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Elementary Concepts in Statistics 
 
Overview of Elementary Concepts in Statistics. In this introduction, we will 
briefly discuss those elementary statistical concepts that provide the necessary 
foundations for more specialized expertise in any area of statistical data analysis. The 
selected topics illustrate the basic assumptions of most statistical methods and/or have 
been demonstrated in research to be necessary components of one's general 
understanding of the "quantitative nature" of reality (Nisbett, et al., 1987). Because of 
space limitations, we will focus mostly on the functional aspects of the concepts 
discussed and the presentation will be very short. Further information on each of those 
concepts can be found in the Introductory Overview and Examples sections of this 
manual and in statistical textbooks. Recommended introductory textbooks are: 
Kachigan (1986), and Runyon and Haber (1976); for a more advanced discussion of 
elementary theory and assumptions of statistics, see the classic books by Hays (1988), 
and Kendall and Stuart (1979).  
 
 

•  What are variables?  
•  Correlational vs.

experimental research  
•  Dependent vs. independent

variables  
•  Measurement scales  
•  Relations between variables 
•  Why relations between

variables are important  
•  Two basic features of every

relation between variables  
•  What is "statistical

significance" (p-value)  
•  How to determine that a

result is "really" significant  
•  Statistical significance and

the number of analyses
performed  

•  Strength vs. reliability of a

 

•  Why significance of a relation between 
variables depends on the size of the sample 

•  Example: "Baby boys to baby girls ratio"  
•  Why small relations can be proven 

significant only in large samples  
•  Can "no relation" be a significant result?  
•  How to measure the magnitude (strength) of 

relations between variables  
•  Common "general format" of most statistical 

tests  
•  How the "level of statistical significance" is 

calculated  
•  Why the "Normal distribution" is important  
•  Illustration of how the normal distribution is 

used in statistical reasoning (induction)  
•  Are all test statistics normally distributed?  
•  How do we know the consequences of 

violating the normality assumption?  
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relation between variables  
•  Why stronger relations

between variables are more
significant  
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This article gives an assessment of the practical implications of deficiencies reported by 
McCullough and Wilson (1999) in Excel’s statistical procedures. I outline what testing 
was done, discuss what deficiencies were found, assess the likely impact of the 
deficiencies, and give my opinion on the role of Excel in the analysis of data. 
My overall assessment is that, while Excel uses algorithms that are not robust and can 
lead to errors in extreme cases, the errors are very unlikely to arise in typical scientific 
data analysis in AgResearch. 
 
THE DEFICIENCIES OF EXCEL’S STATISTICAL ALGORITHMS 
What Aspects Were Examined? 
Excel’s calculation of distributions (tail probabilities), mean and standard deviation 
calculations, analysis of variance, linear regression, non-linear regression (using Solver) 
and random numbers were scrutinised using data sets designed to reveal any 
shortcomings in the numerical procedures used in the calculations of statistics 
packages. The distributions were tested by Knusel (1998), the other aspects by 
McCullough and Wilson (1999). McCullough (1998, 1999) describes the methodology 
and the performance of SAS, SPSS and S-Plus. 
How Did Excel Rate? 
Generally Excel performed worse than the 3 statistics packages (SAS, SPSS, S-Plus) 
also examined, particularly in the non-linear regression problems. See below for more 
detail. The conclusion from these tests is that, in many cases, Excel uses naïve 
algorithms that are vulnerable to rounding and truncation errors and may produce very 
inaccurate results in extreme cases. 
Distributions 
Excel failed to give results for some discrete distributions; the failures occur when the 
number of cases is high and result from Excel producing, in its calculations, numbers 
too big to handle. The results are reliable when an answer is given. For the continuous 
distributions, such as the normal distribution, Excel’s results for extreme tails beyond 
about 10-6 are poor; this is not normally an issue for significance testing. 
Means, Standard Deviations, Analysis of Variance 
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Various data sets were used to check Excel’s ability to get accurate results. The data 
sets are designed to discover whether the algorithms used are robust. For instance, the 
2 data sets 90000001, 90000002, 90000003 and 1, 2, 3 have the same standard 
deviation (1) but Excel fails to get this answer in the first case. This is because it uses a 
naïve algorithm that results in subtracting two nearly equal very large numbers and the 
correct answer gets lost because computers store numbers with finite precision. Better 
algorithms avoid this problem. Excel failed to give satisfactory results in several of the 
more testing anova data sets but SAS (Anova) and SPSS did no better. 
Linear Regression 
Excel gave satisfactory results on all but one data set that had very high collinearity. 
SAS and SPSS report this problem and their inability to find a solution while Excel 
happily found a "solution" that is wrong. 
Non-Linear Regression 
Excel’s "Solver" (an Excel add-in) was not able to give satisfactory results for several of 
the non-linear problems while the more sophisticated routines in the statistics packages 
gave satisfactory results for most of the problems. I have used Excel’s Solver for a few 
problems and it has performed well (once I have parameterised the problem sensibly 
and found a reliable way of choosing starting values), giving results in close agreement 
to statistics packages. However, its performance for any particular application needs to 
be checked against a better package. And as you get no standard errors with the 
estimates, its usefulness is limited. 
Random Number Generator 
Excel’s random number generator failed more of the tests of randomness than did the 
statistics packages examined. Hence bootstrap methods should not be used without 
further testing of the implications of the deficiencies in the generator. My own 
experience, using simulations to check difficult (for me) theoretical probability 
calculations, has been that the random number generator is very satisfactory. 
THE IMPACT OF THESE DEFICIENCIES 
In What Circumstances Will Excel be Unreliable? 

•  Standard deviations and statistics (eg t-tests) relying on standard deviation 
calculations where there are large numbers with low variation (eg see example 
below).  

•  Multiple regression with very high collinearity.  
•  Non-linear regression problems.  
•  Distribution tail areas beyond about 10-6.  
•  Procedures (eg bootstrap) that rely on a good random number generator (I do 

not know whether or not the deficiencies of the generator are important here).  
Will These Problems Affect You? 
If you are using Excel for simple summaries, simple tests (t-tests, Chi-square, etc), 
regression analysis, it is most unlikely you will have any problems; Excel will give the 
right answers. The impact of the poorer algorithms used by Excel is less now that 
numbers are stored with about 15 significant digits than some years ago when numbers 
were often stored with only 7 significant digits. If you’re dealing with very large numbers, 
scaling and/or re-centring your numbers can easily ensure you don’t strike any rounding 
errors. Any serious statistics package will look after this for you; Excel does not. 
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CONCLUSIONS 
What is Excel’s Use in the Analysis of Scientific Data? 
Excel is not a statistics package, more so for the very limited range of analysis tools 
available in it than for its naïve numerical algorithms. Nevertheless, it has a useful role 
in the analysis of data. Data analysis is much more than doing formal analyses and 
calculating P-values. When used effectively, Excel can be very useful in the exploratory 
analysis of data: 

•  viewing your data in graphs to detect errors, unusual values, trends and patterns  
•  summarising data with means and standard deviations  

While some statistics packages have much more powerful exploratory graphing 
capability, Excel can often do all that is needed quite easily. Excel is of very limited use 
in the formal statistical analysis of data unless your experimental design is very simple. 
It is possible to write procedures in Excel to do more complex analyses and many 
people have produced statistical add-ins. Some producers of add-ins have used 
numerically sound procedures and have not relied on Excel’s functions. However, the 
"Data Analysis Toolpack" provided with Excel is no easier to use than most statistics 
packages, has very limited capability, has known bugs and so, on the whole, is not 
worth bothering with. In AgResearch, we have a number of good statistics packages 
available and it is very easy to simply cut and paste your data into them to do formal 
statistical analyses. Any new statistical package (whether it be an Excel add-in or a 
stand-alone package) should be regarded with caution until it has been thoroughly 
checked out. 
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Introduction 
The purpose of this article is to provide answers to some common questions about 
Microsoft Excel. My own interest is in the area of data presentation and analysis and I 
am going to concentrate on some simple statistical tests, namely regression and t-Test. 
I will also cover some plotting issues, particularly the summary of experimental results 
by means of a bar chart with error bars. These few topics cover a high proportion of 
recent questions at the BUCS help desk. 
The article is based on Excel 5.0 and Minitab 10 for Windows, which are the versions 
currently available to students in the BUCS PC labs. 
The first thing to say is that, in all these cases, Excel is not the best program to use. 
Excel is not a statistics package. We provide a good statistics packages in Minitab, 
which runs under Microsoft Windows (Minitab 10) and on the UNIX machines (Minitab 
9.0). More powerful packages, such as Genstat, are also available. It has to be said 
that, for some types of graphs, Minitab can be hard work and Excel might be a better 
choice but for the simple types of common graphs, dealt with here, Minitab can produce 
the goods at the press of a button (more or less).  

Installing the Analysis Toolpak. 
It is possible to try some of these statistical tests using the raw functions provided by 
Excel, such as TTEST and LINEST. However, these functions are unfriendly and care 
must be taken to enter the arguments to the functions correctly. In addition, the output is 
uninformative. You can save yourself a lot of work by using some macros provided by 
Excel in the Analysis Toolpak. Look at the bottom of the Tools menu. If you do not have 
a Data Analysis section you need to install the Analysis Toolpak. In the student PC 
laboratories this is not installed by default. 
In the Tools menu select Add-Ins and check the Analysis Toolpak option. Click OK and 
the macros will be installed. If the Analysis Toolpak does not appear as an option you 
will need to run setup again. 
The Analysis Toolpak provides macros to perform linear regression, t-Tests, simple 
analysis of variance and histograms.  

Regression 
Regression with Excel using LINEST. 
Linear Regression is fairly straightforward using the Analysis Toolpak. I will, however, 
describe how it is done using the LINEST function. since this will introduce the Excel 
array formula. The same method can be adapted to other functions which return arrays. 
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Entering an array formula 
Many of the Excel functions return an array of output. These functions, known as array 
formulae, must be entered in a special way. Rather than entering the formula and 
pressing Enter, the formula is entered by pressing three keys at the same time; 
Ctrl+Shift+Enter. 
If you click on the function wizard (fx) and choose the Statistical heading, you will see 
that Excel provides some 70 functions, about 7 of which concern regression. The 
function LINEST is the most useful for linear regression.  

1. First enter your data into two columns the first of which should contain the x 
values. It is possible to enter the data in rows but this will make it difficult to paste 
the data into Minitab.  

2. The LINEST function is entered as an array formula, that is it returns its output as 
an array the size of which depends on the number of fitted variables. For a single 
fitted variable an array of 2 columns by 5 rows must first be selected on the 
worksheet.  

3. Next select a cell in which to enter the function and select the function wizard.  
4. Choose the LINEST function from amongst the statistical functions and fill in the 

x-range by dragging the mouse over the column of x values in the worksheet. 
Enter the y-range in the same way. Enter the value 1 in the other two cells and 
click OK.  

5. This function must now be entered as an array formula. Go to the function box 
where the full syntax of the function has been entered for you by the function 
wizard and press Ctrl+Shift+Enter (the control key, the shift key and Enter key at 
the same time). The output array will appear in the selected area of the 
worksheet. The output is arranged as follows (see the help entry for LINEST)  

slope (b) intercept (a) standard
error of slope standard error of intercept coefficient
of determination (r2) standard error for y estimate (s)
Variance ratio (F) error degrees of
freedom Regression Sum of squares error sum of squares

Plotting y against x with the fitted line.  
1. Select the x and y columns (or rows) in the worksheet and, using the graph 

wizard, produce a scatter plot of y against x.  
2. Now select the graph by double clicking on it.  
3. Select the data set, by clicking on a data point.  
4. From the insert menu choose the insert trend line. From the various options 

choose linear trend.  

Linear Regression with Minitab. 
Enter the data into columns, or paste the data in from Excel. Choose Regression from 
the statistics menu. select the columns and options and click OK. Choose the 
regression plot and residual plots to examine the regression fit and various residual 
plots. Notice the number of output options provided in Minitab.  
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Student's t-Test 
In Excel use the Analysis Toolpak. Make sure you understand the difference between a 
paired t-Test and an unpaired t-Test and also decide whether you want a one or two-
tailed test. If you do not have the Analysis Toolpak, for some reason, it is possible to 
use the TTEST function but be careful to set the correct options for the third and fourth 
arguments (2 and 2 for an unpaired two tailed t-Test). The only output you get is the 
probability. 
In Minitab the t-Test is found under Basic Statistics. Various non-parametric 
equivalents, such as the Mann-Whitney U-test) can be found under the non-parametric 
section. Paired t-Tests in Minitab are carried out by subtracting the two columns and 
using the TTEST command. (or one sample t-Test from the Basic Statistics menu)  
MTB > let c3=c1-c2
MTB > ttest c3

TEST OF MU = 0.00 VS MU N.E. 0.00

N MEAN STDEV SE MEAN T P VALUE
C3 5 -5.00 15.17 6.78 -0.74 0.50

This shows the Minitab output for a paired t-Test.  

Plotting a Bar Chart with error bars. 
A common way to summarise the results of an experiment with perhaps a control and 
several treatments, each of which has several replicates, is in a bar chart such as this 
one. The height of a bar represents the mean response for the several replicates for a 
particular treatment. The error bar in this case shows the 95% confidence limits for each 
mean. This chart can not be used to make any statistical decisions (unless the results 
are obvious, in which case you should decide not to carry out any further analysis) but it 
is a clear way to present the results. The appropriate statistical test is not discussed 
here but could be a oneway analysis of variance in some cases. 
 
It is quite easy to produce such a bar chart with Excel, but including error bars is less 
straight forward. Produce the bar chart. Select the data set, as in the regression 
example, and choose insert error bars. Excel gives you 5 options the first four of which 
are of no use whatsoever. The only option which lets you put a separate error bar on 
each mean (what else would you want to do?) is the last one custom error bars. To use 
this you will need to calculate the confidence limits for each mean in a column 
beforehand and drag the mouse over these values to fill in the high and low boxes. 
Calculating the 95% confidence limits involves dividing the standard deviation by the 
square root n, where n is the number of measurements which the mean is based on. 
This is then multiplied by the appropriate value of Student's t. This is about 2 for sample 
sizes over 10 but rises rapidly for small samples. 
Important... Do not use Excel's CONFIDENCE function to calculate these limits. Excel 
always uses a value of 1.96 to calculate confidence limits. This is only valid if you know 
the variance of the population from which the sample is taken beforehand. This is 
almost never the case in practice, and will lead to serious errors for small samples. 
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You can use the TINV function to look up the Student's-t for a given sample size. This 
particular type of plot could not be easier in Minitab. Enter the data in one column. A 
second column is used to index the treatment. Choose interval plot from the graph 
menu; and thats it. To be fair, a more complex bar chart in which bars are grouped 
which also required error bars would be hard work to produce in Minitab. This is a case 
where Excel would be quicker for most people.  

Conclusion 
Apart from a few simple Analysis of variance models, also provided by the Analysis 
Toolpak the above just about covers the full extent of Excel's statistical facilities. If you 
want to deal with more complex Analysis of variance models, non-parametric tests, 
multivariate techniques or chi-squared analysis of contingency tables you will have to 
use Minitab or Genstat anyway. The number of mistakes in the help files associated 
with Excel's statistical functions and macros and the often bizarre facilities provided in 
Excel make me wary of using Excel at all for statistics. In short I would strongly urge 
students to use Minitab instead.  
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General Purpose  
The general purpose of multiple regression (the term was first used by Pearson, 1908) 
is to learn more about the relationship between several independent or predictor 
variables and a dependent or criterion variable. For example, a real estate agent might 
record for each listing the size of the house (in square feet), the number of bedrooms, 
the average income in the respective neighborhood according to census data, and a 
subjective rating of appeal of the house. Once this information has been compiled for 
various houses it would be interesting to see whether and how these measures relate to 
the price for which a house is sold. For example, one might learn that the number of 
bedrooms is a better predictor of the price for which a house sells in a particular 
neighborhood than how "pretty" the house is (subjective rating). One may also detect 
"outliers," that is, houses that should really sell for more, given their location and 
characteristics.  
Personnel professionals customarily use multiple regression procedures to determine 
equitable compensation. One can determine a number of factors or dimensions such as 
"amount of responsibility" (Resp) or "number of people to supervise" (No_Super) that 
one believes to contribute to the value of a job. The personnel analyst then usually 
conducts a salary survey among comparable companies in the market, recording the 
salaries and respective characteristics (i.e., values on dimensions) for different 
positions. This information can be used in a multiple regression analysis to build a 
regression equation of the form:  
Salary = .5*Resp + .8*No_Super  
Once this so-called regression line has been determined, the analyst can now easily 
construct a graph of the expected (predicted) salaries and the actual salaries of job 
incumbents in his or her company. Thus, the analyst is able to determine which position 
is underpaid (below the regression line) or overpaid (above the regression line), or paid 
equitably.  
In the social and natural sciences multiple regression procedures are very widely used 
in research. In general, multiple regression allows the researcher to ask (and hopefully 
answer) the general question "what is the best predictor of ...". For example, 
educational researchers might want to learn what are the best predictors of success in 
high-school. Psychologists may want to determine which personality variable best 
predicts social adjustment. Sociologists may want to find out which of the multiple social 
indicators best predict whether or not a new immigrant group will adapt and be 
absorbed into society.  
See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  
 
 
Computational Approach  
The general computational problem that needs to be solved in multiple regression 
analysis is to fit a straight line to a number of points.  

To index
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In the simplest case -- one dependent and one independent variable -- one can 
visualize this in a scatterplot.  

•  Least Squares  
•  The Regression Equation  
•  Unique Prediction and Partial Correlation  
•  Predicted and Residual Scores  
•  Residual Variance and R-square  
•  Interpreting the Correlation Coefficient R  

See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  
 
Least Squares. In the scatterplot, we have an independent or X variable, and a 
dependent or Y variable. These variables may, for example, represent IQ (intelligence 
as measured by a test) and school achievement (grade point average; GPA), 
respectively. Each point in the plot represents one student, that is, the respective 
student's IQ and GPA. The goal of linear regression procedures is to fit a line through 
the points. Specifically, the program will compute a line so that the squared deviations 
of the observed points from that line are minimized. Thus, this general procedure is 
sometimes also referred to as least squares estimation.  
See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  
The Regression Equation. A line in a two dimensional or two-variable space is defined 
by the equation Y=a+b*X; in full text: the Y variable can be expressed in terms of a 
constant (a) and a slope (b) times the X variable. The constant is also referred to as the 
intercept, and the slope as the regression coefficient or B coefficient. For example, GPA 
may best be predicted as 1+.02*IQ. Thus, knowing that a student has an IQ of 130 
would lead us to predict that her GPA would be 3.6 (since, 1+.02*130=3.6).  
For example, the animation below shows a two dimensional regression equation plotted 
with three different confidence intervals (90%, 95% and 99%).  
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In the multivariate case, when there is more than one independent variable, the 
regression line cannot be visualized in the two dimensional space, but can be computed 
just as easily. For example, if in addition to IQ we had additional predictors of 
achievement (e.g., Motivation, Self- discipline) we could construct a linear equation 
containing all those variables. In general then, multiple regression procedures will 
estimate a linear equation of the form:  
 
Y = a + b1*X1 + b2*X2 + ... + bp*Xp  
 
Unique Prediction and Partial Correlation. Note that in this equation, the regression 
coefficients (or B coefficients) represent the independent contributions of each 
independent variable to the prediction of the dependent variable. Another way to 
express this fact is to say that, for example, variable X1 is correlated with the Y variable, 
after controlling for all other independent variables. This type of correlation is also 
referred to as a partial correlation (this term was first used by Yule, 1907). Perhaps the 
following example will clarify this issue. One would probably find a significant negative 
correlation between hair length and height in the population (i.e., short people have 
longer hair). At first this may seem odd; however, if we were to add the variable Gender 
into the multiple regression equation, this correlation would probably disappear. This is 
because women, on the average, have longer hair than men; they also are shorter on 
the average than men. Thus, after we remove this gender difference by entering Gender 
into the equation, the relationship between hair length and height disappears because 
hair length does not make any unique contribution to the prediction of height, above and 
beyond what it shares in the prediction with variable Gender. Put another way, after 
controlling for the variable Gender, the partial correlation between hair length and height 
is zero.  
Predicted and Residual Scores. The regression line expresses the best prediction of 
the dependent variable (Y), given the independent variables (X). However, nature is 
rarely (if ever) perfectly predictable, and usually there is substantial variation of the 
observed points around the fitted regression line (as in the scatterplot shown earlier). 
The deviation of a particular point from the regression line (its predicted value) is called 
the residual value.  
Residual Variance and R-square. The smaller the variability of the residual values 
around the regression line relative to the overall variability, the better is our prediction. 
For example, if there is no relationship between the X and Y variables, then the ratio of 
the residual variability of the Y variable to the original variance is equal to 1.0. If X and Y 
are perfectly related then there is no residual variance and the ratio of variance would 
be 0.0. In most cases, the ratio would fall somewhere between these extremes, that is, 
between 0.0 and 1.0. 1.0 minus this ratio is referred to as R-square or the coefficient of 
determination. This value is immediately interpretable in the following manner. If we 
have an R-square of 0.4 then we know that the variability of the Y values around the 
regression line is 1-0.4 times the original variance; in other words we have explained 
40% of the original variability, and are left with 60% residual variability. Ideally, we 
would like to explain most if not all of the original variability. The R-square value is an 
indicator of how well the model fits the data (e.g., an R-square close to 1.0 indicates 
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that we have accounted for almost all of the variability with the variables specified in the 
model).  
Interpreting the Correlation Coefficient R. Customarily, the degree to which two or 
more predictors (independent or X variables) are related to the dependent (Y) variable 
is expressed in the correlation coefficient R, which is the square root of R-square. In 
multiple regression, R can assume values between 0 and 1. To interpret the direction of 
the relationship between variables, one looks at the signs (plus or minus) of the 
regression or B coefficients. If a B coefficient is positive, then the relationship of this 
variable with the dependent variable is positive (e.g., the greater the IQ the better the 
grade point average); if the B coefficient is negative then the relationship is negative 
(e.g., the lower the class size the better the average test scores). Of course, if the B 
coefficient is equal to 0 then there is no relationship between the variables.  
 
 
Assumptions, Limitations, Practical Considerations  
 

•  Assumption of Linearity  
•  Normality Assumption  
•  Limitations  
•  Choice of the number of variables  
•  Multicollinearity and matrix ill-conditioning  
•  The importance of residual analysis  

 
Assumption of Linearity. First of all, as is evident in the name multiple linear 
regression, it is assumed that the relationship between variables is linear. In practice 
this assumption can virtually never be confirmed; fortunately, multiple regression 
procedures are not greatly affected by minor deviations from this assumption. However, 
as a rule it is prudent to always look at bivariate scatterplot of the variables of interest. If 
curvature in the relationships is evident, one may consider either transforming the 
variables, or explicitly allowing for nonlinear components.  
See also Exploratory Data Analysis and Data Mining Techniques, the General Stepwise 
Regression chapter, and the General Linear Models chapter.  
Normality Assumption. It is assumed in multiple regression that the residuals 
(predicted minus observed values) are distributed normally (i.e., follow the normal 
distribution). Again, even though most tests (specifically the F-test) are quite robust with 
regard to violations of this assumption, it is always a good idea, before drawing final 
conclusions, to review the distributions of the major variables of interest. You can 
produce histograms for the residuals as well as normal probability plots, in order to 
inspect the distribution of the residual values.  
Limitations. The major conceptual limitation of all regression techniques is that one can 
only ascertain relationships, but never be sure about underlying causal mechanism. For 
example, one would find a strong positive relationship (correlation) between the damage 
that a fire does and the number of firemen involved in fighting the blaze. Do we 
conclude that the firemen cause the damage? Of course, the most likely explanation of 
this correlation is that the size of the fire (an external variable that we forgot to include in 

To index
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our study) caused the damage as well as the involvement of a certain number of 
firemen (i.e., the bigger the fire, the more firemen are called to fight the blaze). Even 
though this example is fairly obvious, in real correlation research, alternative causal 
explanations are often not considered.  
Choice of the Number of Variables. Multiple regression is a seductive technique: 
"plug in" as many predictor variables as you can think of and usually at least a few of 
them will come out significant. This is because one is capitalizing on chance when 
simply including as many variables as one can think of as predictors of some other 
variable of interest. This problem is compounded when, in addition, the number of 
observations is relatively low. Intuitively, it is clear that one can hardly draw conclusions 
from an analysis of 100 questionnaire items based on 10 respondents. Most authors 
recommend that one should have at least 10 to 20 times as many observations (cases, 
respondents) as one has variables, otherwise the estimates of the regression line are 
probably very unstable and unlikely to replicate if one were to do the study over.  
Multicollinearity and Matrix Ill-Conditioning. This is a common problem in many 
correlation analyses. Imagine that you have two predictors (X variables) of a person's 
height: (1) weight in pounds and (2) weight in ounces. Obviously, our two predictors are 
completely redundant; weight is one and the same variable, regardless of whether it is 
measured in pounds or ounces. Trying to decide which one of the two measures is a 
better predictor of height would be rather silly; however, this is exactly what one would 
try to do if one were to perform a multiple regression analysis with height as the 
dependent (Y) variable and the two measures of weight as the independent (X) 
variables. When there are very many variables involved, it is often not immediately 
apparent that this problem exists, and it may only manifest itself after several variables 
have already been entered into the regression equation. Nevertheless, when this 
problem occurs it means that at least one of the predictor variables is (practically) 
completely redundant with other predictors. There are many statistical indicators of this 
type of redundancy (tolerances, semi-partial R, etc., as well as some remedies (e.g., 
Ridge regression).  
Fitting Centered Polynomial Models. The fitting of higher-order polynomials of an 
independent variable with a mean not equal to zero can create difficult multicollinearity 
problems. Specifically, the polynomials will be highly correlated due to the mean of the 
primary independent variable. With large numbers (e.g., Julian dates), this problem is 
very serious, and if proper protections are not put in place, can cause wrong results! 
The solution is to "center" the independent variable (sometimes, this procedures is 
referred to as "centered polynomials"), i.e., to subtract the mean, and then to compute 
the polynomials. See, for example, the classic text by Neter, Wasserman, & Kutner 
(1985, Chapter 9), for a detailed discussion of this issue (and analyses with polynomial 
models in general).  
The Importance of Residual Analysis. Even though most assumptions of multiple 
regression cannot be tested explicitly, gross violations can be detected and should be 
dealt with appropriately. In particular outliers (i.e., extreme cases) can seriously bias the 
results by "pulling" or "pushing" the regression line in a particular direction (see the 
animation below), thereby leading to biased regression coefficients. Often, excluding 
just a single extreme case can yield a completely different set of results.  
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ANOVA/MANOVA 
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This chapter includes a general introduction to ANOVA and a discussion of the general 
topics in the analysis of variance techniques, including repeated measures designs, 
ANCOVA, MANOVA, unbalanced and incomplete designs, contrast effects, post-hoc 
comparisons, assumptions, etc. For related topics, see also Variance Components 
(topics related to estimation of variance components in mixed model designs), 
Experimental Design/DOE (topics related to specialized applications of ANOVA in 
industrial settings), and Repeatability and Reproducibility Analysis (topics related to 
specialized designs for evaluating the reliability and precision of measurement 
systems). 
See also General Linear Models, General Regression Models; to analyze nonlinear 
models, see Generalized Linear Models.  
 
Basic Ideas  
The Purpose of Analysis of Variance  
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In general, the purpose of analysis of variance (ANOVA) is to test for significant 
differences between means. Elementary Concepts provides a brief introduction into the 
basics of statistical significance testing. If we are only comparing two means, then 
ANOVA will give the same results as the t test for independent samples (if we are 
comparing two different groups of cases or observations), or the t test for dependent 
samples (if we are comparing two variables in one set of cases or observations). If you 
are not familiar with those tests you may at this point want to "brush up" on your 
knowledge about those tests by reading Basic Statistics and Tables.  
Why the name analysis of variance? It may seem odd to you that a procedure that 
compares means is called analysis of variance. However, this name is derived from the 
fact that in order to test for statistical significance between means, we are actually 
comparing (i.e., analyzing) variances.  

 
•  The Partitioning of Sums of Squares  
•  Multi-Factor ANOVA  
•  Interaction Effects  

For more introductory topics, see the topic name.  
•  Complex Designs  
•  Analysis of Covariance (ANCOVA)  
•  Multivariate Designs: MANOVA/MANCOVA  
•  Contrast Analysis and Post hoc Tests  
•  Assumptions and Effects of Violating Assumptions  

See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA, and Experimental Design (DOE).  
The Partioning of Sums of Squares  
At the heart of ANOVA is the fact that variances can be divided up, that is, partitioned. 
Remember that the variance is computed as the sum of squared deviations from the 
overall mean, divided by n-1 (sample size minus one). Thus, given a certain n, the 
variance is a function of the sums of (deviation) squares, or SS for short. Partitioning of 
variance works as follows. Consider the following data set:  

 Group 1 Group 2 
Observation 1 
Observation 2 
Observation 3 

2 
3 
1 

6 
7 
5 

Mean 
Sums of Squares (SS) 

2 
2 

6 
2 

Overall Mean 
Total Sums of Squares 

4 
28 

 
The means for the two groups are quite different (2 and 6, respectively). The sums of 
squares within each group are equal to 2. Adding them together, we get 4. If we now 
repeat these computations, ignoring group membership, that is, if we compute the total 
SS based on the overall mean, we get the number 28. In other words, computing the 
variance (sums of squares) based on the within-group variability yields a much smaller 
estimate of variance than computing it based on the total variability (the overall mean). 



Statistics with Ms Excel  16

The reason for this in the above example is of course that there is a large difference 
between means, and it is this difference that accounts for the difference in the SS. In 
fact, if we were to perform an ANOVA on the above data, we would get the following 
result:  

MAIN EFFECT  
SS df  MS F p 

Effect 
Error 

24.0 
4.0 

1 
4 

24.0
1.0

24.0 
 

.008

 
As you can see, in the above table the total SS (28) was partitioned into the SS due to 
within-group variability (2+2=4) and variability due to differences between means (28-
(2+2)=24).  
SS Error and SS Effect. The within-group variability (SS) is usually referred to as Error 
variance. This term denotes the fact that we cannot readily explain or account for it in 
the current design. However, the SS Effect we can explain. Namely, it is due to the 
differences in means between the groups. Put another way, group membership explains 
this variability because we know that it is due to the differences in means.  
Significance testing. The basic idea of statistical significance testing is discussed in 
Elementary Concepts. Elementary Concepts also explains why very many statistical test 
represent ratios of explained to unexplained variability. ANOVA is a good example of 
this. Here, we base this test on a comparison of the variance due to the between- 
groups variability (called Mean Square Effect, or MSeffect) with the within- group 
variability (called Mean Square Error, or Mserror; this term was first used by Edgeworth, 
1885). Under the null hypothesis (that there are no mean differences between groups in 
the population), we would still expect some minor random fluctuation in the means for 
the two groups when taking small samples (as in our example). Therefore, under the 
null hypothesis, the variance estimated based on within-group variability should be 
about the same as the variance due to between-groups variability. We can compare 
those two estimates of variance via the F test (see also F Distribution), which tests 
whether the ratio of the two variance estimates is significantly greater than 1. In our 
example above, that test is highly significant, and we would in fact conclude that the 
means for the two groups are significantly different from each other.  
Summary of the basic logic of ANOVA. To summarize the discussion up to this point, 
the purpose of analysis of variance is to test differences in means (for groups or 
variables) for statistical significance. This is accomplished by analyzing the variance, 
that is, by partitioning the total variance into the component that is due to true random 
error (i.e., within- group SS) and the components that are due to differences between 
means. These latter variance components are then tested for statistical significance, 
and, if significant, we reject the null hypothesis of no differences between means, and 
accept the alternative hypothesis that the means (in the population) are different from 
each other.  
Dependent and independent variables. The variables that are measured (e.g., a test 
score) are called dependent variables. The variables that are manipulated or controlled 
(e.g., a teaching method or some other criterion used to divide observations into groups 
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that are compared) are called factors or independent variables. For more information on 
this important distinction, refer to Elementary Concepts.  
Multi-Factor ANOVA  
In the simple example above, it may have occurred to you that we could have simply 
computed a t test for independent samples to arrive at the same conclusion. And, 
indeed, we would get the identical result if we were to compare the two groups using 
this test. However, ANOVA is a much more flexible and powerful technique that can be 
applied to much more complex research issues.  
Multiple factors. The world is complex and multivariate in nature, and instances when 
a single variable completely explains a phenomenon are rare. For example, when trying 
to explore how to grow a bigger tomato, we would need to consider factors that have to 
do with the plants' genetic makeup, soil conditions, lighting, temperature, etc. Thus, in a 
typical experiment, many factors are taken into account. One important reason for using 
ANOVA methods rather than multiple two-group studies analyzed via t tests is that the 
former method is more efficient, and with fewer observations we can gain more 
information. Let us expand on this statement.  
Controlling for factors. Suppose that in the above two-group example we introduce 
another grouping factor, for example, Gender. Imagine that in each group we have 3 
males and 3 females. We could summarize this design in a 2 by 2 table:  

 Experimental 
Group 1 

Experimental 
Group 2 

Males 
 
 

2 
3 
1 

6 
7 
5 

Mean 2 6 
Females 

 
 

4 
5 
3 

8 
9 
7 

Mean 4 8 
 
Before performing any computations, it appears that we can partition the total variance 
into at least 3 sources: (1) error (within-group) variability, (2) variability due to 
experimental group membership, and (3) variability due to gender. (Note that there is an 
additional source -- interaction -- that we will discuss shortly.) What would have 
happened had we not included gender as a factor in the study but rather computed a 
simple t test? If you compute the SS ignoring the gender factor (use the within-group 
means ignoring or collapsing across gender; the result is SS=10+10=20), you will see 
that the resulting within-group SS is larger than it is when we include gender (use the 
within- group, within-gender means to compute those SS; they will be equal to 2 in each 
group, thus the combined SS-within is equal to 2+2+2+2=8). This difference is due to 
the fact that the means for males are systematically lower than those for females, and 
this difference in means adds variability if we ignore this factor. Controlling for error 
variance increases the sensitivity (power) of a test. This example demonstrates another 
principal of ANOVA that makes it preferable over simple two-group t test studies: In 
ANOVA we can test each factor while controlling for all others; this is actually the 



Statistics with Ms Excel  18

reason why ANOVA is more statistically powerful (i.e., we need fewer observations to 
find a significant effect) than the simple t test.  
Interaction Effects  
There is another advantage of ANOVA over simple t-tests: ANOVA allows us to detect 
interaction effects between variables, and, therefore, to test more complex hypotheses 
about reality. Let us consider another example to illustrate this point. (The term 
interaction was first used by Fisher, 1926.)  
Main effects, two-way interaction. Imagine that we have a sample of highly 
achievement-oriented students and another of achievement "avoiders." We now create 
two random halves in each sample, and give one half of each sample a challenging test, 
the other an easy test. We measure how hard the students work on the test. The means 
of this (fictitious) study are as follows:  

 Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

10 
5 

5 
10 

 
How can we summarize these results? Is it appropriate to conclude that (1) challenging 
tests make students work harder, (2) achievement-oriented students work harder than 
achievement- avoiders? None of these statements captures the essence of this clearly 
systematic pattern of means. The appropriate way to summarize the result would be to 
say that challenging tests make only achievement-oriented students work harder, while 
easy tests make only achievement- avoiders work harder. In other words, the type of 
achievement orientation and test difficulty interact in their effect on effort; specifically, 
this is an example of a two-way interaction between achievement orientation and test 
difficulty. Note that statements 1 and 2 above describe so-called main effects.  
Higher order interactions. While the previous two-way interaction can be put into 
words relatively easily, higher order interactions are increasingly difficult to verbalize. 
Imagine that we had included factor Gender in the achievement study above, and we 
had obtained the following pattern of means:  

Females 
 

Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

10 
5 

5 
10 

Males 
 

Achievement- 
oriented 

Achievement- 
avoiders 

Challenging Test 
Easy Test 

1 
6 

6 
1 

 
How could we now summarize the results of our study? Graphs of means for all effects 
greatly facilitate the interpretation of complex effects. The pattern shown in the table 
above (and in the graph below) represents a three-way interaction between factors.  
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Thus we may summarize this pattern by saying that for females there is a two-way 
interaction between achievement-orientation type and test difficulty: Achievement-
oriented females work harder on challenging tests than on easy tests, achievement-
avoiding females work harder on easy tests than on difficult tests. For males, this 
interaction is reversed. As you can see, the description of the interaction has become 
much more involved.  
A general way to express interactions. A general way to express all interactions is to 
say that an effect is modified (qualified) by another effect. Let us try this with the two-
way interaction above. The main effect for test difficulty is modified by achievement 
orientation. For the three-way interaction in the previous paragraph, we may summarize 
that the two-way interaction between test difficulty and achievement orientation is 
modified (qualified) by gender. If we have a four-way interaction, we may say that the 
three-way interaction is modified by the fourth variable, that is, that there are different 
types of interactions in the different levels of the fourth variable. As it turns out, in many 
areas of research five- or higher- way interactions are not that uncommon.  
 
 
 
Complex Designs  
Let us review the basic "building blocks" of complex designs.  
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•  Incomplete (Nested) Designs  
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See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA, and Experimental Design (DOE).  
Between-Groups and Repeated Measures  
When we want to compare two groups, we would use the t test for independent 
samples; when we want to compare two variables given the same subjects 
(observations), we would use the t test for dependent samples. This distinction -- 
dependent and independent samples -- is important for ANOVA as well. Basically, if we 
have repeated measurements of the same variable (under different conditions or at 
different points in time) on the same subjects, then the factor is a repeated measures 
factor (also called a within-subjects factor, because to estimate its significance we 
compute the within-subjects SS). If we compare different groups of subjects (e.g., males 
and females; three strains of bacteria, etc.) then we refer to the factor as a between-
groups factor. The computations of significance tests are different for these different 
types of factors; however, the logic of computations and interpretations is the same.  

To index
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Between-within designs. In many instances, experiments call for the inclusion of 
between-groups and repeated measures factors. For example, we may measure math 
skills in male and female students (gender, a between-groups factor) at the beginning 
and the end of the semester. The two measurements on each student would constitute 
a within-subjects (repeated measures) factor. The interpretation of main effects and 
interactions is not affected by whether a factor is between-groups or repeated 
measures, and both factors may obviously interact with each other (e.g., females 
improve over the semester while males deteriorate).  
Incomplete (Nested) Designs  
There are instances where we may decide to ignore interaction effects. This happens 
when (1) we know that in the population the interaction effect is negligible, or (2) when a 
complete factorial design (this term was first introduced by Fisher, 1935a) cannot be 
used for economic reasons. Imagine a study where we want to evaluate the effect of 
four fuel additives on gas mileage. For our test, our company has provided us with four 
cars and four drivers. A complete factorial experiment, that is, one in which each 
combination of driver, additive, and car appears at least once, would require 4 x 4 x 4 = 
64 individual test conditions (groups). However, we may not have the resources (time) 
to run all of these conditions; moreover, it seems unlikely that the type of driver would 
interact with the fuel additive to an extent that would be of practical relevance. Given 
these considerations, one could actually run a so-called Latin square design and "get 
away" with only 16 individual groups (the four additives are denoted by letters A, B, C, 
and D):  

Car  
1  2  3 4  

Driver 1 
Driver 2 
Driver 3 
Driver 4 

A 
B 
C 
D 

B 
C 
D 
A 

C 
D 
A 
B 

D 
A 
B 
C 

 
Latin square designs (this term was first used by Euler, 1782) are described in most 
textbooks on experimental methods (e.g., Hays, 1988; Lindman, 1974; Milliken & 
Johnson, 1984; Winer, 1962), and we do not want to discuss here the details of how 
they are constructed. Suffice it to say that this design is incomplete insofar as not all 
combinations of factor levels occur in the design. For example, Driver 1 will only drive 
Car 1 with additive A, while Driver 3 will drive that car with additive C. In a sense, the 
levels of the additives factor (A, B, C, and D) are placed into the cells of the car by 
driver matrix like "eggs into a nest." This mnemonic device is sometimes useful for 
remembering the nature of nested designs.  
Note that there are several other statistical procedures which may be used to analyze 
these types of designs; see the section on Methods for Analysis of Variance for details. 
In particular the methods discussed in the Variance Components and Mixed Model 
ANOVA/ANCOVA chapter are very efficient for analyzing designs with unbalanced 
nesting (when the nested factors have different numbers of levels within the levels of 
the factors in which they are nested), very large nested designs (e.g., with more than 
200 levels overall), or hierarchically nested designs (with or without random factors).  
 To index
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Analysis of Covariance (ANCOVA)  
General Idea  
The Basic Ideas section discussed briefly the idea of "controlling" for factors and how 
the inclusion of additional factors can reduce the error SS and increase the statistical 
power (sensitivity) of our design. This idea can be extended to continuous variables, 
and when such continuous variables are included as factors in the design they are 
called covariates.  
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•  Contrast Analysis and Post hoc Tests  
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See also Methods for Analysis of Variance, Variance Components and Mixed Model 
ANOVA/ANCOVA, and Experimental Design (DOE).  
Fixed Covariates  
Suppose that we want to compare the math skills of students who were randomly 
assigned to one of two alternative textbooks. Imagine that we also have data about the 
general intelligence (IQ) for each student in the study. We would suspect that general 
intelligence is related to math skills, and we can use this information to make our test 
more sensitive. Specifically, imagine that in each one of the two groups we can compute 
the correlation coefficient (see Basic Statistics and Tables) between IQ and math skills. 
Remember that once we have computed the correlation coefficient we can estimate the 
amount of variance in math skills that is accounted for by IQ, and the amount of 
(residual) variance that we cannot explain with IQ (refer also to Elementary Concepts 
and Basic Statistics and Tables). We may use this residual variance in the ANOVA as 
an estimate of the true error SS after controlling for IQ. If the correlation between IQ and 
math skills is substantial, then a large reduction in the error SS may be achieved.  
Effect of a covariate on the F test. In the F test (see also F Distribution), to evaluate 
the statistical significance of between-groups differences, we compute the ratio of the 
between- groups variance (MSeffect) over the error variance (MSerror). If MSerror becomes 
smaller, due to the explanatory power of IQ, then the overall F value will become larger.  
Multiple covariates. The logic described above for the case of a single covariate (IQ) 
can easily be extended to the case of multiple covariates. For example, in addition to 
IQ, we might include measures of motivation, spatial reasoning, etc., and instead of a 
simple correlation, compute the multiple correlation coefficient (see Multiple 
Regression).  
When the F value gets smaller. In some studies with covariates it happens that the F 
value actually becomes smaller (less significant) after including covariates in the design. 
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This is usually an indication that the covariates are not only correlated with the 
dependent variable (e.g., math skills), but also with the between-groups factors (e.g., 
the two different textbooks). For example, imagine that we measured IQ at the end of 
the semester, after the students in the different experimental groups had used the 
respective textbook for almost one year. It is possible that, even though students were 
initially randomly assigned to one of the two textbooks, the different books were so 
different that both math skills and IQ improved differentially in the two groups. In that 
case, the covariate will not only partition variance away from the error variance, but also 
from the variance due to the between- groups factor. Put another way, after controlling 
for the differences in IQ that were produced by the two textbooks, the math skills are not 
that different. Put in yet a third way, by "eliminating" the effects of IQ, we have 
inadvertently eliminated the true effect of the textbooks on students' math skills.  
Adjusted means. When the latter case happens, that is, when the covariate is affected 
by the between-groups factor, then it is appropriate to compute so-called adjusted 
means. These are the means that one would get after removing all differences that can 
be accounted for by the covariate.  
Interactions between covariates and factors. Just as we can test for interactions 
between factors, we can also test for the interactions between covariates and between-
groups factors. Specifically, imagine that one of the textbooks is particularly suited for 
intelligent students, while the other actually bores those students but challenges the 
less intelligent ones. As a result, we may find a positive correlation in the first group (the 
more intelligent, the better the performance), but a zero or slightly negative correlation 
in the second group (the more intelligent the student, the less likely he or she is to 
acquire math skills from the particular textbook). In some older statistics textbooks this 
condition is discussed as a case where the assumptions for analysis of covariance are 
violated (see Assumptions and Effects of Violating Assumptions). However, because 
ANOVA/MANOVA uses a very general approach to analysis of covariance, you can 
specifically estimate the statistical significance of interactions between factors and 
covariates.  
Changing Covariates  
While fixed covariates are commonly discussed in textbooks on ANOVA, changing 
covariates are discussed less frequently. In general, when we have repeated measures, 
we are interested in testing the differences in repeated measurements on the same 
subjects. Thus we are actually interested in evaluating the significance of changes. If we 
have a covariate that is also measured at each point when the dependent variable is 
measured, then we can compute the correlation between the changes in the covariate 
and the changes in the dependent variable. For example, we could study math anxiety 
and math skills at the beginning and at the end of the semester. It would be interesting 
to see whether any changes in math anxiety over the semester correlate with changes 
in math skills.  
 
 
 
Multivariate Designs: MANOVA/MANCOVA  
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Between-Groups Designs  
All examples discussed so far have involved only one dependent variable. Even though 
the computations become increasingly complex, the logic and nature of the 
computations do not change when there is more than one dependent variable at a time. 
For example, we may conduct a study where we try two different textbooks, and we are 
interested in the students' improvements in math and physics. In that case, we have two 
dependent variables, and our hypothesis is that both together are affected by the 
difference in textbooks. We could now perform a multivariate analysis of variance 
(MANOVA) to test this hypothesis. Instead of a univariate F value, we would obtain a 
multivariate F value (Wilks' lambda) based on a comparison of the error 
variance/covariance matrix and the effect variance/covariance matrix. The "covariance" 
here is included because the two measures are probably correlated and we must take 
this correlation into account when performing the significance test. Obviously, if we were 
to take the same measure twice, then we would really not learn anything new. If we take 
a correlated measure, we gain some new information, but the new variable will also 
contain redundant information that is expressed in the covariance between the 
variables.  
Interpreting results. If the overall multivariate test is significant, we conclude that the 
respective effect (e.g., textbook) is significant. However, our next question would of 
course be whether only math skills improved, only physics skills improved, or both. In 
fact, after obtaining a significant multivariate test for a particular main effect or 
interaction, customarily one would examine the univariate F tests (see also F 
Distribution) for each variable to interpret the respective effect. In other words, one 
would identify the specific dependent variables that contributed to the significant overall 
effect.  
Repeated Measures Designs  
If we were to measure math and physics skills at the beginning of the semester and the 
end of the semester, we would have a multivariate repeated measure. Again, the logic 
of significance testing in such designs is simply an extension of the univariate case. 
Note that MANOVA methods are also commonly used to test the significance of 
univariate repeated measures factors with more than two levels; this application will be 
discussed later in this section.  
Sum Scores versus MANOVA  
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Even experienced users of ANOVA and MANOVA techniques are often puzzled by the 
differences in results that sometimes occur when performing a MANOVA on, for 
example, three variables as compared to a univariate ANOVA on the sum of the three 
variables. The logic underlying the summing of variables is that each variable contains 
some "true" value of the variable in question, as well as some random measurement 
error. Therefore, by summing up variables, the measurement error will sum to 
approximately 0 across all measurements, and the sum score will become more and 
more reliable (increasingly equal to the sum of true scores). In fact, under these 
circumstances, ANOVA on sums is appropriate and represents a very sensitive 
(powerful) method. However, if the dependent variable is truly multi- dimensional in 
nature, then summing is inappropriate. For example, suppose that my dependent 
measure consists of four indicators of success in society, and each indicator represents 
a completely independent way in which a person could "make it" in life (e.g., successful 
professional, successful entrepreneur, successful homemaker, etc.). Now, summing up 
the scores on those variables would be like adding apples to oranges, and the resulting 
sum score will not be a reliable indicator of a single underlying dimension. Thus, one 
should treat such data as multivariate indicators of success in a MANOVA.  
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Why Compare Individual Sets of Means?  
Usually, experimental hypotheses are stated in terms that are more specific than simply 
main effects or interactions. We may have the specific hypothesis that a particular 
textbook will improve math skills in males, but not in females, while another book would 
be about equally effective for both genders, but less effective overall for males. Now 
generally, we are predicting an interaction here: the effectiveness of the book is 
modified (qualified) by the student's gender. However, we have a particular prediction 
concerning the nature of the interaction: we expect a significant difference between 
genders for one book, but not the other. This type of specific prediction is usually tested 
via contrast analysis.  
Contrast Analysis  

To index
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Briefly, contrast analysis allows us to test the statistical significance of predicted specific 
differences in particular parts of our complex design. It is a major and indispensable 
component of the analysis of every complex ANOVA design.  
Post hoc Comparisons  
Sometimes we find effects in our experiment that were not expected. Even though in 
most cases a creative experimenter will be able to explain almost any pattern of means, 
it would not be appropriate to analyze and evaluate that pattern as if one had predicted 
it all along. The problem here is one of capitalizing on chance when performing multiple 
tests post hoc, that is, without a priori hypotheses. To illustrate this point, let us consider 
the following "experiment." Imagine we were to write down a number between 1 and 10 
on 100 pieces of paper. We then put all of those pieces into a hat and draw 20 samples 
(of pieces of paper) of 5 observations each, and compute the means (from the numbers 
written on the pieces of paper) for each group. How likely do you think it is that we will 
find two sample means that are significantly different from each other? It is very likely! 
Selecting the extreme means obtained from 20 samples is very different from taking 
only 2 samples from the hat in the first place, which is what the test via the contrast 
analysis implies. Without going into further detail, there are several so-called post hoc 
tests that are explicitly based on the first scenario (taking the extremes from 20 
samples), that is, they are based on the assumption that we have chosen for our 
comparison the most extreme (different) means out of k total means in the design. 
Those tests apply "corrections" that are designed to offset the advantage of post hoc 
selection of the most extreme comparisons.  
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See also Methods for Analysis of Variance, Variance Components and Mixed Model 
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Deviation from Normal Distribution  
Assumptions. It is assumed that the dependent variable is measured on at least an 
interval scale level (see Elementary Concepts). Moreover, the dependent variable 
should be normally distributed within groups.  

To index
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Effects of violations. Overall, the F test (see also F Distribution) is remarkably robust 
to deviations from normality (see Lindman, 1974, for a summary). If the kurtosis (see 
Basic Statistics and Tables) is greater than 0, then the F tends to be too small and we 
cannot reject the null hypothesis even though it is incorrect. The opposite is the case 
when the kurtosis is less than 0. The skewness of the distribution usually does not have 
a sizable effect on the F statistic. If the n per cell is fairly large, then deviations from 
normality do not matter much at all because of the central limit theorem, according to 
which the sampling distribution of the mean approximates the normal distribution, 
regardless of the distribution of the variable in the population. A detailed discussion of 
the robustness of the F statistic can be found in Box and Anderson (1955), or Lindman 
(1974).  
Homogeneity of Variances  
Assumptions. It is assumed that the variances in the different groups of the design are 
identical; this assumption is called the homogeneity of variances assumption. 
Remember that at the beginning of this section we computed the error variance (SS 
error) by adding up the sums of squares within each group. If the variances in the two 
groups are different from each other, then adding the two together is not appropriate, 
and will not yield an estimate of the common within-group variance (since no common 
variance exists).  
Effects of violations. Lindman (1974, p. 33) shows that the F statistic is quite robust 
against violations of this assumption (heterogeneity of variances; see also Box, 1954a, 
1954b; Hsu, 1938).  
Special case: correlated means and variances. However, one instance when the F 
statistic is very misleading is when the means are correlated with variances across cells 
of the design. A scatterplot of variances or standard deviations against the means will 
detect such correlations. The reason why this is a "dangerous" violation is the following: 
Imagine that you have 8 cells in the design, 7 with about equal means but one with a 
much higher mean. The F statistic may suggest to you a statistically significant effect. 
However, suppose that there also is a much larger variance in the cell with the highest 
mean, that is, the means and the variances are correlated across cells (the higher the 
mean the larger the variance). In that case, the high mean in the one cell is actually 
quite unreliable, as is indicated by the large variance. However, because the overall F 
statistic is based on a pooled within-cell variance estimate, the high mean is identified 
as significantly different from the others, when in fact it is not at all significantly different 
if one based the test on the within-cell variance in that cell alone.  
This pattern -- a high mean and a large variance in one cell -- frequently occurs when 
there are outliers present in the data. One or two extreme cases in a cell with only 10 
cases can greatly bias the mean, and will dramatically increase the variance.  
Homogeneity of Variances and Covariances  
Assumptions. In multivariate designs, with multiple dependent measures, the 
homogeneity of variances assumption described earlier also applies. However, since 
there are multiple dependent variables, it is also required that their intercorrelations 
(covariances) are homogeneous across the cells of the design. There are various 
specific tests of this assumption.  
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Effects of violations. The multivariate equivalent of the F test is Wilks' lambda. Not 
much is known about the robustness of Wilks' lambda to violations of this assumption. 
However, because the interpretation of MANOVA results usually rests on the 
interpretation of significant univariate effects (after the overall test is significant), the 
above discussion concerning univariate ANOVA basically applies, and important 
significant univariate effects should be carefully scrutinized.  
Special case: ANCOVA. A special serious violation of the homogeneity of 
variances/covariances assumption may occur when covariates are involved in the 
design. Specifically, if the correlations of the covariates with the dependent measure(s) 
are very different in different cells of the design, gross misinterpretations of results may 
occur. Remember that in ANCOVA, we in essence perform a regression analysis within 
each cell to partition out the variance component due to the covariates. The 
homogeneity of variances/covariances assumption implies that we perform this 
regression analysis subject to the constraint that all regression equations (slopes) 
across the cells of the design are the same. If this is not the case, serious biases may 
occur. There are specific tests of this assumption, and it is advisable to look at those 
tests to ensure that the regression equations in different cells are approximately the 
same.  
Sphericity and Compound Symmetry  
Reasons for Using the Multivariate Approach to Repeated Measures ANOVA. In 
repeated measures ANOVA containing repeated measures factors with more than two 
levels, additional special assumptions enter the picture: The compound symmetry 
assumption and the assumption of sphericity. Because these assumptions rarely hold 
(see below), the MANOVA approach to repeated measures ANOVA has gained 
popularity in recent years (both tests are automatically computed in ANOVA/MANOVA). 
The compound symmetry assumption requires that the variances (pooled within-group) 
and covariances (across subjects) of the different repeated measures are 
homogeneous (identical). This is a sufficient condition for the univariate F test for 
repeated measures to be valid (i.e., for the reported F values to actually follow the F 
distribution). However, it is not a necessary condition. The sphericity assumption is a 
necessary and sufficient condition for the F test to be valid; it states that the within-
subject "model" consists of independent (orthogonal) components. The nature of these 
assumptions, and the effects of violations are usually not well-described in ANOVA 
textbooks; in the following paragraphs we will try to clarify this matter and explain what it 
means when the results of the univariate approach differ from the multivariate approach 
to repeated measures ANOVA.  
The necessity of independent hypotheses. One general way of looking at ANOVA is 
to consider it a model fitting procedure. In a sense we bring to our data a set of a priori 
hypotheses; we then partition the variance (test main effects, interactions) to test those 
hypotheses. Computationally, this approach translates into generating a set of contrasts 
(comparisons between means in the design) that specify the main effect and interaction 
hypotheses. However, if these contrasts are not independent of each other, then the 
partitioning of variances runs afoul. For example, if two contrasts A and B are identical 
to each other and we partition out their components from the total variance, then we 
take the same thing out twice. Intuitively, specifying the two (not independent) 
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hypotheses "the mean in Cell 1 is higher than the mean in Cell 2" and "the mean in Cell 
1 is higher than the mean in Cell 2" is silly and simply makes no sense. Thus, 
hypotheses must be independent of each other, or orthogonal (the term orthogonality 
was first used by Yates, 1933).  
Independent hypotheses in repeated measures. The general algorithm implemented 
will attempt to generate, for each effect, a set of independent (orthogonal) contrasts. In 
repeated measures ANOVA, these contrasts specify a set of hypotheses about 
differences between the levels of the repeated measures factor. However, if these 
differences are correlated across subjects, then the resulting contrasts are no longer 
independent. For example, in a study where we measured learning at three times during 
the experimental session, it may happen that the changes from time 1 to time 2 are 
negatively correlated with the changes from time 2 to time 3: subjects who learn most of 
the material between time 1 and time 2 improve less from time 2 to time 3. In fact, in 
most instances where a repeated measures ANOVA is used, one would probably 
suspect that the changes across levels are correlated across subjects. However, when 
this happens, the compound symmetry and sphericity assumptions have been violated, 
and independent contrasts cannot be computed.  
Effects of violations and remedies. When the compound symmetry or sphericity 
assumptions have been violated, the univariate ANOVA table will give erroneous 
results. Before multivariate procedures were well understood, various approximations 
were introduced to compensate for the violations (e.g., Greenhouse & Geisser, 1959; 
Huynh & Feldt, 1970), and these techniques are still widely used.  
MANOVA approach to repeated measures. To summarize, the problem of compound 
symmetry and sphericity pertains to the fact that multiple contrasts involved in testing 
repeated measures effects (with more than two levels) are not independent of each 
other. However, they do not need to be independent of each other if we use multivariate 
criteria to simultaneously test the statistical significance of the two or more repeated 
measures contrasts. This "insight" is the reason why MANOVA methods are 
increasingly applied to test the significance of univariate repeated measures factors with 
more than two levels. We wholeheartedly endorse this approach because it simply 
bypasses the assumption of compound symmetry and sphericity altogether.  
Cases when the MANOVA approach cannot be used. There are instances (designs) 
when the MANOVA approach cannot be applied; specifically, when there are few 
subjects in the design and many levels on the repeated measures factor, there may not 
be enough degrees of freedom to perform the multivariate analysis. For example, if we 
have 12 subjects and p = 4 repeated measures factors, each at k = 3 levels, then the 
four-way interaction would "consume" (k-1)p = 24 = 16 degrees of freedom. However, we 
have only 12 subjects, so in this instance the multivariate test cannot be performed.  
Differences in univariate and multivariate results. Anyone whose research involves 
extensive repeated measures designs has seen cases when the univariate approach to 
repeated measures ANOVA gives clearly different results from the multivariate 
approach. To repeat the point, this means that the differences between the levels of the 
respective repeated measures factors are in some way correlated across subjects. 
Sometimes, this insight by itself is of considerable interest.  
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Methods for Analysis of Variance  
Several chapters in this textbook discuss methods for performing analysis of variance. 
Although many of the available statistics overlap in the different chapters, each is best 
suited for particular applications.  
General ANCOVA/MANCOVA: This chapter includes discussions of full factorial 
designs, repeated measures designs, mutivariate design (MANOVA), designs with 
balanced nesting (designs can be unbalanced, i.e., have unequal n), for evaluating 
planned and post-hoc comparisons, etc.  
General Linear Models: This extremely comprehensive chapter discusses a complete 
implementation of the general linear model, and describes the sigma-restricted as well 
as the overparameterized approach. This chapter includes information on incomplete 
designs, complex analysis of covariance designs, nested designs (balanced or 
unbalanced), mixed model ANOVA designs (with random effects), and huge balanced 
ANOVA designs (efficiently). It also contains descriptions of six types of Sums of 
Squares.  
General Regression Models: This chapter discusses the between subject designs and 
multivariate designs which are appropriate for stepwise regression as well as discussing 
how to perform stepwise and best-subset model building (for continuous as well as 
categorical predictors).  
Mixed ANCOVA and Variance Components: This chapter includes discussions of 
experiments with random effects (mixed model ANOVA), estimating variance 
components for random effects, or large main effect designs (e.g., with factors with over 
100 levels) with or without random effects, or large designs with many factors, when you 
do not need to estimate all interactions.  
Experimental Design (DOE): This chapter includes discussions of standard 
experimental designs for industrial/manufacturing applications, including 2**(k-p) and 
3**(k-p) designs, central composite and non-factorial designs, designs for mixtures, D 
and A optimal designs, and designs for arbitrarily constrained experimental regions.  
Repeatability and Reproducibility Analysis (in the Process Analysis chapter): This 
section in the Process Analysis chapter includes a discussion of specialized designs for 
evaluating the reliability and precision of measurement systems; these designs usually 
include two or three random factors, and specialized statistics can be computed for 
evaluating the quality of a measurement system (typically in industrial/manufacturing 
applications).  
Breakdown Tables (in the Basic Statistics chapter): This chapter includes 
discussions of experiments with only one factor (and many levels), or with multiple 
factors, when a complete ANOVA table is not required.  
 
 
 
 


