Nonisochronism in the interrupted pendulum
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We experimentally studied the dependence of the period of the interrupted pendulum as a function
of the amplitude for small angles of oscillation. We found a new kind of dependence of the period
with the amplitude of the pendulum that indicates that if the interruption is not located on the main
vertical axis that contains the point of suspension, the period of the interrupted pendulum is highly
nonisochronous and does not converge to a definite value as the maximum amplitude approaches
zero. We have developed a simple model that satisfactorily explains the experimental data with no
adjustable parameters. This property of the interrupted pendulum is a general property of the
parabolic potential consisting of two quadratic forms with different curvatures that join at a point
different from the apex or the vertex. @03 American Association of Physics Teachers.
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[. INTRODUCTION quantum numbers, the energy difference between neighbor-
ing levels is equal to the classical frequenty; 1/T, times
The interrupted pendulum, invented by Galifeass a  the Plank’s constant,2h:
simple pendulum of lengthy,, that is interrupted in its mo-
tion by a horizontal bar placed on the vertical line that passes dE, 2m
through the point of suspension at a distarygefrom it. dn ~h @ciassicar Tt
Figure 1 shows a schematic diagram of this pendulum. Tra-

ditionally, this device has been used to illustrate the conser- Consequently, the isochronism is related to the equal spac-

vation of energy because the bob reaches the same height gy of the energy levels of the harmonic oscillator. This semi-
both sides:® The motion of this system is fascinating be-oﬁb 9y '

@)

TCIassicaI

. b idered havi ods: _ classical association is particularly relevant because for qua-
cause It can be considered as having two periods: a periogiic potentials most semiclassical results coincide with the

associated with the motion on the left side that correspondgy 5.t quantum mechanical relatiché Therefore, any pecu-

to a pendulum of lengthy, and a second period associated|igr property of the period of the pendulum, for small ampli-
with the motion on the right side which corresponds to ay,des, is bound to have far-reaching consequences.
pendulum of lengtho—y,. The property of the interrupted pendulum, that we will

~ As for the case of a simple pendulum, we expect that thejiscuss, was observed in the course of a laboratory session
interrupted pendulum will become isochronous for smallwith first year students. The objective was to verify that, for
angles of oscillation. Therefore, it is expected that, for asmall angles of oscillation, the period of the interrupted pen-
small amplitude of oscillation, the period of the interrupteddulum could be described by E€f). We found that for the
pendulum will converge to the average value of the periodgxperiments performed by most of the students, the period

of the two simple pendula described above, nariély, did converge to the result expressed by Etj, while for
some other experiments, the periddl not converge to a
definite value. In fact, some students found that the period
T0 =1(T tTy) =7 \/EJF /(Io—yo) 1) increased as the amplitude decreased due to damping, while
2rptit 2 g g ' other students found that the period constantly decreased.

Examining the experimental setup, we found that the cause
) of this peculiar behavior was related to the fact that the in-
whereT, denotes the period of the pendulum of lent§h  terruption was not located on the vertical axis that intercepts
T, refers to the corresponding period of the pendulum ofthe point of suspensichUnfortunately, at the time the stu-
lengthly—y,, andg is the local acceleration of gravity. dents carried out the experiment, we were not able to provide
The isochronism of the simple pendulum is related to thea satisfactory explanation of this behavior, which we only
fact that, for small amplitudes, the effective potential of afound two months after the quarter was over. Nonetheless,
simple pendulum is well approximated by a parabolic potenthis experience had a nice moral for both teachers and stu-
tial. It is well known that, for such a potential, the period of dents, namely the importance of examining and reporting
oscillation of a particle is constant and independent of theexperimental information that at first sight seems to contra-
total energy. This property has important consequences, evatlict the accepted explanation. These anomalies are the seeds
in the quantum mechanical behavior of the particle. Accordthat motivate us to search for more general and better theo-
ing to the semiclassical correspondence principfegt large  ries that drive the progress of science.
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o<— Interruption wi=—=— and w5= = )
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Fig. 1. A schematic diagram of the interrupted pendullignis the total
length of the pendulum. The interruption is located at a distggdeom the for 6>a. 9
point of suspensiorz is the horizontal distance from the interruption to the .
main vertical axis that intercepts the point of suspension. We take If 010 and b0 are the absolute values of the maximum

positive if the interruption is to the right of the vertical axis that intercepts amplitudes on the left sidef& ) and the right side 4

the point of suspension; otherwiseis negative. Similarly,d, measured >a), respectively, the conservation of energy leads to the
relative to the main vertical axis, is positive when the bob is on the right SidefO”OWing equations of motion:

of this axis.
0>+ w3(6°— 62)=0, for 6=<a, (10)

[I. THEORETICAL CONSIDERATIONS and

. . : . . 0%+ w3( 62— 03)=0, for 6>a. 11
In this section, we will calculate the period of oscillation w2l 20 “ @)
of the interrupted pendulum, illustrated schematically in Fig. Note thate= 6,0< 6. If this condition is not fulfilled,

1, assuming that the interruption is displaced horizontally ghe interruption is not effective and the system becomes a

distancez from the main vertical axis of the pendulum, i.€., simple pendulum. At the maximum amplitudes whére0,

the vertical line that intercepts the point of suspension. Th%ombining Egs.(7), (8), and (9) we obtain the following
angle a is such that sim=zly,, and # denotes the angular (g|ation: o

amplitude. The anglé@ is measured relative to the main ver-

tical axis and is considered positive if it is on the right side of g2 — lo g2 _ z? (12)

this axis. Throughout this study, we will consider the case of 20 o—yo/ 2 yollo—Yo)

small amplitudes of oscillation. Therefore, we will assume ) _

thatz<y,<l,, Sina=2ly,~a, and sing~6. For angular am- The per!od of the interrupted pendulum can be calculated

plitudes | §|<20°, this approximation is met with an error as follows:

<2%. Taking into account these approximations, the height [ « de 020 d@

of the bob relative to its lowest position at any angular am- T4 6;9,@)=2 J’ —_— f - : (13

plitude 6 can be expressed as follows: ~ 910 9( 9) @ 0(0)
h=|o(1—cosa)~log, for f=a. 3 Replacing Egs(10) and(11) in Eqg. (13), we obtain

while for 6> «, the height of the bob is given by T1a(610,@) =2

h=1 cosa— (1 ycosf~| Yo (6°—a?) A
=lo— a—(lg— ~lg5— 5 (0°—a”).
0~ Yo 0~ Yo 02 2 This expression can be analytically integrated and gives the

(4)  following result:

fa de N 620 de l
~how\i— 07 Ja w05~ 607 .(
1

In the present analysis we will focus on the underdamped a)\l @ 2 a\ 7
situation, i.e., the energy loss per cycle is small compared t@ 15 01p,a)=— sin‘l(— + 5 +— —sin‘1<— +§ .
the total energy of the system. The total mechanical energy e 010 w2 020
of the pendulum can be written as follows:

1 1 g For small angles, Eq12) can be approximated as follows:
Eo==m(ly0)>+mgh~-ml3| 6>+ = 6?|, 2
’ 2 k P L 1—5ﬁ(i) (16
for <a, (5) 20 lo—Yo * 2 1o\ 10/ |’
and and Eq.(15) reduces to
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24 books®>%1°This dependence of the period with amplitude is
23 | a consequence of the nonparabolic nature of the potential
) energy of the pendulum and is given by
—_ 2.2
2, Sirt(601/2)
- 21 Tl(glo)%T1<l+%+'”)
2.0 - Bio
19 ~T, 1+E+~~ (21
1.8 1
For moderately small angles, the quadratic term is suffi-
1.7 ' ‘ ' ' ‘ cient. This correction is related to the fact that the potential
00 02 04 06 08 10 12 energy in a pendulum is proportional to {tos6).>*° The
6 [rad] parabolic potential energies assumed in Efs.and (6) are

only first-order approximations. For the interrupted pendu-

Fig. 2. The dependence of the period of an interrupted pendulum on thﬁjm this correction to first order becomes

maximum amplitude, according to E¢L8). The values of the parameters
correspond to those used in our real experiment. The different lines corre-

2 2
spons o preelonsordferrtesaevales enaaodinve ) Ty o Ty B,
(22
Combining this expression with Eq&Z) and(16), we ob-
T Bu,0) i+i)+ 2a [ wlﬁlo} an tain for z=0,
w1 wy] w0 w5020 02 i
Substituting Eqs(1), (7), and(16) in Eq. (17), we obtain T1o610,2=0)=T9,| 1+ 1—1(? \ (Io—oyo))' (23

TiA 60,2) =TS, 1+ 3 z )( Vlo ) The two corrections described by Eq48) and (23) are
m\lob10 \/E+ Vo= Yo independent and are due to different physical processes. The
effect of the interruption witlz#0 leads to the correction
1= £ (18) expressed by Eq18), and, because the actual potential of
2 loys \ 610 ' the pendulum is not strictly parabolisee Eqs(5) and(6)],
we obtain the correction expressed by E2@3). These two
Inspecting Eq.(18) we observe that iz#0, T;X(619,2)  effects can be combined to the lowest ordemig andz as
diverges a9, decreases and, therefore, the interrupted penfollows:

dulum is nonisochronous. On the other hand, ziO,

_ 2
X[ 1 (lg yo)( z

T 010,2)—>T22. This behavior is clearly illustrated in Fig. 0 z \/G

2, where we plof 15(9,2) as a function of,, for different T1A010,2)~T1p | 1+ a7\ o610 NN =
values ofz, according to Eq(18). A more detailed discussion 0 o 7o
about the physics behind the dependence of the period of the 1(lg—yo) [ z\?
interrupted pendulum on the coordinatand a simple geo- [1— > I—z—(a—)

metrical interpretation of the asymmetry of the period on this 0¥o 10

coordinate is presented in Appendix A. In thgsua) case
when a/ 6,0<1, Eq.(12) yields

+9—§°\/ lo ) 24
16 Vio—yo) ' 4

02

%)w - iﬂ. (199  where the first factor in parentheses on the right-hand side

010 0 contains the dependence of the period with amplitude due to
Combining Eqgs(7) and(19) with Eq. (17), we obtain the misalignment of the interruption with the vertical axis of

the pendulum, as described by E#8), and the second fac-
tor on the right-hand side is the dependence of the period
with amplitude due to the nonparabolic form of the potential.
) o Figure 3 displays the dependence of the period with ampli-
This result indicates that the effect of a nonzero valug of  {,de of the interrupted pendulum, as described by (24),
equivalently a nonzero value of is to introduce a deviation for several values ot This figure illustrates the way in
or perturbation in the period of the interrupted pendulumypich the period of the interrupted pendulum tends to di-
with reference to the case=0 (T?,) that is proportional to  verge asf,, decreases i£+0, as was shown in Fig. 2. The
the ratioa/ 6,o. Note that the perturbation is proportional to smooth positive slope of the different curves depicted in Fig.
the parametersy or z, but is inversely proportional to the 3 for values of amplitude larger than 20° shows the effect of
amplitude of the oscillatior® . the non-strictly-parabolic shape of the real potential of the
We shall see that the dependence of the period on amplpendulum.
tude whenz#0 is different in nature to the conventional A better description of the behavior at lower angles can be
dependence of the period of the simple pendulum on ampliebtained using the exact expression #s#0, given by Eg.
tude for large angles, discussed in many introductory(15):

AT(619,0) =T O19, @) — T~

a Ty ( yo) 20

010 a IO
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Fig. 3. The dependence of the period of an interrupted pendulum on th&ig. 4. Experimental results of the period of the interrupted pendulum as a
maximum amplitude, according to E€R4). The values of the parameters function of the amplitude, for different values of the offset paramet&he
correspond to those used in our real experiment. The different lines correalues ofz indicated in the figure are expressed in cm. The continuous
spond to predictions for different valuesofThe values ot indicated inthe  curves are the corresponding predictions of our model calculated using Eq.
figure are expressed in centimeters. (25). The angular range in this figure spans 23°.

o q #0). If the transition between the two parabolas of different
o_| Tasin curvature occurs at the apex or vertex of the potential, the
T, 010 S . P ; P! ’
period is indeed isochronous, otherwise the period does not

[ @ 050 lo converge to a definite value as the amplitude approaches
—T,sin — 1+ E —(| vo) . zero.
0~ Yo

Too 91010)“1-22[ 1+

620
(29)
The physical meaning of the two correction terms in thisACK'\IOWLEDGNIENTS
equation are the same as those discussed inZ2g. We would like to express our acknowledgement to the
students that found this anomaly in the behavior of the inter-
I1l. EXPERIMENTAL RESULTS AND DISCUSSION rupted pendulum: Alicia Crespo, Eleonora Mengoni, Aaali

Morales, Anala Nievas and Vemica Rivera. We gratefully
The interrupted pendulum that we built was essentially thehank Dr. Jorge Fermalez Niello and Dr. A. Schwint for the
one that is illustrated in Fig. 1, with a photogate connected t@areful reading of the manuscript.
a PC and placed at the lowest position of the bob. The pho-

togate was set up to measure the complete period of the
oscillation. A horizontal meter stick was placed just belowAPPENDIX: PHYSICAL AND GEOMETRICAL

the bob, and by visual inspection we were able to read thétNTERPRETATION OF THE PHENOMENA
maximum amplitudef;y. The total length of our pendulum
wasly=(152.0+=0.2) cm and the interruption was located at
Yo=(86.9+0.1) cm. The distancewas varied from 6 to-2

In this appendix we explore the physical and geometrical
origin of the dependence of the period of the interrupted
pendulum on the maximum amplitudg, and on the hori-

cm. _For each posmorz, we measured the periofi, and zontal offset in the position of the interruptiaor equiva-
maximum amplituded,q, as the system slowly damped out. lently on a=2z/y
=zly,.

In Fig. 4 we present the results of measurements for dif- : .
ferent values of and the theoretical expectations calculated According to EQs(8) ar_1d (9) the potential energy/(6)
for our system can be written as

by using Eq.(25). There is a very good agreement between

our model and the experimental results. The agreement for 150202, if f<a
z=0 is the least satisfactory, most likely because for thisv =1 4 ! I, ’
position the relative error iz is the largest. < wi( 0 YO> ( 02+( Yo )az), it 0>a,
2 lo lo—Yo
IV. CONCLUSIONS (A1)

. 2 .
We have found that the interrupted pendulum does n0¥vh§re we have introduced thefpara}mefe:pmlo. ThT Ki-
converge to a definite period as the maximum amplitude of €tic €nergyr () andVv(6) as a function o are displayed

the oscillation approaches zero, if the interruption is not" the upper panel of Fig. 5. Taking the variatii@s a gen-
placed along the vertical axis that contains the point of sus€ralized coordinate, according to E8) and (9), the asso-
pension. We have developed a simple model to account fdiated momentuthp, is

this dependence of the period with amplitude that agrees

very well with the experimental results. This property of the aT %0, it b=a,

interrupted pendulum is a general property of the parabolic p, =—= Yo ) . (A2)
potential, consisting of two quadratic forms with different 90 T 0, if 0>a.

curvatures that joint at a point different from the apex ( lo—Yo
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0.10 , 2. 1
L 10 200/ A—\\2 .
mgIT—EmI (6(07))%, for 6<0; (A4)
therefore
6(6=07)=6(0")=w,60,9, for 6=<0. (A5)

Similarly, we have

. . |
B(6=0")=8(0")= \/ﬁwlazo, for 6>0.
0o~ Yo

(A6)

Equation(12) also leads in this case€0) to

[ 1o
020= 010 ﬁ? (A7)

consequently,

u,'....I....l....I....=....

lo—Yo

02 01 00,01 02 03 -0(0_):(| )-0(0+), A8)
0

0 [rad]

Fig. 5. In the upper panel, the solid line represents the potential engrgyy ~ @nd the generalized velocity is discontinuous ab= a=0.
as a function of the generalized coordinatehe dashed line represents the Nonetheless, the tangential or linear veloaitin the neigh-
kinetic energyT(6). The horizontal dot—dashed line indicates the total en- borhood of this point Q: 0) is

ergy of the system. The vertical dot—dashed line indicates the angular posi-

tion of the interruption at=«. In the middle panel, we present the phase v(0=07)= |09(0—) =lowi019, if 6<0,

space diagramp(, vs 6) of the motion of the interrupted pendulum, both for
z=0 (or =0) in dashed lines, and fa>0 (or «>0) in solid lines. In the A PODRI .
lower panel, we plot # vs 6. The dashed lines correspond to the case of v(0=07)= (IO yO) 0(07)= |0w1010, it 6=0.
z=0 and the solid linegsuperimposed on the dashed linespresent the Therefore, the linear velocity and the kinetic energy are con-
corresponding case fa>0. The area of the hatched rectangle is the 9€0-tinuous atd=0. as expected from a physical point of view. A
metrical representation of the perturbation on the pefNd@6,,,«), in first . o . . L
order given by Eq(20). The units used for the vertical scales are in MKS d|scqnt|nU|ty In e”ergy quld _|r_nply infinite ppwer' ThIS dis-
for each variable for the system under study. cussion makes the discontinuities observed in the middle and

lower panels of Fig. 5 a#= «, physically consistent. More-
over, we can understand the discontinuitiepgf and 14 as

a consequence of the change in the axis of rotation of the

Note thatp, is related to theangular momentunof the  gystem aw= a. All the above observations hold true in gen-
system, but is not theonventionakngular momentum, since o141 even ifa=0.

in our case the axis of rotation undergoes a sudden ChangeComing back to the question of the variation of the period
when §=a. of the interrupted pendulunT,,(6,,); according to Eq.

Also, from Egs.(10) and(11) we can write a generalized o . . . ;
locity 9( 8 9s.(10 (D g (13), it is associated with twice the area of the plot of 15
velocity 6(6) as 6 shown in the lower panel of Fig. 5.
Therefore, the variation of the period of the interrupted

(A9)

w0\ 0~ 0%, if 0<a, pendulum for the case a0 (or a#0) with reference to
0(6)= | (A3) the case oz=0 (T9,) is given in first approximation by the
—0% 26 it f the hatched region depicted in the | | of Fi
w1\ = N , if 0>a. area of the hatched region depicted in the lower panel of Fig.
0~ Yo 5. Of course, this will be the case if the contribution to the

o ) _ _ integrals indicated in Eq13) at 6~ 61, and 6~ 6,y are in-
It is interesting to make a phase diagfanfithe motion of  gependent ofr. To test this ansatz, we estimatad (6, @)
the system, i.e., a plot gf, vs 6. In the middle panel of Fig. given by Eq.(20) for the case where the conditio®/ 6

5, we show the phase diagram f2>0 (or a>0) andz <1 s satisfied, using the value of the area of the hatched
=0 (or «=0). Because the phase diagram for our system i$egion in Fig. 5, i.e.,

symmetric with respect to the horizontal axis only the

upper half of this diagram has been plotted. Also, in the 1 1

lower panel of the figure, we display &A's 6. Note that AT( 010’0‘)%20"( T )

while V(0) andT(6) are continuous in the neighborhood of 0(a”)  6(a”)

6= a, the variablegp,, 6 and 1b, are discontinuous af 1 1

=a. At first glance, a discontinuity in a velocityg] may ~2a( '0(0+)_ E) ' (A10)

appear physically paradoxical. To gain a deeper insight into
the problem, let us consider the case£er0 in more detail. the value of the last parenthegibe height of the hatched
From the conservation of energy we can write rectangle can be estimated using Eq#5) and (A8) as
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— |~ ; (A11) related to the fact that the maximum velocity of the pendu-
6(07) 6(0") lum 6(07) is proportional to the amplitudé,,, as Eq.(A5)
consequently, indicates. In more simple terms, for a given valueaot 0,
a T, <y0 the fraction of time that the interrupted pendulum spends as

1 1 ) 1 (yo) tinuity at 6=«, as Eq.(All) indicates. This last result is
O1001 \ lo

AT(0qp,a)~ - . (A12) a longer pendulum will be larger a, decreases and con-
10 sequently its total period will increase.

lo
This expression is identical to E(R0O) and, therefore, it in-
dicates that our ansatz of associatig (6,q,«) with the ?Electronic mail: sgil@df.uba.ar
hatched area in the lower panel of Fig. 5 is correct. Further-P Bozzi, C. Maccagni, L. Olivieri, and T. B. Settle, *Galileo e la scienza
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CONCISE WRITING

Vigorous writing is concise. A sentence should contain no unnecessary words, a paragraph no
unnecessary sentences, for the same reason that a drawing should have no unnecessary lines and
a machine no unnecessary parts. This requires not that the writer make all sentences short| or that
he avoid all detail and treat his subjects only in outline, but that every word tell.

William Strunk, Jr.,The Elements of Style™®®dition (MacMillan Publishing Company, Inc., New York, 197%. 23.
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