Caída libre y conservación de la energía

Cano, Ramiro Cearras, Mariana Díaz, Federico cramirocano@hotmail.com.ar

Universidad de Favaloro, Facultad de Ingeniería - 2002

Resumen

El propósito de esta experiencia es confirmar dos hipótesis principalmente, que g es la constante gravitatoria y determinarla, y que es independiente de la masa, y finalmente la conservación de la energía en un modelo de caída libre.

Introducción

La constante *g* es la aceleración de la gravedad, la cual afecta a todos los cuerpos en el planeta. A continuación buscamos determinar dicha constante experimentalmente a partir de la caída libre de un cuerpo. Y comprobar la hipótesis de la independencia de su valor con respecto a la masa del objeto al que afecta.

Pusimos a prueba la hipótesis de la conservación de la energía mecánica en la caída libre de un cuerpo, planteando la expresión

$$\Delta E_{mec} = \Delta E_p + \Delta E_c = 0$$

o sea

$$\frac{1}{2}M v_n^2 + \frac{1}{2}M z_n g$$
 con $z_n = \frac{1}{2}(y_n - y_{n-1})$

por lo tanto

 $\sqrt{2} M v_n^2 + \sqrt{2} M z_n g = \sqrt{2} M v_1^2 + \sqrt{2} M z_I g = A$ donde A es una constante esto lleva a

$$v_n^2 = A - 2 g z_n$$

El gráfico de ${v_n}^2$ en función de z_n debe ser una función lineal de pendiente -2g para comprobar la hipótesis

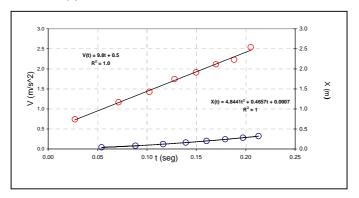
Descripción del experimento

Mediante la utilización de un fotointerruptor y una cebra¹, registramos la duración de los intervalos de interrupción del fotointerruptor al dejar caer la cebra, en caída libre.

Resultados

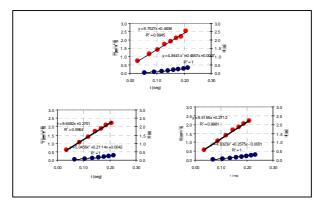
Conservación de la Energía - R. Cano, M. Cearras, y F. Díaz - 2002

¹ **Cebra:** Regla de acrílico, transparente con franjas negras equiespaciadas (4 cm) que interrumpen el pulso del fotointerruptor


A partir de los datos obtenidos al dejar caer la cebra, obtuvimos gráficos de la velocidad y la posición en función del tiempo, de los que concluimos que la velocidad en función del tiempo es una función lineal de la forma

$$V(t) = \mathbf{g} \ t + b$$

y el espacio en función del tiempo es una función cuadrática de la forma


$$X(t) = 1/2 \mathbf{g} t^2 + b t + c$$

y se observa que dX/dt = V(t).

Fig.1: Velocidad en función del tiempo y posición en función del tiempo junto con su línea de tendencia que resulta en: la velocidad una función lineal y la posición una función cuadrática del tiempo

A continuación, realizamos la misma experiencia con diferentes masas, y llegamos a los mismos resultados, permaneciendo **g** constante.

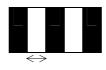
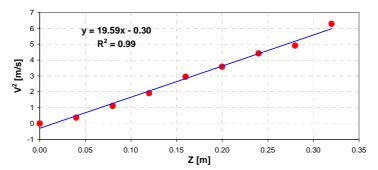


Fig. 2: Gráficos de velocidad en función del tiempo (línea punteada) y posición en función del tiempo (línea continua) con su respectiva línea de tendencia, para tres pesos diferentes: de izquierda a derecha 175 g., 287 g. y 398 g. Donde se confirma visualmente la independencia con respecto al peso

A partir de los mismos datos de la experiencia anterior se verifica que


$$v_n^2 = A - 2 \mathbf{g} z_n$$

donde v_n es la velocidad media en cada segmento de la cebra y z_n es $0.5*(y_n + y_{n-1})$

 $y_n \\$

Graficando v_n^2 en función de z_n obtuvimos una recta de pendiente -2g (suponiendo un sistema creciente hacia arriba, donde se toma la gravedad como negativa). Así confirmamos la hipótesis planteada en la introducción.

Fig.3: v_n^2 en función de z_n , donde la pendiente de la recta representa el doble de la gravedad

Conclusión

Nuestros experimentos indican que en la caída libre, todos los cuerpos caen con la misma aceleración de la g, que es la aceleración de la gravedad del lugar y es independiente de la masa del cuerpo.

Podemos ver que en la caída libre la energía mecánica se conserva según esta ecuación

$$E_{mec} = Constante$$

Bibliografía

Gil S.,Rodríguez E.; Física re-creativa, Prentice Hall, Perú, 2001