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1 Principles of
Probability

The Principles of Probability Are
the Foundations of Entropy

Fluids flow, boil, freeze, and evaporate. Solids melt and deform. Oil and water
don’t mix. Metals and semiconductors conduct electricity. Crystals grow.
Chemicals react and rearrange, take up heat, and give it off. Rubber stretches
and retracts. Proteins catalyze biological reactions. What forces drive these pro-
cesses? This question is addressed by statistical thermodynamics, a set of tools
for modeling molecular forces and behavior, and a language for interpreting
experiments.

The challenge in understanding these behaviors is that the properties that
can be measured and controlled, such as density, temperature, pressure, heat
capacity, molecular radius, or equilibrium constants, do not predict the tenden-
cies and equilibria of systems in a simple and direct way. To predict equilibria,
we must step into a different world, where we use the language of energy,
entropy, enthalpy, and free energy. Measuring the density of liquid water just
below its boiling temperature does not hint at the surprise that, just a few
degrees higher, above the boiling temperature, the density suddenly drops
more than a thousandfold. To predict density changes and other measurable
properties, you need to know about the driving forces, the entropies and ener-
gies. We begin with entropy.

Entropy is one of the most fundamental concepts in statistical thermo-
dynamics. It describes the tendency of matter toward disorder. Entropy explains
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how expanding gases drive car engines, liquids mix, rubber bands retract, heat
flows from hot objects to cold objects, and protein molecules tangle together
in some disease states. The concepts that we introduce in this chapter, proba-
bility, multiplicity, combinatorics, averages, and distribution functions, provide
a foundation for describing entropy.

What Is Probability?

Here are two statements of probability. In 1990, the probability that a person in
the United States was a scientist or an engineer was 1/250. That is, there were
about a million scientists and engineers out of a total of about 250 million
people. In 1992, the probability that a child under 13 years old in the United
States ate a fast-food hamburger on any given day was 1/30 [1].

Let’s generalize. Suppose that the possible outcomes fall into categories A,
B, or C . ‘Event’ and ‘outcome’ are generic terms. An event might be the flipping
of a coin, resulting in heads or tails. Alternatively, it might be one of the possible
conformations of a molecule. Suppose that outcome A occurs 20% of the time,
B 50% of the time, and C 30% of the time. Then the probability of A is 0.20, the
probability of B is 0.50, and the probability of C is 0.30.

The definition of probability is as follows: If N is the total number of pos-
sible outcomes, and nA of the outcomes fall into category A, then pA, the prob-
ability of outcome A, is

pA =
(nA
N

)
. (1.1)

Probabilities are quantities in the range from zero to one. If only one outcome
is possible, the process is deterministic—the outcome has a probability of one.
An outcome that never occurs has a probability of zero.

Probabilities can be computed for different combinations of events. Con-
sider one roll of a six-sided die, for example (die, unfortunately, is the singular
of dice). The probability that a 4 appears face up is 1/6 because there areN = 6
possible outcomes and only n4 = 1 of them is a 4. But suppose you roll a six-
sided die three times. You may ask for the probability that you will observe the
sequence of two 3’s followed by one 4. Or you may ask for the probability of
rolling two 2’s and one 6 in any order. The rules of probability and combina-
torics provide the machinery for calculating such probabilities. Here we define
the relationships among events that we need to formulate these rules.

Definitions: Relationships Among Events

Mutually Exclusive. OutcomesA1, A2, . . . , At are mutually exclusive if the
occurrence of each one of them precludes the occurrence of all the others. If A
and B are mutually exclusive, then if A occurs, B does not. If B occurs, A does
not. For example, on a single die roll, 1 and 3 are mutually exclusive because
only one number can appear face up each time the die is rolled.

Collectively Exhaustive. OutcomesA1, A2, . . . , At are collectively exhaus-
tive if they constitute the entire set of possibilities, and no other outcomes are
possible. For example, [heads, tails] is a collectively exhaustive set of outcomes
for a coin toss, provided that you don’t count the occasions when the coin lands
on its edge.

2 Chapter 1. Principles of Probability



Figure 1.1 If there are three car colors for each of two car models, there are six
different combinations of color and model, so the multiplicity is six.

Independent. Events A1, A2, . . . , At are independent if the outcome of each
one is unrelated to (or not correlated with) the outcome of any other. The score
on one die roll is independent of the score on the next, unless there is trickery.

Multiplicity. The multiplicity of events is the total number of ways in
which different outcomes can possibly occur. If the number of outcomes of
type A is nA, the number of outcomes of type B is nB , and the number of out-
comes of type C is nC , the total number of possible combinations of outcomes
is the multiplicity W :

W = nAnBnC. (1.2)

Figure 1.1 shows an example of multiplicity.

The Rules of Probability Are Recipes
for Drawing Consistent Inferences

The addition and multiplication rules permit you to calculate the probabilities
of certain combinations of events.

Addition Rule. If outcomes A,B, . . . , E are mutually exclusive, and occur
with probabilities pA = nA/N,pB = nB/N, . . . , pE = nE/N , then the probability
of observing either A or B or . . .or E (the union of outcomes, expressed as
A∪B∪· · ·∪E) is the sum of the probabilities:

p(A or B or . . . or E) = nA+nB+· · ·+nE
N

= pA+pB+· · ·+pE. (1.3)

The addition rule holds only if two criteria are met: the outcomes are mutually
exclusive and we seek the probability of one outcome or another outcome.

When they are not divided by N , the broader term for the quantities ni(i =
A,B, . . . , E) is statistical weights. If outcomes A,B, . . . , E are both collectively
exhaustive and mutually exclusive, then

nA+nB+· · ·+nE = N, (1.4)

Rules of Probability 3



and dividing both sides of Equation (1.4) by N , the total number of trials, gives

pA+pB+· · ·+pE = 1. (1.5)

Multiplication Rule. If outcomes A,B, . . . , E are independent, then the
probability of observing A and B and . . . and E (the intersection of outcomes,
expressed as A∩B∩· · ·∩E) is the product of the probabilities,

p(A and B and . . . and E) =
(nA
N

)(nB
N

)
· · ·

(nE
N

)

= pApB · · ·pE. (1.6)

The multiplication rule applies when the outcomes are independent and we
seek the probability of one outcome and another outcome and possibly other
outcomes. A more general multiplication rule, described on page 8, applies
even when outcomes are not independent.

Here are a few examples using the addition and multiplication rules.

EXAMPLE 1.1 Rolling a die. What is the probability that either a 1 or a 4
appears on a single roll of a die? The probability of a 1 is 1/6. The probability
of a 4 is also 1/6. The probability of either a 1 or a 4 is 1/6+1/6 = 1/3, because
the outcomes are mutually exclusive (1 and 4 can’t occur on the same roll) and
the question is of the or type.

EXAMPLE 1.2 Rolling twice. What is the probability of a 1 on the first roll
of a die and a 4 on the second? It is (1/6)(1/6)=1/36, because this is an and
question, and the two events are independent. This probability can also be
computed in terms of the multiplicity. There are six possible outcomes on each
of the two rolls of the die, giving a product of W =36 possible combinations,
one of which is 1 on the first roll and 4 on the second.

EXAMPLE 1.3 A sequence of coin flips. What is the probability of getting five
heads on five successive flips of an unbiased coin? It is (1/2)5=1/32, because
the coin flips are independent of each other, this is an and question, and the
probability of heads on each flip is 1/2. In terms of the multiplicity of outcomes,
there are two possible outcomes on each flip, giving a product of W =32 total
outcomes, and only one of them is five successive heads.

EXAMPLE 1.4 Another sequence of coin flips. What is the probability of
two heads, then one tail, then two more heads on five successive coin flips? It
is p2

HpTp2
H = (1/2)5 = 1/32. You get the same result as in Example 1.3 because

pH , the probability of heads, and pT , the probability of tails, are both 1/2. There
are a total of W = 32 possible outcomes and only one is the given sequence.
The probability p(nH,N) of observing one particular sequence of N coin flips
having exactly nH heads is

p(nH,N) = pnHH pN−nHT . (1.7)

If pH = pT = 1/2, then p(nH,N) = (1/2)N .

4 Chapter 1. Principles of Probability



EXAMPLE 1.5 Combining events—both, either/or, or neither. If indepen-
dent events A and B have probabilities pA and pB , the probability that both
events happen is pApB . What is the probability that A happens and B does
not? The probability that B does not happen is (1−pB). If A and B are indepen-
dent events, then the probability thatA happens and B does not is pA(1−pB) =
pA−pApB. What is the probability that neither event happens? It is

p(not A and not B) = (1−pA)(1−pB), (1.8)

where p(not A and not B) is the probability that A does not happen and B
does not happen.

EXAMPLE 1.6 Combining events—something happens. What is the proba-
bility that something happens, that is, A or B or both happen? This is an or
question, but the events are independent and not mutually exclusive, so you
cannot use either the addition or multiplication rules. You can use a simple trick
instead. The trick is to consider the probabilities that events do not happen,
rather than that events do happen. The probability that something happens is
1−p(nothing happens):

1−p(not A and not B) = 1−(1−pA)(1−pB) = pA+pB−pApB. (1.9)

Multiple events can occur as ordered sequences in time, such as die rolls,
or as ordered sequences in space, such as the strings of characters in words.
Sometimes it is more useful to focus on collections of events rather than the
individual events themselves.

Elementary and Composite Events

Some problems in probability cannot be solved directly by applying the addition
or multiplication rules. Such questions can usually be reformulated in terms of
composite events to which the rules of probability can be applied. Example 1.7
shows how to do this. Then on page 14 we’ll use reformulation to construct
probability distribution functions.

EXAMPLE 1.7 Elementary and composite events. What is the probability of
a 1 on the first roll of a die or a 4 on the second roll? If this were an and
question, the probability would be (1/6)(1/6)=1/36, since the two rolls are
independent, but the question is of the or type, so it cannot be answered by
direct application of either the addition or multiplication rules. But by redefin-
ing the problem in terms of composite events, you can use those rules. An
individual coin toss, a single die roll, etc. could be called an elementary event.
A composite event is just some set of elementary events, collected together
in a convenient way. In this example it’s convenient to define each composite
event to be a pair of first and second rolls of the die. The advantage is that
the complete list of composite events is mutually exclusive. That allows us to
frame the problem in terms of an or question and use the multiplication and
addition rules. The composite events are:

Rules of Probability 5



[1, 1]* [1, 2]* [1, 3]* [1, 4]* [1, 5]* [1, 6]*
[2, 1] [2, 2] [2, 3] [2, 4]* [2, 5] [2, 6]
[3, 1] [3, 2] [3, 3] [3, 4]* [3, 5] [3, 6]
[4, 1] [4, 2] [4, 3] [4, 4]* [4, 5] [4, 6]
[5, 1] [5, 2] [5, 3] [5, 4]* [5, 5] [5, 6]
[6, 1] [6, 2] [6, 3] [6, 4]* [6, 5] [6, 6]

The first and second numbers in the brackets indicate the outcome of the
first and second rolls respectively, and * indicates a composite event that satis-
fies the criterion for ‘success’ (1 on the first roll or 4 on the second roll). There
are 36 composite events, of which 11 are successful, so the probability we seek
is 11/36.

Since many of the problems of interest in statistical thermodynamics
involve huge systems (say, 1020 molecules), we need a more systematic way
to compute composite probabilities than enumerating them all.

To compute this probability systematically, collect the composite events
into three mutually exclusive classes, A,B, and C , about which you can ask an
or question. Class A includes all composite events with a 1 on the first roll
and anything but a 4 on the second. Class B includes all events with anything
but a 1 on the first roll and a 4 on the second. Class C includes the one event
in which we get a 1 on the first roll and a 4 on the second. A,B, and C are
mutually exclusive categories. This is an or question, so add pA,pB , and pC to
find the answer:

p(1 first or 4 second) = pA(1 first and not 4 second)
+pB(not 1 first and 4 second)
+pC(1 first and 4 second). (1.10)

The same probability rules that apply to elementary events also apply to com-
posite events. Moreover, pA, pB , and pC are each products of elementary event
probabilities because the first and second rolls of the die are independent:

pA =
(

1
6

)(
5
6

)
,

pB =
(

5
6

)(
1
6

)
,

pC =
(

1
6

)(
1
6

)
.

Add pA, pB , and pC : p(1 first or 4 second) = 5/36+5/36+1/36 = 11/36. This
example shows how elementary events can be grouped together into compos-
ite events to take advantage of the addition and multiplication rules. Refor-
mulation is powerful because virtually any question can be framed in terms of
combinations of and and or operations. With these two rules of probability,
you can draw inferences about a wide range of probabilistic events.

EXAMPLE 1.8 A different way to solve it. Often, there are different
ways to collect up events for solving probability problems. Let’s solve
Example 1.7 differently. This time, use p(success)=1−p(fail). Because
p(fail)= [p(not 1 first) and p(not 4 second)]= (5/6)(5/6)=25/36, you have
p(success) = 11/36.

6 Chapter 1. Principles of Probability



Two events can have a more complex relationship than we have considered
so far. They are not restricted to being either independent or mutually exclu-
sive. More broadly, events can be correlated.

Correlated Events Are Described by
Conditional Probabilities

Events are correlated if the outcome of one depends on the outcome of the
other. For example, if it rains on 36 days a year, the probability of rain is
36/365≈0.1. But if it rains on 50% of the days when you see dark clouds, then
the probability of observing rain (event B) depends upon, or is conditional upon,
the appearance of dark clouds (eventA). Example 1.9 and Table 1.1 demonstrate
the correlation of events when balls are taken out of a barrel.

EXAMPLE 1.9 Balls taken from a barrel with replacement. Suppose a barrel
contains one red ball, R, and two green balls, G. The probability of drawing a
green ball on the first try is 2/3, and the probability of drawing a red ball on the
first try is 1/3. What is the probability of drawing a green ball on the second
draw? That depends on whether or not you put the first ball back into the barrel
before the second draw. If you replace each ball before drawing another, then
the probabilities of different draws are uncorrelated with each other. Each draw
is an independent event.

However, if you draw a green ball first, and don’t put it back in the barrel,
then 1 R and 1 G remain after the first draw, and the probability of getting a
green ball on the second draw is now 1/2. The probability of drawing a green
ball on the second try is different from the probability of drawing a green ball
on the first try. It is conditional on the outcome of the first draw.

Table 1.1 All of the probabilities for the three draws without replacement described
in Examples 1.9 and 1.10.

1st Draw 2nd Draw 3rd Draw

p(R1) =
1
3
−−−−−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(R2 | R1)p(R1)

0·
(

1
3

)
= 0

p(G2 | R1)p(R1)

1·
(

1
3

)
= 1

3

−−−−−−−→ p(G3 | G2R1)p(G2R1)

1·
(

1
3

)
= 1

3

p(G1) =
2
3
−−−−−−−→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(R2 | G1)p(G1)
(

1
2

)
·
(

2
3

)
= 1

3

p(G2 | G1)p(G1)
(

1
2

)
·
(

2
3

)
= 1

3

−−−−−−−→

−−−−−−−→

p(G3 | R2G1)p(R2G1)

1·
(

1
3

)
= 1

3

p(R3 | G2G1)p(G2G1)

1·
(

1
3

)
= 1

3
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Here are some definitions and examples describing the conditional prob-
abilities of correlated events.

Conditional Probability. The conditional probabilityp(B |A) is the prob-
ability of event B, given that some other event A has occurred. Event A is the
condition upon which we evaluate the probability of event B. In Example 1.9,
event B is getting a green ball on the second draw, event A is getting a green
ball on the first draw, and p(G2 |G1) is the probability of getting a green ball
on the second draw, given a green ball on the first draw.

Joint Probability. The joint probability of events A and B is the probabil-
ity that both events A and B occur. The joint probability is expressed by the
notation p(A and B), or more concisely, p(AB).

General Multiplication Rule (Bayes’ Rule). If outcomes A and B occur
with probabilities p(A) and p(B), the joint probability of events A and B is

p(AB) = p(B | A)p(A) = p(A | B)p(B). (1.11)

If events A and B happen to be independent, the pre-condition A has no influ-
ence on the probability of B. Then p(B |A)=p(B), and Equation (1.11) reduces
to p(AB)=p(B)p(A), the multiplication rule for independent events. A
probability p(B) that is not conditional is called an a priori probability. The
conditional quantity p(B |A) is called an a posteriori probability. The general
multiplication rule is general because independence is not required. It defines
the probability of the intersection of events, p(AB)=p(A∩B).

General Addition Rule. A general rule can also be formulated for the
union of events, p(A∪B) = p(A)+p(B)−p(A∩B), when we seek the probabil-
ity ofA or B for events that are not mutually exclusive. WhenA and B are mutu-
ally exclusive,p(A∩B) = 0, and the general addition rule reduces to the simpler
addition rule on page 3. When A and B are independent, p(A∩B) = p(A)p(B),
and the general addition rule gives the result in Example 1.6.

Degree of Correlation. The degree of correlation g between events A
and B can be expressed as the ratio of the conditional probability of B, given A,
to the unconditional probability of B alone. This indicates the degree to which
A influences B:

g = p(B | A)
p(B)

= p(AB)
p(A)p(B)

. (1.12)

The second equality in Equation (1.12) follows from the general multiplication
rule, Equation (1.11). If g=1, events A and B are independent and not cor-
related. If g>1, events A and B are positively correlated. If g < 1, events A
and B are negatively correlated. If g = 0 and A occurs, then B will not. If the
a priori probability of rain is p(B) = 0.1, and if the conditional probability of
rain, given that there are dark clouds,A, isp(B |A)=0.5, then the degree of cor-
relation of rain with dark clouds is g=5. Correlations are important in statisti-
cal thermodynamics. For example, attractions and repulsions among molecules
in liquids can cause correlations among their positions and orientations.

8 Chapter 1. Principles of Probability



EXAMPLE 1.10 Balls taken from that barrel again. As before, start with three
balls in a barrel, one red and two green. The probability of getting a red ball
on the first draw is p(R1)=1/3, where the notation R1 refers to a red ball
on the first draw. The probability of getting a green ball on the first draw is
p(G1)=2/3. If balls are not replaced after each draw, the joint probability for
getting a red ball first and a green ball second is p(R1G2):

p(R1G2) = p(G2 | R1)p(R1) = (1)
(

1
3

)
= 1

3
. (1.13)

So, getting a green ball second is correlated with getting a red ball first:

g = p(R1G2)
p(R1)p(G2)

=
1
3(

1
3

)(
1
3
+1

3

) = 3
2
. (1.14)

Rule for Adding Joint Probabilities. The following is a useful way to
compute a probability p(B) if you know joint or conditional probabilities:

p(B) = p(BA)+p(BA′) = p(B |A)p(A)+p(B |A′)p(A′), (1.15)

where A′ means that event A does not occur. If the event B is rain, and if
the event A is that you see clouds and A′ is that you see no clouds, then the
probability of rain is the sum of joint probabilities of (rain, you see clouds) plus
(rain, you see no clouds). By summing over the mutually exclusive conditions,
A and A′, you are accounting for all the ways that B can happen.

EXAMPLE 1.11 Applying Bayes’ rule: Predicting protein properties. Bayes’
rule, a combination of Equations (1.11) and (1.15), can help you compute hard-
to-get probabilities from ones that are easier to get. Here’s a toy example. Let’s
figure out a protein’s structure from its amino acid sequence. From modern
genomics, it is easy to learn protein sequences. It’s harder to learn protein
structures. Suppose you discover a new type of protein structure, call it a heli-
coil h. It’s rare; you’ve searched 5000 proteins and found only 20 helicoils, so
p(h)=0.004. If you could discover some special amino acid sequence feature,
call it sf, that predicts the h structure, you could search other genomes to find
other helicoil proteins in nature. It’s easier to turn this around. Rather than
looking through 5000 sequences for patterns, you want to look at the 20 heli-
coil proteins for patterns. How do you compute p(sf |h)? You take the 20 given
helicoils and find the fraction of them that have your sequence feature. If your
sequence feature (say alternating glycine and lysine amino acids) appears in 19
out of the 20 helicoils, you have p(sf |h)=0.95. You also need p(sf | h̄), the
fraction of non-helicoil proteins (let’s call those h̄) that have your sequence fea-
ture. Suppose you find p(sf | h̄)=0.001. Combining Equations (1.11) and (1.15)
gives Bayes’ rule for the probability you want:

p(h | sf) = p(sf |h)p(h)
p(sf)

= p(sf |h)p(h)
p(sf |h)p(h)+p(sf | h̄)p(h̄)

= (0.95)(0.004)
(0.95)(0.004)+ (0.001)(0.996)

= 0.79. (1.16)

In short, if a protein has the sf sequence, it will have the h structure about 80%
of the time.

Correlated Events 9



Conditional probabilities are useful in a variety of situations, including card
games and horse races, as the following example shows.

(a) Who will win?

p (B )

p (A )

p (D )

p (C ) p (E )

(b) Given that C won...

(c) Who will place second?

p(B |C)
p(A |C)

p(D |C)
p(E |C)

p (B )

p (A )

p (D )

p (C ) p (E )

Figure 1.2 (a) A priori
probabilities of outcomes A
to E, such as a horse race.
(b) To determine the a
posteriori probabilities of
events A, B, D, and E, given
that C has occurred, remove
C and keep the relative
proportions of the rest the
same. (c) A posteriori
probabilities that horses A,
B, D, and E will come in
second, given that C won.

EXAMPLE 1.12 A gambling equation. Suppose you have a collection of mutu-
ally exclusive and collectively exhaustive events A,B, . . . , E, with probabilities
pA,pB, . . . , pE . These could be the probabilities that horses A,B, . . . , E will win
a race (based on some theory, model, or prediction scheme), or that card types
A to E will appear on a given play in a card game. Let’s look at a horse race [2].
If horse A wins, then horses B or C don’t win, so these are mutually exclusive.

Suppose you have some information, such as the track records of the
horses, that predicts the a priori probabilities that each horse will win.
Figure 1.2 gives an example. Now, as the race proceeds, the events occur in
order, one at a time: one horse wins, then another comes in second, and another
comes in third. Our aim is to compute the conditional probability that a par-
ticular horse will come in second, given that some other horse has won. The
a priori probability that horse C will win is p(C). Now assume that horse C
has won, and you want to know the probability that horse A will be second,
p(A is second | C is first). From Figure 1.2, you can see that this conditional
probability can be determined by eliminating region C , and finding the fraction
of the remaining area occupied by region A:

p(A is second | C is first) = p(A)
p(A)+p(B)+p(D)+p(E)

= p(A)
1−p(C) . (1.17)

1−p(C) = p(A)+p(B)+p(D)+p(E) follows from the mutually exclusive addi-
tion rule.

The probability that event i is first is p(i). Then the conditional probability
that event j is second is p(j)/[1−p(i)]. The joint probability that i is first, j
is second, and k is third is

p(i is first, j is second, k is third) = p(i)p(j)p(k)
[1−p(i)][1−p(i)−p(j)] . (1.18)

Equations (1.17) and (1.18) are useful for computing the probability of drawing
the queen of hearts in a card game, once you have seen the seven of clubs and
the ace of spades. They are also useful for describing the statistical thermody-
namics of liquid crystals, and ligand binding to DNA (see pages 575–578).

Combinatorics Describes How to Count Events

Combinatorics, or counting events, is central to statistical thermodynamics. It is
the basis for entropy, and the concepts of order and disorder, which are defined
by the numbers of ways in which a system can be configured. Combinatorics is
concerned with the composition of events rather than the sequence of events.
For example, compare the following two questions. The first is a question of
sequence: What is the probability of the specific sequence of four coin flips,
HTHH? The second is a question of composition: What is the probability of
observing threeH’s and one T in any order? The sequence question is answered
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by using Equation (1.7): this probability is 1/16. However, to answer the compo-
sition question you must count the number of different possible sequences with
the specified composition: HHHT , HHTH, HTHH, and THHH. The probabil-
ity of getting threeH’s and one T in any order is 4/16=1/4. When you seek the
probability of a certain composition of events, you count the possible sequences
that have the correct composition.

EXAMPLE 1.13 Permutations of ordered sequences. How many permuta-
tions, or different sequences, of the letters w, x, y, and z are possible? There
are 24:

wxyz wxzy wyxz wyzx wzxy wzyx
xwyz xwzy xywz xyzw xzwy xzyw
ywxz ywzx yxwz yxzw yzwx yzxw
zwyx zwxy zxwy zxyw zywx zyxw

How can you compute the number of different sequences without having to
list them all? You can use the strategy developed for drawing letters from a bar-
rel without replacement. The first letter of a sequence can be any one of the four.
After drawing one, the second letter of the sequence can be any of the remain-
ing three letters. The third letter can be any of the remaining two letters, and
the fourth must be the one remaining letter. Use the definition of multiplicity
W (Equation (1.2)) to combine the numbers of outcomes ni, where i represents
the position 1, 2, 3, or 4 in the sequence of draws. We haven1=4,n2=3,n3=2,
and n4=1, so the number of permutations is W =n1n2n3n4=4·3·2·1=24.

In general, for a sequence of N distinguishable objects, the number of dif-
ferent permutations W can be expressed in factorial notation

W = N(N−1)(N−2) · · ·3·2·1 = N !

= 4·3·2·1 = 24. (1.19)

The Factorial Notation

The notation N !, called N factorial, denotes the product of the integers from
one to N :

N ! = 1·2·3 · · · (N−2)(N−1)N.

0! is defined to equal 1.

EXAMPLE 1.14 Letters of the alphabet. Consider a barrel containing one each
of the 26 letters of the alphabet. What is the probability of drawing the letters
out in exactly the order of the alphabet, A to Z? The probability of drawing the
A first is 1/26. If you replace each letter after it is drawn, the probability of
drawing the B on the second try would be 1/26, and the probability of drawing
the alphabet in order would be (1/26)26. But if each letter were not replaced in
the barrel, the probability of drawing the B on the second trial would be 1/25.
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The probability of drawing the C on the third trial would be 1/24. Without
replacement, the probability of drawing the exact sequence of the alphabet is

p(ABC . . .XYZ) = 1
26·25·24 · · ·2·1 =

1
N !
, (1.20)

where N =26 is the number of letters in the alphabet. N ! is the number of
permutations, or different sequences in which the letters could be drawn. 1/N !
is the probability of drawing one particular sequence.

In Examples 1.13 and 1.14, all the letters are distinguishable from each
other: w, x, y, and z are all different. But what happens if some of the objects
are indistinguishable from each other?

EXAMPLE 1.15 Counting sequences of distinguishable and indistinguishable
objects. How many different arrangements are there of the letters A, H, and
A? That depends on whether or not you can tell the A’s apart. Suppose first
that one A has a subscript 1 and the other has a subscript 2: A1, H, and A2.
Then all the characters are distinguishable, as in Examples 1.13 and 1.14, and
there are W =N !=3!=6 different arrangements of these three distinguishable
characters:

HA1A2 A1HA2 A1A2H HA2A1 A2HA1 A2A1H.

However, now suppose that the two A’s are indistinguishable from each other:
they have no subscripts. There are now only W = 3 distinguishable sequences
of letters: HAA, AHA, and AAH. (Distinguishable is a term that applies either
to the letters or to the sequences. We have three distinguishable sequences,
each containing two distinguishable letters, A and H.) The previous expression
W =N ! overcounts by a factor of two when the two A’s are indistinguishable.
This is because we have counted each sequence of letters, say AAH, twice—
A1A2H and A2A1H. Written in a more general way, the number of distinguish-
able sequences is W =N !/NA!=3!/2!=3. The N ! in the numerator comes from
the number of permutations as if all the characters were distinguishable from
each other, and theNA! in the denominator corrects for overcounting. The over-
counting correction 2! is simply the count of all the permutations of the indis-
tinguishable characters, the number of ways in which the A’s can be arranged
among themselves.

EXAMPLE 1.16 Permutations of mixed sequences. Consider the word
cheese as che1e2se3, in which the e’s are distinguished from each other by
a subscript. Then N = 6 and there are 6! = 720 distinguishable ways of arrang-
ing the characters. By counting in this way, we have reckoned that che1e2se3

is different from che2e1se3. This correct spelling is counted exactly six times
because there are six permutations of the subscripted e’s. There are also exactly
six permutations of the e’s in every other specific sequence. For example:

se1e2che3 se1e3che2 se2e1che3

se2e3che1 se3e1che2 se3e2che1
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There are 3! = 6 permutations of e1, e2, and e3 for every sequence of
the other characters. So when the e’s are indistinguishable, there are 6!/3!
permutations of the letters in the word cheese. The 3! in the denominator
corrects for the indistinguishability of the e’s. In general, the denominator
needs a factor to account for the indistinguishability of each type of charac-
ter, so W =N !/(nc !nh!ne!ns !)=6!/(1!1!3!1!)=120 is the number of different
sequences if the e’s are indistinguishable from each other.

EXAMPLE 1.17 Another mixed sequence. For the word freezer, you have
three indistinguishable e’s and two indistinguishable r’s. There are 7!/(3!2!)
permutations of the letters that spell freezer.

In general, for a collection ofN objects with t categories, of whichni objects
in each category are indistinguishable from one another, but distinguishable
from the objects in the other t−1 categories, the number of permutationsW is

W = N !
n1!n2! · · ·nt !

. (1.21)

When there are only two categories (success/failure, or heads/tails, . . .), t = 2,
so W(n,N), the number of sequences with n successes out of N trials, is

W(n,N) =
(
N
n

)
= N !
n!(N−n)! , (1.22)

where the shorthand notation
(
N
n

)
for combinations is pronounced ‘N choose

n.’ Use W = N ! if you can distinguish every single sequence from every other,
or W = N !/n! if only heads are indistinguishable from each other, and tails are
distinguishable. Or use Equation (1.22) if tails are indistinguishable from other
tails, and heads are indistinguishable from other heads, the case we’ll be most
interested in subsequently. Example 1.18 applies Equation (1.22) to coin flips
and die rolls.

EXAMPLE 1.18 Counting sequences of coin flips and die rolls. You flip a
coin N = 4 times. How many different sequences have three heads? According
to Equation (1.22),

W(nH,N) =
N !

nH !nT !
= 4!

3!1!
= 4.

They are THHH, HTHH, HHTH, and HHHT . How many different sequences
have two heads?

W(2,4) = 4!
2!2!

= 6.

They are TTHH, HHTT , THTH, HTHT , THHT , and HTTH.
You flip a coin 117 times. How many different sequences have 36 heads?

W(36,117) = 117!
36!81!

≈ 1.84× 1030.

We won’t write the sequences out.
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You roll a die 15 times. How many different sequences have three 1’s, one
2, one 3, five 4’s, two 5’s, and three 6’s? According to Equation (1.21),

W = 15!
3!1!1!5!2!3!

= 151,351,200.

EXAMPLE 1.19 What is the probability of drawing a royal flush in poker?
There are four different ways to draw a royal flush in poker: an ace, king, jack,
queen, and ten, all from any one of the four suits. To compute the probability,
you need to know how many five-card hands there are in a deck of 52 cards.
Use the barrel metaphor: put the 52 cards in the barrel. On the first draw, there
are 52 possibilities. On the second draw, there are 51 possibilities, etc. In five
draws, there are

52·51·50·49·48
5!

= 52!
5!(52−5)!

= 2,598,960

possible poker hands. The 5! in the denominator corrects for all the possible
permutations of each sequence (you don’t care whether you draw the king or
the ace first, for example). The probability is 1/(2,598,960) of drawing a royal
flush in one suit or 4/(2,598,960) = 1.5 × 10−6 that you will draw a royal flush
in any of the four suits.

Here’s an example of a type of counting problem in statistical thermo-
dynamics.

(b)  Movable Walls

(a)  Balls in Boxes

Figure 1.3 How many
ways can you put n = 3
balls into M = 2 boxes
(Example 1.20)? (a) There
are four ways to partition
n = 3 balls into M = 2
boxes when each box can
hold any number of balls.
(b) Look at this as four ways
to partition three balls and
one movable wall.

EXAMPLE 1.20 Bose–Einstein statistics. How many ways cann indistinguish-
able particles be put into M boxes, with any number of particles per box? This
type of counting is needed to predict the properties of particles called bosons,
such as photons and 4He atoms. Bose–Einstein statistics counts the ways that n
particles can be distributed inM different energy levels, when several particles
can occupy the same quantum mechanical energy levels. For now, our interest
is not in the physics, but just in the counting problem. Figure 1.3 shows that one
way to count the number of arrangements is to think of the system as a linear
array of n particles interspersed with M −1 movable walls that partition the
system intoM boxes (spaces between walls). There areM +n−1 objects, count-
ing walls plus particles. If the objects were all distinguishable, there would be
(M+n−1)! arrangements. However, because the n particles are indistinguish-
able from each other and each of the M−1 walls is indistinguishable from the
other walls, and because the walls are distinguishable from the particles, the
number of arrangements is

W(n,M) = (M+n−1)!
(M−1)!n!

. (1.23)

Collections of Probabilities Are Described
by Distribution Functions

The probabilities of events can be described by probability distribution func-
tions. For t mutually exclusive outcomes, i=1,2,3, . . . , t, the distribution
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Figure 1.4 A probability distribution
function. The possible outcomes are
indexed on the horizontal axis. The
probability of each outcome is shown
on the vertical axis. In this example,
outcome 4 is the most probable and
outcome 3 is the least probable.

1 2 3 4 5
i

p(i)

0.21

0.15

0.10

0.30

0.24

function is p(i), the set of probabilities of all the outcomes. Figure 1.4 shows
a probability distribution function for a system with t = 5 outcomes.

A property of probability distribution functions is that the sum of the prob-
abilities equals 1. Because the outcomes are mutually exclusive and collectively
exhaustive, Equations (1.3) and (1.5) apply and

t∑

i=1

p(i) = 1. (1.24)

For some types of events, the order of the outcomes i = 1,2,3, . . . , t has mean-
ing. For others, it does not. For statistical thermodynamics, the order usually
has meaning, and i represents the value of some physical quantity. On the
other hand, the index i may be just a label. The index i = 1,2,3 can represent
the colors of socks, [red, green, blue], or [green, red, blue], where the order is
irrelevant. Probability distributions can describe either case.

Summations

The sigma notation means to sum terms. For example,

6∑

i=1

ipi = p1+2p2+3p3+4p4+5p5+6p6 (1.25)

means ‘sum the quantity ipi from i = 1 up to i = 6.’ Sometimes the index i
above and/or below the sigma is omitted in concise shorthand expressions.

Continuous Probability Distribution Functions

In some situations, the outcomes of an event are best represented by a continu-
ous variable x rather than by a discrete variable. Think of a bell curve. Or, for
example, a particle might have some probability p(x)dx of being between
position x = 1.62 cm and x+dx = 1.63 cm or p(θ)dθ of having an orienta-
tion angle between θ = 25.6◦ and θ+dθ = 25.8◦. If x is continuous, p(x) is
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called a probability density, because p(x)dx is the probability of finding a
value between x and x+dx. If x ranges from x = a to x = b, Equation (1.24)
becomes

∫ b

a
p(x)dx = 1. (1.26)

Some distribution functions aren’t normalized : the statistical weights do
not sum to 1. Then you first need to normalize them. For a continuous distri-
bution function g(x), where x ranges from a to b, you can normalize to form
a proper probability distribution function. Find the normalization constant g0

by integrating over x:

g0 =
∫ b

a
g(x)dx. (1.27)

The normalized probability density is

p(x) = g(x)
g0

= g(x)
∫ b

a
g(x)dx

. (1.28)

The Binomial and Multinomial Distribution Functions

Some probability distribution functions occur frequently in nature, and have
simple mathematical expressions. Two of the most useful functions are the
binomial and multinomial distributions. These will be the basis for our devel-
opment of the concept of entropy in Chapter 2. The binomial distribution
describes processes in which each independent elementary event has two mutu-
ally exclusive outcomes, such as heads/tails, yes/no, up/down, or occupied/
vacant. Independent trials with two such possible outcomes are called Bernoulli
trials. Let’s label the two possible outcomes and . Let the probability of
be p. Then the probability of is 1−p. We choose composite events that are
pairs of Bernoulli trials. The probability of followed by is P = p(1−p).
The probabilities of the four possible composite events are

P = p2, P = p(1−p),

P = (1−p)p, P = (1−p)2. (1.29)

This set of composite events is mutually exclusive and collectively exhaustive.
The same probability rules apply to the composite events that apply to ele-

mentary events. For example, Equation (1.24) for the normalization of discrete
distributions requires that the probabilities must sum to 1:

P +P +P +P = p2+2p(1−p)+(1−p)2

= [p+(1−p)]2 = 1. (1.30)

In Example 1.7, we defined composite events as pairs of elementary events.
More generally, a composite event is a sequence ofN repetitions of independent
elementary events. The probability of a specific sequence of n ’s andN−n ’s
is given by Equation (1.7). What is the probability that a series of N trials has
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n ’s and N−n ’s in any order? Equation (1.22) gives the total number of
sequences that have n ’s and N−n ’s. The product of Equations (1.7) and
(1.22) gives the probability ofn ’s andN−n ’s irrespective of their sequence.
This is the binomial distribution:

P(n,N) = pn(1−p)N−n N !
n!(N−n)! . (1.31)

Because the set of all possible sequences of N trials is mutually exclusive and
collectively exhaustive, the composite probabilities sum to one,

∑N
n=0

P(n,N)=1, as illustrated below.
A simple visualization of the combinatoric terms in the binomial distri-

bution is Pascal’s triangle. Make a triangle in which the lines are numbered
N = 0,1,2, . . .. Compute N !/[n!(N−n)!] at each position:

N = 0 1
N = 1 1 1
N = 2 1 2 1
N = 3 1 3 3 1
N = 4 1 4 6 4 1
N = 5 1 5 10 10 5 1

Each term in Pascal’s triangle is the sum of the two terms to the left and right
from the line above it. Pascal’s triangle gives the coefficients in the expansion of
(x+y)N . For example, for N = 4, using x = p and y = 1−p, Equation (1.31) is

[p+(1−p)]4 = p4+4p3(1−p)+6p2(1−p)2

+ 4p(1−p)3+(1−p)4. (1.32)

This sums to one,
∑N
n=0 P(n,N) = 1, because [p+(1−p)]N = 1.

EXAMPLE 1.21 Distribution of coin flips. Figure 1.5 shows a distribution
function, the probability p(nH,N) of observing nH heads in N =4 coin flips,
given by Equation (1.31) with p=0.5. This shows that in four coin flips, the
most probable number of heads is two. It is least probable that all four will be
heads or all four will be tails.

1 2 3 4

p(nH)

nH
0

1

1

1

1

3

16

4 4

8

16

Figure 1.5 The probability
distribution for the numbers of heads
in four coin flips in Example 1.21.
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The multinomial probability distribution is a generalization of the binomial
probability distribution. A binomial distribution describes two-outcome events
such as coin flips. A multinomial probability distribution applies to t-outcome
events where ni is the number of times that outcome i = 1,2,3, . . . , t appears.
For example, t=6 for die rolls. For the multinomial distribution, the number
of distinguishable outcomes is given by Equation (1.21):W =N !/(n1!n2!n3! · · ·
nt !). The multinomial probability distribution is

P(n1, n2, . . . , nt,N) = pn1
1 p

n2
2 p

n3
3 · · ·pntt

( N !
n1!n2!···nt !

)
, (1.33)

where each factorni! accounts for the indistinguishability of objects in category
i. The ni are constrained by the condition

∑t
i=1ni = N .

Distribution Functions Have Average Values
and Standard Deviations

Averages

A probability distribution function contains all the information that can be
known about a probabilistic system. A full distribution function, however, is
rarely accessible from experiments. Generally, experiments can measure only
certain moments of the distribution. The nth moment of a probability distri-
bution function p(x) is

⟨xn⟩ =
∫ b

a
xnp(x)dx =

∫ b

a
xng(x)dx

∫ b

a
g(x)dx

, (1.34)

where the second expression is appropriate for a non-normalized distribution
function g(x). Angle brackets ⟨ ⟩ are used to indicate the moments, also called
the expectation values or averages, of a distribution function. For a probability
distribution the zeroth moment always equals one, because the sum of the
probabilities equals one. The first moment of a distribution function (n=1 in
Equation (1.34)) is called the mean, average, or expected value. For discrete
functions,

⟨i⟩ =
t∑

i=1

ip(i), (1.35)

and for continuous functions,

⟨x⟩ =
∫ b

a
xp(x)dx. (1.36)

For distributions over t discrete values, the mean of a function f(i) is

⟨f(i)⟩ =
t∑

i=1

f(i)p(i). (1.37)
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For distributions over continuous values, the mean of a function f(x) is

⟨f(x)⟩ =
∫ b

a
f(x)p(x)dx =

∫ b

a
f(x)g(x)dx
∫ b

a
g(x)dx

. (1.38)

Equations (1.35)–(1.38) quantify the familiar notion of average, as Example 1.22
shows.

EXAMPLE 1.22 Taking an average. The average of the set of numbers
[3,3,2,2,2,1,1] is 2. The average may be computed by the usual procedure
of summing the numbers and dividing by the number of entries. Let’s compute
the average using Equation (1.35) instead. Since two of the seven outcomes are
3’s, the probability of a 3 is p(3)=2/7. Similarly, three of the seven outcomes
are 2’s, so p(2)=3/7, and two of the seven outcomes are 1’s, so p(1)=2/7.
The average ⟨i⟩ is then

⟨i⟩ =
3∑

i=1

ip(i) = 1p(1)+2p(2)+3p(3)

= 1
(

2
7

)
+2

(
3
7

)
+3

(
2
7

)
= 2. (1.39)

Here are two useful and general properties of averages, derived from the
definition given in Equation (1.38):

⟨af(x)⟩ =
∫
af(x)p(x)dx = a

∫
f(x)p(x)dx

= a⟨f(x)⟩, where a is a constant. (1.40)

⟨f(x)+g(x)⟩ =
∫ [
f(x)+g(x)

]
p(x)dx

=
∫
f(x)p(x)dx+

∫
g(x)p(x)dx

= ⟨f(x)⟩+⟨g(x)⟩. (1.41)

Variance

The variance σ 2 is a measure of the width of a distribution. A broad, flat dis-
tribution has a large variance, while a narrow, peaked distribution has a small
variance. The variance σ 2 is defined as the average square deviation from the
mean,

σ 2 = ⟨(x−a)2⟩ = ⟨x2−2ax+a2⟩, (1.42)

where a= ⟨x⟩ is the mean value, or first moment. We use a instead of ⟨x⟩
as a reminder here that this quantity is just a constant, not a variable. Using
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Equation (1.41), Equation (1.42) becomes

σ 2 = ⟨x2⟩−⟨2ax⟩+⟨a2⟩.

Using Equation (1.40),

σ 2 = ⟨x2⟩−2a⟨x⟩+a2 = ⟨x2⟩−⟨x⟩2. (1.43)

Second-moment quantities are important for understanding heat capacities
(Chapter 12), random walks (Chapter 18), diffusion (Chapter 17), and poly-
mer chain conformations (Chapters 32–34). The square root of the variance
is σ , which is also called the standard deviation. Moments higher than the sec-
ond describe asymmetries in the shape of the distribution. Examples 1.23–1.26
show calculations of means and variances for discrete and continuous prob-
ability distributions.

EXAMPLE 1.23 Coin flips: mean and variance. Compute the average number
of heads ⟨nH⟩ in N = 4 coin flips by using the distribution in Example 1.21:

⟨nH⟩ =
4∑

nH=0

nHp(nH,N)

= 0
(

1
16

)
+1

(
4
16

)
+2

(
6
16

)
+3

(
4
16

)
+4

(
1
16

)
= 2,

and

⟨n2
H⟩ =

4∑

nH=0

n2
Hp(nH,N)

= 0
(

1
16

)
+1

(
4
16

)
+4

(
6
16

)
+9

(
4
16

)
+16

(
1
16

)
= 5.

According to Equation (1.43), the variance σ 2 is

σ 2 = ⟨n2
H⟩−⟨nH⟩2 = 5−22 = 1.

1
a

=

a0

p (x)

x

a/2

Figure 1.6 Flat
distribution function,
0 ≤ x ≤ a. The average
value is ⟨x⟩ = a/2 (see
Example 1.24).

EXAMPLE 1.24 The average and variance of a continuous function. Sup-
pose you have a flat probability distribution p(x) = 1/a (shown in Figure 1.6)
for a variable 0 ≤ x ≤ a. To compute ⟨x⟩, use Equation (1.36):

⟨x⟩ =
∫ a

0
xp(x)dx = 1

a

∫ a

0
xdx =

(
1
a

) x2

2

∣∣∣∣∣

a

0

= a
2
.

Equation (1.34) gives the second moment ⟨x2⟩:

⟨x2⟩ =
∫ a

0
x2p(x)dx = 1

a

∫ a

0
x2 dx =

(
1
a

) x3

3

∣∣∣∣∣

a

0

= a2

3
.

The variance is ⟨x2⟩−⟨x⟩2 = a2/3−a2/4 = a2/12.
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EXAMPLE 1.25 The average of an exponential distribution. Figure 1.7 shows
a distribution function g(x) = e−ax over the range 0 ≤ x ≤ ∞. First normalize
g(x) to make it a probability distribution. According to Equation (1.28), p(x) =
g(x)/g0. Integrate g(x) to determine g0:

g0 =
∫∞

0
e−ax dx = −

(
1
a

)
e−ax

∣∣∣∣
∞

0
= 1
a

for a > 0.

The normalized distribution function is p(x)=g(x)/g0=ae−ax . Now, to com-
pute ⟨x⟩ for this distribution, use Equation (1.34):

⟨x⟩ =
∫∞

0
xp(x)dx = a

∫∞

0
xe−ax dx

= −
[
e−ax

(
x+ 1

a

)]∣∣∣∣
∞

0
= 1
a
.

x
0

a
e

=
1
a

g (x)
a

1/a

Figure 1.7 Exponential
distribution function,
0 ≤ x ≤ ∞. The average of
p(x) = ae−ax is ⟨x⟩ = 1/a
(see Example 1.25).

EXAMPLE 1.26 Averaging the orientations of a vector. For predicting the
conformations of a polymer or spectroscopic properties, you may have a vector
that is free to orient uniformly over all possible angles θ. If you want to compute
its average projection on an axis, using quantities such as ⟨cosθ⟩ or ⟨cos2 θ⟩,
put the beginning of the vector at the center of a sphere. If the vector orients
uniformly, it points to any given patch on the surface of the sphere in propor-
tion to the area of that patch.

The strip of area shown in Figure 1.8 has an angle θ with respect to the
z-axis. The area of the strip is (r dθ)(2πℓ). Since ℓ = r sinθ, the area of the
strip is 2πr2 sinθdθ. A strip has less area if θ is small than if θ approaches
90◦. The fraction of vectors p(θ) that point to, or end in, this strip is

p(θ) = 2πr 2 sinθdθ
∫ π

0
2πr 2 sinθdθ

= sinθdθ
∫ π

0
sinθdθ

. (1.44)

The average ⟨cosθ⟩ over all vectors is

⟨cosθ⟩ =
∫ π

0
cosθp(θ)dθ =

∫ π

0
cosθ sinθdθ
∫ π

0
sinθdθ

. (1.45)

Figure 1.8 A vector that can orient in
all directions can be represented as
starting at the origin and ending on the
surface of a sphere. The area 2πrℓdθ
represents the relative proportion of all
the vectors that land in the strip at an
angle between θ and θ+dθ relative to
the z axis.

z

r

q

ℓ(q)

dq
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This integration is simplified by noticing that sinθdθ = −d cosθ, by letting
x = cosθ, and by replacing the limits 0 andπ by 1 and−1. Then Equation (1.45)

becomes

⟨cosθ⟩ =

∫ −1

1
xdx

∫ −1

1
dx

=
1
2
x2
∣∣∣∣
−1

1

x
∣∣∣
−1

1

= 0. (1.46)

Physically, this says that the average projection on the z axis of uniformly
distributed vectors is zero. You can also see this by symmetry: just as many
vectors point forward (0◦<θ≤90◦) as backward (90◦<θ≤180◦), so the aver-
age is zero.

Later we will find the quantity ⟨cos2 θ⟩ to be useful. Following the same
logic, you have

⟨cos2 θ⟩ =

∫ π

0
cos2 θ sinθdθ
∫ π

0
sinθdθ

=

∫ −1

1
x2 dx

∫ −1

1
dx

=
1
3
x3
∣∣∣∣
−1

1

x
∣∣∣
−1

1

= 1
3
. (1.47)

Summary

Probabilities describe frequencies or incomplete knowledge. The addition and
multiplication rules allow you to draw consistent inferences about probabil-
ities of multiple events. Distribution functions describe collections of prob-
abilities. Such functions have mean values and variances. Combined with
combinatorics—the counting of arrangements of systems—probabilities pro-
vide the basis for reasoning about entropy, and about driving forces among
molecules, described in the next chapter.

Examples of Distributions

Here are some probability distribution functions that commonly appear in
statistical mechanics.

p = 0.6

n
0 N

p = 0.4

g(n) Figure 1.9 Bernoulli

g(n) = pn(1−p)N−n,

n = 0,1,2, . . . , N. (1.48)

The Bernoulli distribution describes
independent trials with two possible
outcomes (see page 16). g(n) is a
distribution function, not a probability,
because it is not normalized to sum
to one.
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0 N
n

p(n)

a = 5.0

a = 0.5

Figure 1.10 Poisson

p(n) = ane−a

n!
,

n = 0,1,2, . . . , N. (1.49)

The Poisson distribution approximates
the binomial distribution when the
number of trials is large and the
probability of each one is small [3]. It is
useful for describing radioactive decay,
the number of vacancies in the Supreme
Court each year [4], the numbers of dye
molecules taken up by small particles,
or the sizes of colloidal particles.

0
x

p(x) Figure 1.11 Gaussian

p(x) = 1
σ
√

2π
e−x2/2σ2 ,

−∞ ≤ x ≤ ∞. (1.50)

The Gaussian distribution is derived
from the binomial distribution for large
N [5]. It is important for statistics, error
analysis, diffusion, conformations of
polymer chains, and the Maxwell–
Boltzmann distribution law of gas
velocities.

n
0 N

p = 0.6p = 0.4

P(n) Figure 1.12 Binomial

P(n) = pn(1−p)N−n

×
( N !
n!(N−n)!

)
,

n = 0,1,2, . . . , N. (1.51)

The binomial distribution for
collections of Bernoulli trials is derived
on pages 16–17.

p(x)
a

x
0

Figure 1.13 Exponential
(Boltzmann)

p(x) = ae−ax,

0 ≤ x ≤ ∞. (1.52)

The exponential, or Boltzmann
distribution, is central to statistical
thermodynamics (see Chapters 5
and 10).
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p(x)

x
0.1 00010

10−5

10

107

Figure 1.14 Power law

p(x) = 1/xq, (1.53)

where q is a constant called the power
law exponent. Power laws describe the
frequencies of earthquakes, the
numbers of links to World Wide Web
sites, the distribution of incomes (‘the
rich get richer’), and the noise spectrum
in some electronic devices.

p(x)

1

1

aa

a

a2

Figure 1.15 Lorentzian

p(x) = 1
π

a
(x−⟨x⟩)2+a2

,

−∞ ≤ x ≤ ∞. (1.54)

2a is the width of the Lorentzian curve
at the level of half the maximum
probability. Lorentzian distributions are
useful in spectroscopy [3].

p(x)

1
a

a0
x

Figure 1.16 Flat

p(x) = 1/a, (1.55)

where a is a constant independent of x
(see Example 1.24).
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Problems

1. Combining independent probabilities. You have
applied to three schools: University of California at
San Francisco (UCSF), Duluth School of Mines (DSM),
and Harvard (H). You guess that the probabilities you’ll
be accepted are p(UCSF)=0.10, p(DSM)=0.30, and
p(H)=0.50. Assume that the acceptance events are inde-
pendent.

(a) What is the probability that you get in somewhere
(at least one acceptance)?

(b) What is the probability that you will be accepted by
both Harvard and Duluth?

2. Probabilities of sequences. Assume that the four
bases A, C, T, and G occur with equal likelihood in a DNA
sequence of nine monomers.

(a) What is the probability of finding the sequence
AAATCGAGT through random chance?

(b) What is the probability of finding the sequence
AAAAAAAAA through random chance?

(c) What is the probability of finding any sequence that
has four A’s, two T’s, two G’s, and one C, such as
that in (a)?

3. The probability of a sequence (given a composition).
A scientist has constructed a secret peptide to carry a
message. You know only the composition of the peptide,
which is six amino acids long. It contains one serine S,
one threonine T, one cysteine C, one arginine R, and two
glutamates E. What is the probability that the sequence
SECRET will occur by chance?

4. Combining independent probabilities. You have a
fair six-sided die. You want to roll it enough times to
ensure that a 2 occurs at least once. What number of rolls
k is required to ensure that the probability is at least 2/3
that at least one 2 will appear?

5. Predicting compositions of independent events.
Suppose you roll a fair six-sided die three times.

(a) What is the probability of getting a 5 twice from all
three rolls of the dice?

(b) What is the probability of getting a total of at least
two 5’s from all three rolls of the die?

6. Computing a mean and variance. Consider the prob-
ability distribution p(x)=axn, 0≤x≤1, for a positive
integer n.

(a) Derive an expression for the constant a, to normal-
ize p(x).

(b) Compute the average ⟨x⟩ as a function of n.
(c) Compute σ 2 = ⟨x2⟩−⟨x⟩2 as a function of n.

7. Computing the average of a probability distribution.
Compute the average ⟨i⟩ for the probability distribution
function shown in Figure 1.17.

0 1 2 3 4
i

P (i )

0.0

0.2

0.4

0.3

0.1

Figure 1.17 A simple probability distribution.

8. Predicting coincidence. Your statistical mechanics
class has 25 students. What is the probability that at least
two classmates have the same birthday?

9. The distribution of scores on dice. Suppose that you
have n dice, each a different color, all unbiased and six-
sided.

(a) If you roll them all at once, how many distinguish-
able outcomes are there?

(b) Given two distinguishable dice, what is the most
probable sum of their face values on a given throw
of the pair? (That is, which sum between 2 and 12
has the greatest number of different ways of occur-
ring?)

(c) What is the probability of the most probable sum?

10. The probabilities of identical sequences of amino
acids. You are comparing protein amino acid sequences
for homology. You have a 20-letter alphabet (20 differ-
ent amino acids). Each sequence is a string n letters in
length. You have one test sequence and s different data
base sequences. You may find any one of the 20 different
amino acids at any position in the sequence, independent
of what you find at any other position. Let p represent the
probability that there will be a ‘match’ at a given position
in the two sequences.

(a) In terms of s, p, andn, how many of the s sequences
will be perfect matches (identical residues at every
position)?

(b) How many of the s comparisons (of the test
sequence against each database sequence) will
have exactly one mismatch at any position in the
sequences?

11. The combinatorics of disulfide bond formation. A
protein may contain several cysteines, which may pair
together to form disulfide bonds as shown in Figure 1.18.
If there is an even number n of cysteines, n/2 disulfide
bonds can form. How many different disulfide pairing
arrangements are possible?
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1

3

4

2

5

6

Figure 1.18 This disulfide bonding configuration with pairs
1–6, 2–5, and 3–4 is one of the many possible pairings. Count
all the possible pairing arrangements.

12. Predicting combinations of independent events. If
you flip an unbiased green coin and an unbiased red coin
five times each, what is the probability of getting four red
heads and two green tails?

13. A pair of aces. What is the probability of drawing
two aces in two random draws without replacement from
a full deck of cards?

14. Average of a linear function. What is the average
value of x, given a distribution function q(x) = cx, where
x ranges from zero to one, and q(x) is normalized?

15. The Maxwell–Boltzmann probability distribution
function. According to the kinetic theory of gases,
the energies of molecules moving along the x direction
are given by εx = (1/2)mv2

x , where m is mass and vx
is the velocity in the x direction. The distribution of
particles over velocities is given by the Boltzmann law,
p(vx)= e−mv

2
x/2kT . This is the Maxwell–Boltzmann distri-

bution (velocities may range from −∞ to +∞).
(a) Write the probability distribution p(vx), so that

the Maxwell–Boltzmann distribution is correctly
normalized.

(b) Compute the average energy ⟨ 1
2mv

2
x⟩.

(c) What is the average velocity ⟨vx⟩?
(d) What is the average momentum ⟨mvx⟩?

16. Predicting the rate of mutation based on the Pois-
son probability distribution function. The evolutionary
process of amino acid substitution in proteins is some-
times described by the Poisson probability distribution
function. The probabilityps(t) that exactly s substitutions
at a given amino acid position occur over an evolutionary
time t is

ps(t) =
e−λt(λt)s

s!
,

where λ is the rate of amino acid substitution per site per
unit time. Fibrinopeptides evolve rapidly: λF = 9.0 substi-
tutions per site per 109 years. Lysozyme is intermediate:
λL≈1.0. Histones evolve slowly: λH =0.010 substitutions
per site per 109 years.

(a) What is the probability that a fibrinopeptide has no
mutations at a given site in t = 1 billion years?

(b) What is the probability that lysozyme has three
mutations per site in 100 million years?

(c) We want to determine the expected number of muta-
tions ⟨s⟩ that will occur in time t. We will do this
in two steps. First, using the fact that probabilities
must sum to one, write α =

∑∞
s=0 (λt)s/s! in a sim-

pler form.
(d) Now write an expression for ⟨s⟩. Note that

∞∑

s=0

s(λt)s

s!
= (λt)

∞∑

s=1

(λt)s−1

(s−1)!
= λtα.

(e) Using your answer to part (d), determine the ratio
of the expected number of mutations in a fibrino-
peptide to the expected number of mutations in his-
tone protein, ⟨s⟩fib/⟨s⟩his [6].

17. Probability in court. In forensic science, DNA frag-
ments found at the scene of a crime can be compared with
DNA fragments from a suspected criminal to determine
the probability that a match occurs by chance. Suppose
that DNA fragment A is found in 1% of the population,
fragment B is found in 4% of the population, and fragment
C is found in 2.5% of the population.

(a) If the three fragments contain independent informa-
tion, what is the probability that a suspect’s DNA
will match all three of these fragment characteris-
tics by chance?

(b) Some people believe such a fragment analysis is
flawed because different DNA fragments do not
represent independent properties. As before, sup-
pose that fragment A occurs in 1% of the pop-
ulation. But now suppose the conditional proba-
bility of B, given A, is p(B|A)=0.40 rather than
0.040, and p(C|A)=0.25 rather than 0.025. There
is no additional information about any relationship
between B and C . What is the probability of a match
now?

18. Flat distribution. Given a flat distribution, from x =
−a to x = a, with probability distribution p(x) = 1/(2a):

(a) Compute ⟨x⟩.
(b) Compute ⟨x2⟩.
(c) Compute ⟨x3⟩.
(d) Compute ⟨x4⟩.

19. Family probabilities. Given that there are three
children in a family, what is the probability that:

(a) two are boys and one is a girl?
(b) all three are girls?

20. Evolutionary fitness. Suppose that the probability
of having the dominant allele (D) in a gene is p and the
probability of the recessive allele (R) is q=1−p. You have
two alleles, one from each parent.

(a) Write the probabilities of all the possibilities: DD,
DR, and RR.
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(b) If the fitness of DD is fDD, the fitness of DR is fDR,
and the fitness of RR is fRR, write the average fitness
in terms of p.

21. Ion-channel events. A biological membrane con-
tains N ion-channel proteins. The fraction of time that
any one protein is open to allow ions to flow through is
q. Express the probability P(m,N) thatm of the channels
will be open at any given time.

22. Joint probabilities: balls in a barrel. For Exam-
ple 1.10, two green balls and one red ball drawn from a
barrel without replacement:

(a) Compute the probability p(RG) of drawing one red
and one green ball in either order.

(b) Compute the probability p(GG) of drawing two
green balls.

23. Sports and weather. The San Francisco football
team plays better in fair weather. They have a 70% chance
of winning in good weather, but only a 20% chance of win-
ning in bad weather.

(a) If they play in the Super Bowl in Wisconsin and the
weatherman predicts a 60% chance of snow that day,
what is the probability that San Francisco will win?

(b) Given that San Francisco lost, what is the probability
that the weather was bad?

24. Monty Hall’s dilemma: a game show problem. You
are a contestant on a game show. There are three closed
doors: one hides a car and two hide goats. You point to
one door, call it C . The gameshow host, knowing what’s
behind each door, now opens either door A or B, to show
you a goat; say it’s door A. To win a car, you now get
to make your final choice: should you stick with your
original choice C , or should you now switch and choose
door B? (New York Times, July 21, 1991; Scientific Ameri-
can, August 1998.)

25. Probabilities of picking cards and rolling dice.
(a) What is the probability of drawing either a queen or

a heart in a normal deck of 52 cards?
(b) What is the probability P of getting three 7’s and

two 4’s on five independent rolls of a die?

26. Probability and translation-start codons. In
prokaryotes, translation of mRNA messages into pro-
teins is most often initiated at start codons on the mRNA
having the sequence AUG. Assume that the mRNA is
single-stranded and consists of a sequence of bases, each
described by a single letter A, C, U, or G.

Consider the set of all random pieces of bacterial
mRNA of length six bases.

(a) What is the probability of having either no A’s or no
U’s in the mRNA sequence of six base pairs long?

(b) What is the probability of a random piece of mRNA
having exactly one A, one U, and one G?

(c) What is the probability of a random piece of
mRNA of length six base pairs having an A directly

followed by a U directly followed by a G; in other
words, having an AUG in the sequence?

(d) What is the total number of random pieces of mRNA
of length six base pairs that have exactly one A,
exactly one U, and exactly one G, with A appearing
first, then the U, then the G? (e.g., AXXUXG)

27. DNA synthesis. Suppose that upon synthesizing a
molecule of DNA, you introduce a wrong base pair, on
average, every 1000 base pairs. Suppose you synthesize
a DNA molecule that is 1000 bases long.

(a) Calculate and draw a bar graph indicating the yield
(probability) of each product DNA, containing 0, 1,
2, and 3 mutations (wrong base pairs).

(b) Calculate how many combinations of DNA sequ-
ences of 1000 base pairs contain exactly 2 mutant
base pairs.

(c) What is the probability of having specifically the
500th base pair and the 888th base pair mutated
in the pool of DNA that has only two mutations?

(d) What is the probability of having two mutations
side-by-side in the pool of DNA that has only two
mutations?

28. Presidential election. Two candidates are running
for president. Candidate A has already received 80 elec-
toral votes and only needs 35 more to win. Candidate B
already has 50 votes, and needs 65 more to win.

Five states remain to be counted. Winning a state gives
a candidate 20 votes; losing gives the candidate zero votes.
Assume both candidates otherwise have equal chances to
win in those five states.

(a) Write an expression forWA, total, the number of ways
A can succeed at winning 40 more electoral votes.

(b) Write the corresponding expression for WB, total.
(c) What is the probability candidate A beats candi-

date B?
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