

3

z(n= I;\ag(cos(3r)—cos( 7))
A3
= 32—%(cos(3 wt) — cos(wt)). (8)

With the initial conditions z(0)=A and dz(0)/dt=0, the so-
lution of the equation of motion is to first order in A
3

z2(t) = A cos(wt) + A 5N\ (cos(3wt) - cos(wr)), 9)
ay
with
2
w=ag+ %x. (10)
)

Therefore, the period of oscillation is
Ty
(1+3A%a)N)’

where Ty=2m/w, and A is the amplitude of oscillation.

Equation (11) shows that to first order in \ the isoch-
ronism of the harmonic oscillator is broken and the period
becomes dependent on the amplitude. If we can design an
oscillator with a perturbation potential of the form in Eq. (1),
we could experimentally test the validity of Egs. (9)—(11) by
measuring the dependence of the period on the amplitude. In
particular, the equation of motion of the simple pendulum
satisfies Eq. (1) with A=—1/6 (Refs. 2, 3, 6, and 7) and
=L, the length of the pendulum.

T(A) = (11)

B. Motion of a particle along a wire without friction

Consider a particle that moves under the influence of grav-
ity along a flat frictionless wire whose shape is described by
the function f(x). This classical problem™® is illustrated
schematically in Fig. 1. The variable s denotes the length of
an arc along the wire with respect to some arbitrary point of
reference. From elementary calculus we have
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2
ds=\/1+<df—(x)) dx. (12)
dx

The equation of motion for a particle of mass m along the
wire under the action of its weight is

&’s - tan 6 (13)
m—==—mg Sin =—-mg -,
ar’ § S+t 6

where 6 is the angle between the tangent and the x axis as
indicated in Fig. 1. If we combine Egs. (13) and (12), we
obtain

d2 dy

14
dt ds (14)

If the shape of the trajectory, y=f(x), is described para-
metrically by the equations x=x(¢) and y=y(¢), conserva-
tion of energy yields the relation

ol g5) (35 N moe
2m id + dd i +mgy(x),

(15)

Ey=mgyo=

with amplitude xo=x(¢,). The period of oscillation can be
obtained by integrating in time along a complete cycle. For a
symmetric trajectory we obtain

T(x)=4f¢° ¢ =if¢°w
V=), agiar™ \agly (e -v@)

do.
(16)

The perlod can also be expressed in terms of the classical

action™ S(¢o)=§pdx as

T = = = | \2g
o) =5p = 5| +V28m

do
Xf \"y(¢o)—y(¢)\'/x’(¢)2+y’(¢)2d¢]. (17)

0

Equation (17) is useful for numerically evaluating the period
of oscillation and avoiding the singularities of the integral
(16) at the classical points of return. Equations (16) and (17)
are exact expressions for the period of oscillation of a par-
ticle moving along a curve described parametrically by
(x(#),y(¢)). Note that Egs. (10) and (11) are approximate
expressions for the period to first order in the parameter \ for
the special case that the potential energy has the form given
by Eq. (1).

If the particle moves along a cycloidal path, that is, the
wire is shaped as a cycloid with parametric equations de-
scribed by

x(¢) =a(¢+sin ¢)
y(¢) = a(l - cos ¢) =2 a sin*(p/2)

then according to Eq. (12), the arc length along this trajec-
tory is

dsy = \/(5;) (Z; ) dp=2acos($2)dp. (19

We introduce a new generalized variable

(18)
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z =sin(¢/2), (20)
and combine Egs. (18)—(20) to find

dso=2acos(p2)d¢p=4adz and dy=zdsg. (21)
In terms of the generalized variable z, Eq. (14) becomes

iz g

E:—EZ:—G)(Z)Z, (22)
which is the equation of motion of a harmonic oscillator of
angular frequency w(2)= gl4a.

As is well known, the period and the frequency of a
simple harmonic oscillator are independent of the amplitude,
that is, the harmonic oscillator is isochronous. This result is a
consequence of two well-known prope1rties3’4’8 of the motion
of a particle along a cycloidal path, namely the brachisto-
chrone and tautochrone properties of the cycloid. The
brachistochrone®** property means that the time it takes a
particle to descend along this trajectory is a minimum. The
tautochrone™** property means that the time to reach the
bottom of a cycloidal trajectory is independent of the initial
position. In other words, the oscillation of a particle along a
cycloidal path is isochronous so the cycloidal pendulum is
the exact analog of the simple harmonic oscillator.*

The question we now address is how should we perturb
the cycloid so that the particle that moves along it has an
equation of motion given by Eq. (2)? We propose the follow-
ing parametric equation for this trajectory:

x() = () = a( + sin(d)) + k() }
¥(¢) = g($) =a(l - cos($)) + aNyl(¢) |
Here ¢(¢) and ¢/ ¢p) are functions that generate the deforma-
tion of the path which leads to the equation of motion of the
type in Eq. (2), and \ is a dimensionless perturbative param-
eter. We also require that x(¢p=0)=0 and y(¢=0)=0, which
leads to ¢(¢=0)=0 and (=0)=0. The arc length along
the perturbed trajectory in Eq. (23) is to first order in \,
ds* = 4a® cos*(p/2)d ¢*
+a’M(1 +cos §)¢' (4)
+sin ¢ ¢/ ()}de’. (24)

If we also require that the element of length described by Eq.
(19) remains invariant to first order in \, we have

(23)

sin ¢
1 +cos ¢

<P’(¢>)=—{ }1//’((;5). (25)

The requirement that the equation of motion (14) should
have the form (2) leads directly to

W) =sin’ £ 26)
We combine this result with Eq. (25) to obtain
1 3
@(¢) = +sin(¢h) — 3 sin(2¢) — Zd’- (27)

If we find a way to constrain the particle to move along the
path described parametrically by Egs. (23), (26), and (27),
the equation of motion of this particle will be described by
Eq. (2) to first order in A. We substitute Egs. (26) and (27)
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Fig. 2. Examples of evolutes and involutes. (a) String attached to the evolute
(circle) at point O; the other end describes the involute (spiral). (b) The
radius of curvature of the involute (dashed line) spans the evolute (solid
line), but it is not possible to attach a string to the evolute that describes the
involute. Note that the radius of curvature of the involute (R) is never
tangent to the evolute in this case.

into Eq. (23) and express the arc length along the perturbed
trajectory as

2
<£> =4a* cos*(/2) + 4a’\? sin®(p/2)
d¢

= (@Y +4a’\? sin®(¢/2) (28)

de ’

where (dsy/d¢) represents the unperturbed arc length along
the cycloidal path given by Eq. (19). Note that the modifica-
tion of the arc length due to the perturbation is second order
in A.

The motion of a particle along a frictionless wire is almost
impossible to implement in practice. It is very difficult to
precisely shape a wire into a predefined curve. More impor-
tantly, it is not easy to prevent the motion of the particle
along the wire from being dominated by a strong and com-
plicated friction force.”' Friction would completely obscure
the simplicity of the physics of the problem.

In this paper we discuss a simple experimental technique
that allows us to build a pendulum whose bob is restricted to
move along a predefined trajectory, equivalent to an imagi-
nary wire. Consequently, the motion of this pendulum is
equivalent to the proposed problem and avoids the sliding
friction of the wire.

C. Evolutes and involutes: Special pendula

Attach a string of length L to point O on a curve, for
example, a circle. Then extend the string so it is always taut
and tangent to the curve at the point of contact. The curve is
called the evolute,“f13 a circle in this example. The locus
drawn by a pen attached to the other end of the string P is
called the involute of the original curve. This path is illus-
trated schematically in Fig. 2(a). Strictly speaking, the evo-
lute is the curve determined by the centers of curvature of the
involute."!

There is a close connection between evolutes and
involutes.'"' Although an involute curve has an unique evo-
lute, for every evolute there can be an infinite number of
involutes depending on the initial point chosen or where the
string is attached, as in the examples of Fig. 2. If the para-
metric equations of the involute are given by
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Fig. 3. Relation between pendular involute (dashed line) and evolute (full
line). The string is attached at point o, and P is the point where the string
begins to detach from the evolute.

y=8(¢) (29)

assuming that f(¢) and g(¢) are differentiable functions of
¢, then the locus of the center of curvature (evolute) can be
written as

X(¢)=f(¢)—Rsin 6
Y(¢) =g(¢) + R cos 6,

where (X(¢),Y(¢)) are the parametric equations of the evo-
lute, R is the radius of curvature of the involute given by12

~ (f/2+g/2)3/2
- f/g//_fﬁg/ ’
and @ is the angle between the tangent to the involute curve

and the x axis. The primes denote differentiation with respect
to the parameter ¢, that is, f'=df/d¢. In vector notation

cos 6 1 { f ] (32)
sin @ - \,f/2+g12 gr .
From these expressions it can be shown that the parametric
equations of the corresponding evolute are given by”’

(f?+5")g'(¢)

{x=f(¢)

(30)

(31)

X(op) = -
(0=~ .
(f*+g"f (¢)
Y(o) = Ev——
(¢)=g(d) + flg"—f'g’

If we want a particle (bob) to move along a predetermined
trajectory (involute) described by (f(¢),g(¢)), it might ap-
pear that all we need to do is to build a pair of evolutes as
illustrated schematically in Fig. 3 However, the equation of
the evolute, Eq. (33), does not guarantee that the radius of
curvature is always tangent to the evolute, as illustrated in
Fig. 2(b). Therefore, Eq. (33) represents a necessary but in-
sufficient condition for a pendulum whose bob describes a
predefined involute curve. Thus, many evolute-involute pairs
may not allow us to build a useful pendulum.

We need to find a more restrictive condition for a pendu-
lum whose bob describes a given trajectory (involute). If we
start from a given evolute, we require two conditions to be
fulfilled: (1) The string attached from a given point of the
evolute must have a constant length L, and (2) the string
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must be tangent to the evolute at the point where it begins to
detach from it. These conditions are illustrated in Fig. 3,
where o denotes the point of attachment of the pendulum,
and Sj is the arc length of the evolute between the origin
o(¢=0) and the point where the string is tangent to the evo-
lute P(¢p= ). Further details on these connections are dis-
cussed in the Appendix. The first condition leads to the rela-
tion

b
L=S0+R=J VX' (> +Y'(p)*dp+R. (34)
$=0

Here R is the radius of curvature of the involute, (X, Y,) are
the coordinates of the point P on the evolute, and S is the
arc length of the evolute between the origin o and the point
of contact P. The second condition, that is, that the radius of
curvature R must be tangent to the evolute in P, leads to

y(o) =Y, _ Y' (o)
x(po) =Xy X'(hp)

with R?=(x—X,)?+(y-Y,)%. By combining Eqgs. (34) and
(35) we obtain the parametric equation of the involute that
sweeps the bob associated with a given evolute of the pen-
dulum (see Fig. 3):

(35)

) X'(9) )
x(p) =X(¢) + \’W[L So)

. Y'(9) i
() =Y(d) + \'W[L Sol.

(36)

The involute generated by Eq. (36) will be referred to as
the pendular involute to distinguish it from the normal invo-
lute described by Egs. (29) and (33). Equation (33) provides
a necessary condition for obtaining the evolute from a known
involute. On the other hand, Eq. (36) gives the involute cor-
responding to an evolute with a fixed point of attachment. Of
course, the shape of the evolute has to be such that the string
spontaneously follows the shape of the evolute from the
point of attachment up to where it detaches from the evolute
tangent to it. It is noteworthy that an evolute that has
“waves” would not be a good candidate. This condition is
equivalent to requiring that the second derivative of the evo-
lute always have the same sign.

If we want a particle to move along a given involute, we
can use Eq. (33) to obtain the corresponding evolute. Then
we must verify that this evolute satisfies the more restrictive
conditions given by Eq. (36). If the involute obtained using
Eq. (36) coincides with the original involute, we have found
the desired pair of curves to build the pendulum. In any case,
Eq. (36) provides the pendular involute that the bob of the
pendulum will describe for any evolute.

If we want a particle to move along a cycloidal curve of
the form described by Eq. (18), we need to build the corre-
sponding evolute. For a cycloidal involute, it can be readily
shown using Egs. (33) and (36) that the corresponding evo-
lut]el ]izsmalso a cycloid with a parametric equation given
by " °

{X(db) = a($—sin )

Y(¢p)=L—-a+acos ¢. (37)

The length L of the string can be found by calculating the

S. Gil and D. E. Di Gregorio 63



radius of curvature of the involute. For the cycloidal pendu-
lum whose trajectory is described by Eq. (18), the length
must be L=4a. Christian Huygens,15 the putative inventor of
the pendulum clock, obtained this result. Huygens developed
the idea of evolute-involute to build a cycloidal pendulum.
This idea is a good example of the combination of technical
ingenuity and a clear theoretical understanding of the prob-
lem, qualities that characterized Huygens’ work.

One of the aims of the present investigation is to study the
oscillatory motion of a particle in different types of poten-

a
a

x(p)=flp)=a-(d+ Sin(¢))+a-( )Sin(¢/2)

) =g(dp)=a-(1 —COS(¢))+2a-< a>sin2(¢/4)

If the length of the pendulum is L=4a, Eq. (38) be-
comes identical to a cycloid, Eq. (18). Note that the
trajectory described by Eq. (38) does not have the form
given by Egs. (23), (26), and (27). Therefore the non-
perturbative expressions, Egs. (16) or (17), must be
used to obtain the period.

(b)  Perturbed cycloidal evolute. One of the goals of this
paper is the construction of an oscillator whose equa-
tion of motion is described by Eq. (2). In this case the
trajectory of the bob (pendular involute) should be de-
scribed by Egs. (23), (26), and (27). One way to do so
is to find the equation of the corresponding evolute
using Eq. (33) and construct a pair of evolutes with this
shape. Some caution must be exercised when imple-
menting this approach, as we discuss in the following.
Three types of trajectories of the form (23) were cho-
sen using A=0.08, A\=0 (unperturbed), and A=-0.08.
These choices of N were based on a compromise be-
tween a small perturbation that could be treated suc-
cessfully by first-order perturbation theory but that
could still produce an observable effect on the period
of the pendulum. The choice A=0 results in a pair of
evolute and involute that satisfies Eqs. (33) and (36).
The cases of N\ # 0 leads to evolutes that do not satisfy
Egs. (33) and (36) simultaneously. Another problem
with the evolutes obtained for N\ # 0 is that the point of
suspension of the pendulum becomes a loop, destroy-
ing the possibility of building a useful pendulum. Nev-
ertheless, if we construct pairs of evolutes using Eq.
(33), attach the string to the cusp of the evolute, and
then use Eq. (36) to find the corresponding pendular
involute, these trajectories have the desired forms; that
is, the trajectories are well described by Egs. (23), (26),
and (27) but with effective values of \ different from
that of the evolute.

The effective value, Ay, is found by fitting the actual
pendular involute obtained from the evolute using Eq.
(36) with a curve of the form (23). Using this proce-
dure, the effective value of the parameter A =0.12 is
obtained for the involute corresponding to the evolute
of A=0.08. Similarly, the evolute corresponding to
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tials. Its period can be estimated using the perturbative ap-
proximation described by Eq. (11) or using the nonperturba-
tive approach described by Egs. (16) and (17). With these
objectives in mind, we will study the motion of pendula that
use the following evolutes:

(a) Cycloidal evolute. If we attach a string of length L to
the cusp (¢$=0) of the cycloidal evolute described by
Eq. (37), the equations of the resulting involute ob-
tained using Eq. (36) are

(38)

A=-0.08 yields a pendular involute with \.;=-0.048.
The results of this approach are shown in Fig. 4.

(c)  Semicubical parabola evolute. Tt is expected that when
two particles that are restricted to move along a mo-
notonous curve are released from two different posi-
tions, the one closer to the equilibrium position will
reach this point first. This expectation is in agreement
with the well-known property of the simple pendulum.
Are there trajectories where this expectation is vio-
lated? The answer is yes and we discuss here an inter-
esting case that displays this behavior.

If we build a pendulum using the evolute:

Y(X)=L—%L”3X2/3, (39)
or in parametric form
¢3
X(¢) = 2
34 [0 (40)
Y(p)=L--—
(¢) 51

we can find the corresponding pendular involute using Eqgs.
(36):

2
A= s~ 6 »
2
W@ =2 e 2

Vi+(glL)? 2L

The evolute described by Egs. (39) or (40) is known as the
semicubical or Neile’s parabola.l M2 The regular involute for
this evolute obtained by Eq. (33) is just a simple parabola.
This pair of curves is illustrated schematically in Fig. 2(b).
The pendular involute that Eq. (41) represents is quite differ-
ent from a simple parabola. Notice that the trajectory repre-
sented by Eq. (41) is not of the form given by Egs. (23), (26),
and (27), and therefore, its period cannot be obtained pertur-
batively using Eq. (11). Nonetheless, its period can be found
using Egs. (16) or (17).
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Fig. 4. Unperturbed and perturbed cycloidal involutes and their correspond-
ing evolutes.

III. EXPERIMENTAL SETUP

A schematic diagram of the experimental setup is illus-
trated in Fig. 5. A photogate is connected to a personal com-
puter and placed at the lowest position of the bob. This pho-
togate determines the period of oscillation of the pendulum
with an uncertainty of about 2 ms. The bob (mas=0.2 kg) is
suspended from a 1 mm diameter cotton string (cotton
twisted twine, 4 kg tensile strength). The total length of the
pendulum (from the point of suspension to the center of mass
of the bob) is L=(100.0+0.5) cm. A 2-m flexible measuring
tape was placed just below the trajectory of the bob. The tape
was glued onto a 2 cmX 0.2 cm flexible plastic strip. By
adjusting the position of its ends and its central point, it is
possible to bend the tape into a curve that is parallel to the
trajectory of the bob. This device allowed measurements of
the amplitude of the pendulum with an uncertainty of about
1 cm. By visual inspection, the maximum amplitude S, of
each oscillation was read. The maximum amplitude was
characterized in each case by the dimensionless parameter
Smax/ L. Note that the ratio S/L represents the angle between
the string and the vertical only for the simple pendulum.
Nonetheless, it can always be used as a generalized coordi-
nate of the system. The evolutes were made of a 0.5 in. thick

Supporting bar

Evolute

Scale

% Involute

Lateral View

Photogate —>

Front View

Fig. 5. Schematic diagram of the experimental aparatus. The evolute is
made of a 0.5 in. thick wooden plate. The bob hangs from three strings that
restrict the motion to a plane, as illustrated on the left-hand side. The bob
has an opaque plastic attachment that activates the photogate. The amplitude
was measured using a flexible metric tape placed below the trajectory.
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1.01

1.00

TIT,

0.99

R )

AT

A

0.98

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
smax”-

Fig. 6. Experimental results for the ratio of the measured period 7 to the
asymptotic value of the period for small amplitude 7|, as a function of the
ratio of the amplitude of oscillation S, to the length of the pendulum L.
The solid circles correspond to the results for the cycloidal pendulum whose
trajectory is described by Eq. (18). The solid triangles represent the results
for a perturbed pendulum whose trajectory is described by Eq. (23) with
Nefr=0.12. The open squares are the corresponding results for a perturbed
pendulum with A =-0.048. The continuous lines are the theoretical expec-
tations for each case using Eq. (11).

wooden plate. First, a plot of each evolute was made to scale.
The plot was glued onto the wooden plate and then cut along
the evolute. The evolutes were attached to a wooden bar that
supported the system, as indicated in Fig. 5. Four sets of
evolutes were constructed for the present study: (a) a pure
cycloidal evolute of the form (37) with L=1 m and a
=0.25 m, (b) two sets of perturbed cycloidal evolutes of the
form given by Eq. (23) with A=0.08 and A=-0.08, and (c) a
set of semicubical evolutes of the form (39) or (40) with L
=1 m.

The main sources of uncertainty come from the determi-
nation of the amplitude, the measurement of the periods,
the stretching of the string, the fluctuations due to air gusts,
and the vibrations and imperfections in the cuts of the evo-
lutes. The uncertainty in the measurement of the amplitude
Smax(=1 cm) results in a statistical error in S,,/L of 1%.
Because this error would be about the same size as the sym-
bols used to represent the data, they were not shown in Figs.
6-8. To estimate the effect of string stretching, the procedure
of Ref. 5 was followed. If we assume that the relative varia-
tion in length of the string, AL/L, is proportional to the
string tension, F7, we have

K— ZFT, (42)

where K is an empirical constant. There is a systematic in-
crease in the period of the pendulum due to the variation of
the centripetal force given by

2
TP TN S
T 16\ K 16\ K L
The stretching of the string was estimated to be approxi-
mately 2 mm for a weight of 1 kg, and thus K=5000 N.
According to Eq. (43), there is a systematic error in the de-
termination of the period of about 0.04%. This error is

smaller than that due to the time resolution of the photogate,
(AT/T),,~0.1%. The imperfections in the cuts of the evo-
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Fig. 7. Experimental results for 7/T| as a function of S,,,./L. The lengths of
the string were L=2.4a (open triangles), L=4a (solid circles), and L=5.9a
(open rhombuses). The theoretical expectations were obtained using the
nonperturbative expressions (16) and (17).

lute were about 1 mm. These random variations in the shape
of the evolute result in variations in the length of the pendu-
lum which change with amplitude. We follow Ref. 5 to esti-
mate the variation of the period with length variations; the
imperfections in cutting the evolutes result in a random
variation of the period of about 0.05%. Small gusts and vi-
brations also affect the measurement of the period. The fluc-
tuation in the period due to this effect was estimated to be
around 0.2%. This random fluctuation is the largest source of
error in the experimental determination of the period. The
vertical error bars in Fig. 6—8 are mainly from this contribu-
tion.

IV. RESULTS AND DISCUSSION

Figure 6 displays the experimental results of the ratio of
the measured period 7 to the asymptotic value for small am-

1.03 i
1.02 3 ?§‘
1.01 e TN Simple
- pendulum
s 1.00
b
0.99
0.98 X Involute
“described by Eq. (41)
0.97 %
\
0.96
0.0 0.1 02 03 04 05 06 0.7

S nax L

Fig. 8. Experimental results for 7/T, as a function of S,,,/L. The solid
rhombuses correspond to the results for a simple pendulum. The asterisks
represent the results for a perturbed pendulum whose trajectory is described
by Eq. (41). The continuous lines are the theoretical expectations for each
case. The continuous line that reproduces the data of the simple pendulum
was obtained using Eq. (11) with A==1/6. The theoretical line that fits the
asterisk data was obtained using Eqs. (16) and (17) together with Eq. (41).
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plitude T as a function of the generalized coordinate S,,,,/L.
The results shown in Fig. 6 correspond to A #0 and the
unperturbed (A=0) cycloidal pendula, with L=1 m and «
=0.25 m. For the unperturbed cycloidal pendulum, the tra-
jectory of the bob is described by Eq. (18). For the perturbed
cycloidal pendula, the trajectories of the bob are described
by Egs. (23), (25), and (26) with A=+0.12 and A=
—0.048. In Fig. 6 the theoretical expectation derived from
Eq. (11) with A=S,,, and ay=L is also included. As ex-
pected, the unperturbed cycloidal pendulum has a period that
is almost independent of the amplitude (solid circles). We
observe that for A >0 the period decreases with amplitude.
This nonintuitive result implies that if two particles on this
type of trajectory are released, the particle that is further
away from the equilibrium position (the origin) will reach
the origin sooner than the one that is released closer to the
origin. At first sight, this property might seem to contradict
the brachistochrone property (minimum time of descent) of
the cycloidal trajectory. This apparent contradiction is solved
by observing Fig. 4 carefully. If any point (different from the
origin) along the trajectory for A>0 is considered, then it is
always possible to find a pure cycloidal trajectory (A=0) that
joins this point with the origin. Furthermore, the pure cycloi-
dal trajectory must have a smaller radius of curvature, a
smaller value of @ in Eq. (15), than the perturbed trajectory;
that is, the pure cycloidal trajectory corresponds to a pendu-
lum of shorter length and therefore, a smaller period than the
original (\>0). Consequently, the pure cycloidal trajectory
between two points is always the trajectory that joins the two
points in the least time, as expected from the brachistochrone
property of the cycloid.

Figure 7 shows the theoretical and experimental data cor-
responding to a pure cycloidal evolute for L=2.4a, L=4a,
and L=5.9qa, respectively. According to Eq. (38), only the
condition L=4a (solid circles) leads to a pure cycloidal tra-
jectory. Our model reproduces the overall features of the
experimental results. For L=5.9a a deviation was observed
at intermediate angles in several repetitions of the experi-
ment. However, a convincing explanation has not been
found. Nonetheless, the deviations are less than 1%, which
are close to the uncertainties of the measurements which
were about 0.3%. We also notice that for L=2.4a the period
of oscillation decreases with amplitude.

Figure 8 presents the experimental results of 7/7, as a
function of S,,,,/L for a simple pendulum and a pendulum of
the same length that moves along a trajectory described by
Eq. (41). The period of the simple pendulum increases with
amplitude and can be compared to a perturbed cycloidal pen-
dulum with A=-1/6. The property that the period decreases
with amplitude for a particle that moves along the trajectory
described by Eq. (41) presents the largest enhancement ob-
served in our study. This nonintuitive behavior was found to
be present in three cases, the pendulum with a cycloidal evo-
lute and L<4a, the pendulum with a perturbed cycloidal
trajectory for A >0, and the pendulum whose bob follows the
trajectory is described by Eq. (41).

Note that the motion along the trajectory represented by
Eq. (38) with L<4a is similar to that of the perturbed cyc-
loidal trajectory for A >0 and to that of the pendulum whose
trajectory is described by Eq. (41). In this latter case it is also
observed that the particle farther away from the equilibrium
position will reach the origin sooner than the one released
closer to this point.
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V. SUMMARY

The motion of a particle in different types of potentials
was investigated theoretically and experimentally. The ex-
perimental method used the properties of the evolute and
involute curves. We developed a simple and inexpensive ex-
perimental technique that allows us to study the dependence
of the period of oscillation on the amplitude for pendula
associated with some of these potentials. Our experimental
technique takes advantage of photogates to measure the pe-
riod of oscillation with great precision. The experiment can
be used to test the implications of a perturbation potential of
the form z* on a simple harmonic oscillator as well as other
types of potentials for which the period of oscillation cannot
be obtained perturbatively.

We obtained oscillators whose periods increase with am-
plitude as for the simple pendulum and oscillators whose
periods decrease with amplitude. Both types of behavior can
be explained using the classical model discussed here. Our
study constitutes a simple and practical application of pertur-
bation theory to understand the motion of an easily observ-
able system. We found that any perturbation on the simple
harmonic oscillator destroys its isochronism. We also devel-
oped a procedure to relate the shapes of the evolute with the
shape of the trajectory of the bob of a pendulum (involute).
Once the form of the involutes is known, it is possible to
calculate the period of oscillation of the resulting pendulum.

This experiment can be used to exPlore the implications of
the calculus of variation formalism>*® regarding the brachis-
tochrone and tautochrone properties of a cycloidal trajectory.
We have found several trajectories that have the interesting
property that the time it takes for a particle to reach its equi-
librium position decreases as we release it farther away from
this point. In all the cases studied the experimental results for
the period of the pendulum as a function of the amplitude
can be explained within the theoretical approach proposed
here.
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APPENDIX: TRAJECTORY OF THE BOB OF A
GENERALIZED PENDULUM

We further discuss the implications of the more restrictive
condition (36) between the evolute and the pendular involute
that are relevant to the construction of a pendulum whose
bob moves along a predetermined trajectory (involute).

Figure 9 illustrates the geometry of our system. Here «
denotes the angle between the tangent to the evolute (string)
and the x axis, and @ is the corresponding angle of the tan-
gent of the involute. For the bob to move along the involute,
the string must be tangent to the evolute at the point where
the string begins to detach from it. This condition is equiva-
lent to requiring that the lines tangent to the evolute and
involute are orthogonal, that is,
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Fig. 9. Geometrical restriction on the evolute and the involute useful for
constructing a generalized pendulum whose bob moves along a predefined
trajectory (involute).

tan Otan a=—1. (A1)

By using the parametric equation of the evolute and the in-
volute, Eq. (A1) can be expressed as

Y'(¢) g'(¢)

X'(#)f(¢)

Note that this condition is not automatically implied by Eq.
(33). Therefore, it needs to be verified in each case for each
pair of evolute/involute. On the other hand, Eq. (A2) is in-
cluded in the expression of the pendular involute, Eq. (36).

For the cycloidal evolute described by Eq. (37) and the
corresponding involute, Eq. (38), Eq. (A2) is satisfied. It is
also satisfied for the evolute-involute pair described by Eqgs.
(40) and (41).

(A2)
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