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Excitability

We have seen in previous chapters that the control of cell volume results in a potential
difference across the cell membrane, and that this potential difference causes ionic
currents to flow through channels in the cell membrane. Regulation of this membrane
potential by control of the ionic channels is one of the most important cellular func-
tions. Many cells, such as neurons and muscle cells, use the membrane potential as a
signal, and thus the operation of the nervous system and muscle contraction (to name
but two examples) are both dependent on the generation and propagation of electrical
signals.

To understand electrical signaling in cells, it is helpful (and not too inaccurate)
to divide all cells into two groups: excitable cells and nonexcitable cells. Many cells
maintain a stable equilibrium potential. For some, if currents are applied to the cell for
a short period of time, the potential returns directly to its equilibrium value after the
applied current is removed. Such cells are nonexcitable, typical examples of which are
the epithelial cells that line the walls of the gut. Photoreceptors (Chapter 19) are also
nonexcitable, although in their case, membrane potential plays an extremely important
signaling role nonetheless.

However, there are cells for which, if the applied current is sufficiently strong,
the membrane potential goes through a large excursion, called an action potential,
before eventually returning to rest. Such cells are called excitable. Excitable cells include
cardiac cells, smooth and skeletal muscle cells, some secretory cells, and most neurons.
The most obvious advantage of excitability is that an excitable cell either responds in
full to a stimulus or not at all, and thus a stimulus of sufficient amplitude may be
reliably distinguished from background noise. In this way, noise is filtered out, and a
signal is reliably transmitted.
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There are many examples of excitability that occur in nature. A simple example of
an excitable system is a household match. The chemical components of the match head
are stable to small fluctuations in temperature, but a sufficiently large temperature
fluctuation, caused, for example, by friction between the head and a rough surface,
triggers the abrupt oxidation of these chemicals with a dramatic release of heat and
light. The fuse of a stick of dynamite is a one-dimensional continuous version of an
excitable medium, and a field of dry grass is its two-dimensional version. Both of these
spatially extended systems admit the possibility of wave propagation (Chapter 6). The
field of grass has one additional feature that the match and dynamite fuse fail to have,
and that is recovery. While it is not very rapid by physiological standards, given a few
months of growth, a burned-over field of grass will regrow enough fuel so that another
fire may spread across it.

Although the generation and propagation of signals have been extensively stud-
ied by physiologists for at least the past 100 years, the most important landmark in
these studies is the work of Alan Hodgkin and Andrew Huxley, who developed the
first quantitative model of the propagation of an electrical signal along a squid giant
axon (deemed “giant” because of the size of the axon, not the size of the squid). Their
model was originally used to explain the action potential in the long giant axon of a
squid nerve cell, but the ideas have since been extended and applied to a wide vari-
ety of excitable cells. Hodgkin–Huxley theory is remarkable, not only for its influence
on electrophysiology, but also for its influence, after some filtering, on applied math-
ematics. FitzHugh (in particular) showed how the essentials of the excitable process
could be distilled into a simpler model on which mathematical analysis could make
some progress. Because this simplified model turned out to be of such great theoretical
interest, it contributed enormously to the formation of a new field of applied mathe-
matics, the study of excitable systems, a field that continues to stimulate a vast amount
of research.

Because of the central importance of cellular electrical activity in physiology, be-
cause of the importance of the Hodgkin–Huxley equations in the study of electrical
activity, and because it forms the basis for the study of excitability, it is no exaggera-
tion to say that the Hodgkin–Huxley equations are the most important model in all of
the physiological literature.

5.1 The Hodgkin–Huxley Model

In Chapter 2 we described how the cell membrane can be modeled as a capacitor in
parallel with an ionic current, resulting in the equation

Cm
dV
dt

+ Iion(V , t) = 0, (5.1)

where V , as usual, denotes the internal minus the external potential (V = Vi − Ve).
In the squid giant axon, as in many neural cells, the principal ionic currents are the
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Figure 5.1 The infamous giant squid (or even octopus, if you wish to be pedantic), having
nothing to do with the work of Hodgkin and Huxley on squid giant axon. From Dangerous Sea
Creatures, © 1976, 1977Time-Life Films, Inc.

Na+ current and the K+ current. Although there are other ionic currents, primarily the
Cl− current, in the Hodgkin–Huxley theory they are small and lumped together into
one current called the leakage current. Since the instantaneous I–V curves of open Na+

and K+ channels in the squid giant axon are approximately linear, (5.1) becomes

Cm
dV
dt

= −gNa(V − VNa)− gK(V − VK)− gL(V − VL) + Iapp, (5.2)

where Iapp is the applied current. During an action potential there is a measured influx
of 3.7 pmoles/cm2 of Na+ and a subsequent efflux of 4.3 pmoles/cm2 of K+. These
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amounts are so small that it is realistic to assume that the ionic concentrations, and
hence the equilibrium potentials, are constant and unaffected by an action potential.
It is important to emphasize that the choice of linear I–V curves for the three different
channel types is dictated largely by experimental data. Axons in other species (such as
vertebrates) have ionic channels that are better described by other I–V curves, such
as the GHK current equation (2.123). However, the qualitative nature of the results
remains largely unaffected, and so the discussion in this chapter, which is mostly of
a qualitative nature, remains correct for models that use more complex I–V curves to
describe the ionic currents.

Equation (5.2) is a first-order ordinary differential equation and can be written in
the form

Cm
dV
dt

= −geff(V − Veq) + Iapp, (5.3)

where geff = gNa +gK +gL and Veq = (gNaVNa +gKVK +gLVL)/geff . Veq is the membrane
resting potential and is a balance between the reversal potentials for the three ionic
currents. In fact, at rest, the Na+ and leakage conductances are small compared to the
K+ conductance, so that the resting potential is close to the K+ equilibrium potential.

The quantity Rm = 1/geff , the passive membrane resistance, is on the order of 1000
! cm2. The time constant for this equation is

τm = CmRm, (5.4)

on the order of 1 msec. It follows that, with a steady applied current, the membrane
potential should equilibrate quickly to

V = Veq + RmIapp. (5.5)

For sufficiently small applied currents this is indeed what happens. However, for
larger applied currents the response is quite different. Assuming that the model (5.2)
is correct, the only possible explanation for these differences is that the conductances
are not constant but depend in some way on the voltage. Historically, the key step to
determining the conductances was being able to measure the individual ionic currents
and from this to deduce the changes in conductances. This was brilliantly accomplished
by Hodgkin and Huxley in 1952.

5.1.1 History of the Hodgkin–Huxley Equations

(This section is adapted from Rinzel, 1990.) In a series of five articles that appeared
in the Journal of Physiology in 1952, Alan Lloyd Hodgkin and Andrew Fielding Huxley,
along with Bernard Katz, who was a coauthor of the lead paper and a collaborator in
several related studies, unraveled the dynamic ionic conductances that generate the
nerve action potential (Hodgkin et al., 1952; Hodgkin and Huxley, 1952a,b,c,d). They
were awarded the 1963 Nobel Prize in Physiology or Medicine (shared with John C.
Eccles, for his work on potentials and conductances at motorneuron synapses).
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Before about 1939, the membrane potential was believed to play an important role
in the membrane’s state, but there was no way to measure it. It was known that a cell’s
membrane separated different ionic concentrations inside and outside the cell. Apply-
ing the Nernst equation, Bernstein (1902) was led to suggest that the resting membrane
was semipermeable to K+, implying that, at rest, V should be around −70 mV. He be-
lieved that during activity there was a breakdown in the membrane’s resistance to all
ionic fluxes, and potential differences would disappear, i.e., V would approach zero.

In 1940, Cole and Curtis, using careful electrode placement coupled with biophysi-
cal and mathematical analysis, obtained the first convincing evidence for a substantial
transient increase in membrane conductivity during passage of the action potential.
While they estimated a large conductance increase, it was not infinite, so without a
direct measurement of membrane potential it was not possible to confirm or nullify
Bernstein’s hypothesis. During a postdoctoral year in the U.S. in 1937–1938, Hodgkin
established connections with Cole’s group at Columbia and worked with them at Woods
Hole in the summer. He and Curtis nearly succeeded in measuring V directly by tun-
neling along the giant axon with a glass micropipette. When each succeeded later
(separately, with other collaborators), they found, surprisingly, that V rose transiently
toward zero, but with a substantial overshoot. This finding brought into serious ques-
tion the hypothesis of Bernstein and provided much food for thought during World
War II, when Hodgkin, Huxley, and many other scientists were involved in the war
effort.

By the time postwar experimental work was resuming in England, Cole and Mar-
mont had developed the space-clamp technique. This method allowed one to measure
directly the total transmembrane current, uniform through a known area, rather than
spatially nonuniform as generated by a capillary electrode. To achieve current control
with space clamping, the axon was threaded with a metallic conductor (like a thin sil-
ver wire) to provide low axial resistance and thereby eliminate voltage gradients along
the length of the axon. Under these conditions the membrane potential is no longer a
function of distance along the axon, only of time. In addition, during the 1947 squid sea-
son, Cole and company made substantial progress toward controlling the membrane
potential as well.

In 1948, Hodgkin went to visit Cole (then at Chicago) to learn directly of their meth-
ods. With some further developments of their own, Hodgkin, Huxley, and Katz applied
the techniques with great success to record transient ionic fluxes over the physiological
ranges of voltages. Working diligently, they collected most of the data for their papers in
the summer of 1949. Next came the step of identifying the individual contributions of
the different ion species. Explicit evidence that both Na+ and K+ were important came
from the work of Hodgkin and Katz (1949). This also explained the earlier puzzling ob-
servations that V overshoots zero during an action potential, opposing the suggestion
of Bernstein. Instead of supposing that there was a transient increase in permeability
identical for all ions, Hodgkin and Katz realized that different changes in permeabil-
ities for different ions could account for the V time course, as V would approach the
Nernst potential for the ion to which the membrane was predominantly permeable, and
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this dominance could change with time. For example, at rest the membrane is most
permeable to K+, so that V is close to VK. However, if gK were to decrease and gNa were
to increase, then V would be pushed toward VNa, which is positive, thus depolarizing
the cell.

The question of how the changes in permeability were dynamically linked to V was
not completely stated until the papers of 1952. In fact, the substantial delay from data
collection in 1949 until final publication in 1952 can be attributed to the considerable
time devoted to data analysis, model formulation, and testing. Computer downtime
was also a factor, as some of the solutions of the Hodgkin–Huxley equations were
computed on a desktop, hand-cranked calculator. As Hodgkin notes, “The propagated
action potential took about three weeks to complete and must have been an enormous
labour for Andrew [Huxley]” (Hodgkin, 1976, p. 19).

The final paper of the 1952 series is a masterpiece of the scientific art. Therein they
present their elegant experimental data, a comprehensive theoretical hypothesis, a fit
of the model to the experimental data (obtained for fixed values of the membrane po-
tential), and then, presto, a prediction (from their numerical computations) of the time
course of the propagated action potential. In biology, where quantitatively predictive
theories are rare, this work stands out as one of the most successful combinations of
experiment and theory.

5.1.2 Voltage and Time Dependence of Conductances

The key step to sorting out the dynamics of the conductances came from the develop-
ment of the voltage clamp. A voltage clamp fixes the membrane potential, usually by
a rapid step from one voltage to another, and then measures the current that must be
supplied in order to hold the voltage constant. Since the supplied current must equal
the transmembrane current, the voltage clamp provides a way to measure the tran-
sient transmembrane current that results. The crucial point is that the voltage can be
stepped from one constant level to another, and so the ionic currents can be measured
at a constant, known, voltage. Thus, even when the conductances are functions of the
voltage (as is actually the case), a voltage clamp eliminates any voltage changes and
permits measurement of the conductances as functions of time only.

Hodgkin and Huxley found that when the voltage was stepped up and held fixed
at a higher level, the total ionic current was initially inward, but at later times an
outward current developed (Fig. 5.2). For a number of reasons, not discussed here,
they argued that the initial inward current is carried almost entirely by Na+, while the
outward current that develops later is carried largely by K+. With these assumptions,
Hodgkin and Huxley were able to use a clever trick to separate the total ionic current
into its constituent ionic parts. They replaced 90% of the extracellular Na+ in the
normal seawater bath with choline (a viscous liquid vitamin B complex found in many
animal and vegetable tissues), which rendered the axon nonexcitable but changed the
resting potential only slightly. Since it is assumed that immediately after the voltage
has been stepped up, the ionic current is all carried by Na+, it is possible to measure
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Figure 5.2 Experimental results describing the total
membrane current in response to a step depolarization.
The numbers on the left give the final value of the mem-
brane potential, in mV. The interval between dots on
the horizontal scale is 1 ms, while one division on
the vertical scale represents 0.5 mA/cm2. (Hodgkin and
Huxley, 1952a, Fig. 2a.)

the initial Na+ currents in response to a voltage step. Note that although the Na+

currents can be measured directly immediately after the voltage step, they cannot be
measured directly over a longer time period, as the total ionic current begins to include
a contribution from the K+ current. If we denote the Na+ currents for the two cases of
normal extracellular Na+ and zero extracellular Na+ by I1

Na and I2
Na respectively, then

the ratio of the two currents,

I1
Na/I2

Na = K, (5.6)

say, can be measured directly from the experimental data.
Next, Hodgkin and Huxley made two further assumptions. First, they assumed that

the Na+ current ratio K is independent of time and is thus constant over the course
of each voltage clamp experiment. In other words, the amplitude and direction of the
Na+ current may be affected by the low extracellular Na+ solution, but its time course
is not. Second, they assumed that the K+ channels are unaffected by the change in
extracellular Na+ concentration. There is considerable evidence that the Na+ and K+

channels are independent. Tetrodotoxin (TTX) is known to block Na+ currents while
leaving the K+ currents almost unaffected, while tetraethylammonium (TEA) has the
opposite effect of blocking the K+ current but not the Na+ current. To complete the
argument, since Iion = INa + IK, and I1

K = I2
K, it follows that I1

ion − I1
Na = I2

ion − I2
Na, and
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thus

I1
Na = K

K − 1
(I1

ion − I2
ion), (5.7)

IK = I1
ion − KI2

ion
1− K

. (5.8)

Hence, given measurements of the total ionic currents in the two cases, and given the
ratio K of the Na+ currents, it is possible to determine the complete time courses of
both the Na+ and K+ currents.

Finally, from knowledge of the individual currents, one obtains the conductances
as

gNa = INa

V − VNa
, gK = IK

V − VK
. (5.9)

Note that this result relies on the specific (linear) model used to describe the I–V curve
of the Na+ and K+ channels, but, as stated above, we assume throughout that the
instantaneous I–V curves of the Na+ and K+ channels are linear.

Samples of Hodgkin and Huxley’s data are shown in Fig. 5.3. The plots show ionic
conductances as functions of time following a step increase or decrease in the mem-
brane potential. The important observation is that with voltages fixed, the conductances
are time-dependent. For example, when V is stepped up and held fixed at a higher level,
gK does not increase instantaneously, but instead increases over time to a final steady
level. Both the time constant of the increase and the final value of gK are dependent on
the value to which the voltage is stepped. Further, gK increases in a sigmoidal fashion,
with a slope that first increases and then decreases (Fig. 5.3A and B). Following a step
decrease in the voltage, gK falls in a simple exponential fashion (Fig. 5.3A). This par-
ticular feature of gK—a sigmoidal increase coupled with an exponential decrease—is
important in what follows when we model gK. The behavior of gNa is more complex.
Following a step increase in voltage, gNa first increases, but then decreases again, all at
the same fixed voltage (Fig. 5.3C). Hence, the time dependence of gNa requires a more
complex model than for that of gK.

The Potassium Conductance
From the experimental data shown in Fig. 5.3A and B, it is reasonable to expect that
gK obeys some differential equation,

dgK

dt
= f (v, t), (5.10)

say, where v = V−Veq; i.e., v is the difference between the membrane potential and the
resting potential. (Of course, since Veq is a constant, dv/dt = dV/dt.) However, for gK to
have the required sigmoidal increase and exponential decrease, Hodgkin and Huxley
realized that it would be easier to write gK as some power of a different variable, n say,
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Figure 5.3 Conductance changes as a function of time at different voltage clamps. A: The
response of gK to a step increase in V and then a step decrease. B: Responses of gK to step
increases in V of varying magnitudes.The number on each curve gives the depolarization in mV,
and the smooth curves are calculated from solution of (5.11) and (5.12), with the initial condition
gK(t = 0) = 0.24 mS/cm2. The vertical scale is the same in curves A–J, but is increased by a
factor of four in the lower two curves. For clarity, the baseline of each curve has been shifted
up. C: Responses of gNa to step increases in V of magnitudes given by the numbers on the
left, in mV.The smooth curves are the model solutions.The vertical scales on the right are in
units of mS/cm2. (Hodgkin and Huxley, 1952d, Figs. 2, 3, and 6.)

where n satisfies a first-order differential equation. Thus, they wrote

gK = ḡKn4, (5.11)

for some constant ḡK. The fourth power was chosen not for physiological reasons,
but because it was the smallest exponent that gave acceptable agreement with the
experimental data. The secondary variable n obeys the differential equation

τn(v)
dn
dt

= n∞(v)− n, (5.12)
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for some functions τn(v) and n∞(v) that must be determined from the experimental
data in a manner that is described below. Equation (5.12) is often written in the form

dn
dt

= αn(v)(1− n)− βn(v)n, (5.13)

where

n∞(v) = αn(v)

αn(v) + βn(v)
, (5.14)

τn(v) = 1
αn(v) + βn(v)

. (5.15)

At elevated potentials n(t) increases monotonically and exponentially toward its resting
value, thereby turning on, or activating, the K+ current. Since the Nernst potential is
below the resting potential, the K+ current is an outward current at potentials greater
than rest. The function n(t) is called the K+ activation.

It is instructive to consider in detail how such a formulation for gK results in the
required sigmoidal increase and exponential decrease. Suppose that at time t = 0, v is
increased from 0 to v0 and then held constant, and suppose further that n is at steady
state when t = 0, i.e., n(0) = n∞(0). For simplicity, we assume that n∞(0) = 0, although
this assumption is not necessary for the argument. Solving (5.12) then gives

n(t) = n∞(v0)

[
1− exp

( −t
τn(v0)

)]
, (5.16)

which is an increasing curve (with monotonically decreasing slope) that approaches
its maximum at n∞(v0). Raising n to the fourth power gives a sigmoidally increasing
curve as required. Higher powers of n result in curves with a greater maximum slope
at the point of inflection. However, in response to a step decrease in v, from v0 to 0 say,
the solution for n is

n(t) = n∞(v0) exp
( −t
τn(0)

)
, (5.17)

in which case n4 is exponentially decreasing, with no inflection point.
It remains to describe how the functions n∞ and τn are determined from the ex-

perimental data. For any given voltage step, the time constant τn, and the final value
of n, namely n∞, can be determined by fitting (5.16) to the experimental data. By this
procedure one can determine τn and n∞ at a discrete set of values for v, i.e., those values
used experimentally. Typical data points for n∞ are shown in Fig. 5.4 as symbols. To
obtain a complete description of gK, valid for all voltages and not only those used in
the experiments, Hodgkin and Huxley fitted a smooth curve through the data points.
The functional form of the smooth curve has no physiological significance, but is a
convenient way of providing a continuous description of n∞. A similar procedure is
followed for τn. The continuous descriptions of n∞ and τn (expressed in terms of αn
and βn) are given in (5.28) and (5.29) below.
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Figure 5.4 Data points (symbols) of n∞, determined by fitting (5.16) to the experimental time
courses.The smooth curve through the symbols provides a continuous description of n∞, and
its functional form has no physiological significance. In the original plot (Hodgkin and Huxley,
1952d, Fig. 5) V was calculated with a reverse sign, which has here been changed to agree with
modern conventions.Thus, the horizontal axis appears reversed.

The Sodium Conductance
The time dependence for the Na+ conductance is more difficult to unravel. From the
experimental data it is suggested that there are two processes at work, one that turns
on the Na+ current and one that turns it off. Hodgkin and Huxley proposed that the
Na+ conductance is of the form

gNa(v) = ḡNam3h, (5.18)

and they fitted the time-dependent behavior of m and h to exponentials with dynamics

dw
dt

= αw(1−w)− βww, (5.19)

where w = m or h. Because m is small at rest and first increases, it is called the sodium
activation variable, and because h shuts down, or inactivates, the Na+ current, it is
called the sodium inactivation variable. When h = 0, the Na+ current is completely
inactivated. The overall procedure is similar to that used in the specification of gK. For
any fixed voltage step, the unknown functions αw and βw are determined by fitting to
the experimental curves (Fig. 5.3C), and then smooth curves, with arbitrary functional
forms, are fitted through the data points for αw and βw.

Summary of the Equations
In summary, the Hodgkin–Huxley equations for the space-clamped axon are

Cm
dv
dt

= −ḡKn4(v− vK)− ḡNam3h(v− vNa)− ḡL(v− vL) + Iapp, (5.20)
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dm
dt

= αm(1−m)− βmm, (5.21)

dn
dt

= αn(1− n)− βnn, (5.22)

dh
dt

= αh(1− h)− βhh. (5.23)

The specific functions α and β proposed by Hodgkin and Huxley are, in units of (ms)−1,

αm = 0.1
25− v

exp
(

25−v
10

)
− 1

, (5.24)

βm = 4 exp
(−v

18

)
, (5.25)

αh = 0.07 exp
(−v

20

)
, (5.26)

βh = 1

exp
(

30−v
10

)
+ 1

, (5.27)

αn = 0.01
10− v

exp
(

10−v
10

)
− 1

, (5.28)

βn = 0.125 exp
(−v

80

)
. (5.29)

For these expressions, the potential v is the deviation from rest (v = V−Veq), measured
in units of mV, current density is in units of µA/cm2, conductances are in units of
mS/cm2, and capacitance is in units of µF/cm2. The remaining parameters are

ḡNa = 120, ḡK = 36, ḡL = 0.3, Cm = 1, (5.30)

with (shifted) equilibrium potentials vNa = 115, vK = −12, and vL = 10.6. (The astute
reader will notice immediately that these values are not quite consistent with the values
given in Table 2.1. Instead, these correspond to VNa = 50 mV, VK = −77 mV, VL = −54.4
mV, with an equilibrium membrane potential of Veq = −65 mV. These values are close
enough to those of Table 2.1 to be of no concern.) In Fig. 5.5 are shown the steady-state
functions and the time constants.

In Chapter 3 we discussed simple models of the gating of Na+ and K+ channels and
showed how the rate constants in simple kinetic schemes could be determined from
whole-cell or single-channel data. We also showed how models of the form (5.20)–(5.23)
can be derived by modeling the ionic channels as consisting of multiple subunits, each
of which obeys a simple two-state model. For example, the Hodgkin–Huxley Na+ gating
equations can be derived from the assumption that the Na+ channel consists of three
“m” gates and one “h” gate, each of which can be either closed or open. If the gates
operate independently, then the fraction of open Na+ channels is m3h, where m and h
obey the equation of the two-state channel model. Similarly, if there are four “n” gates
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Figure 5.5 In the left panel are the steady-state functions, and in the right panel are the time
constants of the Hodgkin–Huxley equations (5.20)–(5.23).

per K+ channel, all of which must be open for K+ to flow, then the fraction of open K+

channels is n4.
Now comes the most interesting challenge facing these equations. Having incorpo-

rated the measurements of conductance found from voltage-clamp experiments, one
wonders whether these equations reproduce a realistic action potential, and if so, by
what mechanism is the action potential produced? We can describe in qualitative terms
how the Hodgkin–Huxley equations should work. If small currents are applied to a cell
for a short period of time, the potential returns rapidly to its equilibrium v = 0 after
the applied current is removed. The equilibrium potential is close to the K+ Nernst
potential vK = −12, because at rest, the Na+ and leakage conductances are small.
There is always competition among the three ionic currents to drive the potential to
the corresponding resting potential. For example, if the K+ and leakage currents could
be blocked or the Na+ conductance dramatically increased, then the term gNa(V−VNa)

should dominate (5.2), and as long as v is below vNa, an inward Na+ current would
drive the potential toward vNa. Similarly, while v is above vK, the K+ current is outward
in an attempt to drive v toward vK. Notice that since vK < vL < vNa, v is necessarily
restricted to lie in the range vK < v < vNa.

If gNa and gK were constant, that would be the end of the story. The equilibrium at
v = 0 would be a stable equilibrium, and, following any stimulus, the potential would
return exponentially to rest. But since gNa and gK can change, the different currents can
exert their respective influences. The actual sequence of events is determined by the
dynamics of m, n, and h. The most important observation for the moment is that τm(v)

is much smaller than either τn(v) or τh(v), so that m(t) responds much more quickly
to changes in v than either n or h. We can now understand why the Hodgkin–Huxley
system is an excitable system. As noted above, if the potential v is raised slightly by a
small stimulating current, the system returns to its stable equilibrium. However, during
the period of time that the potential v is elevated, the Na+ activation m tracks m∞(v). If
the stimulating current is large enough to raise the potential and therefore m∞(v) to a
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high enough level (above its threshold), then before the system can return to rest, m will
increase sufficiently to change the sign of the net current, resulting in an autocatalytic
inward Na+ current. Now, as the potential rises, m continues to rise, and the inward
Na+ current is increased, further adding to the rise of the potential.

If nothing further were to happen, the potential would be driven to a new equilib-
rium at vNa. However, here is where the difference in time constants plays an important
role. When the potential is at rest, the Na+ inactivation variable, h, is positive, about
0.6. As the potential increases, h∞ decreases toward zero, and as h approaches zero,
the Na+ current is inactivated because gNa approaches zero. However, because the time
constant τh(v) is much larger than τm(v), there is a considerable delay between turning
on the Na+ current (as m increases) and turning off the Na+ current (as h decreases).
The net effect of the two different time scales of m and h is that the Na+ current is
at first turned on and later turned off, and this is seen as an initial increase of the
potential, followed by a decrease toward rest.

At about the same time that the Na+ current is inactivated, the outward K+ current
is activated. This is because of the similarity of the time constants τn(v) and τh(v).
Activation of the K+ current drives the potential below rest toward vK. When v is
negative, n declines, and the potential eventually returns to rest, and the whole process
can start again. Fig. 5.6A shows a plot of the potential v(t) during an action potential
following a superthreshold stimulus. Fig. 5.6B shows m(t), n(t), and h(t) during the
same action potential.

There are four recognizable phases of an action potential: the upstroke, excited,
refractory, and recovery phases. The refractory period is the period following the excited
phase when additional stimuli evoke no substantial response, even though the potential
is below or close to its resting value. There can be no response, since the Na+ channels
are inactivated because h is small. As h gradually returns to its resting value, further
responses once again become possible.

Oscillations in the Hodgkin–Huxley Equations
There are two ways that the Hodgkin–Huxley system can be made into an autonomous
oscillator. The first is to inject a steady current of sufficient strength, i.e., by increas-
ing Iapp. Such a current raises the resting potential above the threshold for an action
potential, so that after the axon has recovered from an action potential, the potential
rises to a superthreshold level at which another action potential is evoked.

In Fig. 5.7A we plot the steady state v (i.e., V − Veq) as a function of the applied
current, Iapp. The stable steady state is plotted as a solid line, and an unstable steady
state is plotted with a dashed line. As Iapp increases, so does v, and the steady state is
stable for Iapp < 9.78, at which value it loses stability in a subcritical Hopf bifurcation.
This bifurcation gives rises to a branch of unstable limit cycle oscillations which bends
backwards initially. Unstable limit cycles are drawn with a dashed line, and stable ones
with a solid line.

In Fig. 5.7A we also plot the minimum and maximum of the oscillations (i.e., osc
min and osc max) as functions of Iapp. The branch of unstable limit cycles terminates at
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Figure 5.6 An action potential in the Hodgkin–Huxley equations. A: The action potential;
B: the gating variables during an action potential, and C: the conductances during an action
potential.

a limit point (a saddle-node of periodics, or SNP, bifurcation) where it coalesces with
a branch of stable limit cycles. The stable periodic solutions are observed by direct
numerical simulation of the differential equations. At larger values of Iapp, the limit
cycles disappear in another Hopf bifurcation, this time a supercritical one, leaving
only a branch of stable steady-state solutions for higher values of Iapp.

Hence, for intermediate values of Iapp, stable oscillations exist. Two examples are
shown in Fig. 5.7B. When Iapp is too high, the model exhibits only a raised steady
state. Furthermore, for a narrow range of values of Iapp, slightly below the lower Hopf
bifurcation, a stable steady state, an unstable periodic orbit, and a stable periodic orbit
coexist.

Immersing the axon in a bath of high extracellular K+ has the same effect through a
slightly different mechanism. Increased extracellular K+ has the effect of increasing the
K+ Nernst potential, raising the resting potential (since the resting potential is close to
the K+ Nernst potential). If this increase of the K+ Nernst potential is sufficiently large,
the resting potential becomes superthreshold, and autonomous oscillations result.
This mechanism of creating an autonomous oscillator out of normally excitable but
nonoscillatory cells is important for certain cardiac arrhythmias.
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Figure 5.7 A: Bifurcation diagram of the Hodgkin–Huxley equations, with the applied current,
Iapp as the bifurcation parameter. HB denotes a Hopf bifurcation, SNP denotes a saddle-node of
periodics bifurcation, osc max and osc min denote, respectively, the maximum and minimum
of an oscillation, and ss denotes a steady state. Solid lines denote stable branches, dashed or
dotted lines denote unstable branches. B: Sample oscillations at two different values of Iapp.

5.1.3 Qualitative Analysis

FitzHugh (1960, 1961, 1969) provided a particularly elegant qualitative description
of the Hodgkin–Huxley equations that allows a better understanding of the model’s
behavior. More detailed analyses have also been given by Rinzel (1978), Troy (1978),
Cole et al. (1955), and Sabah and Spangler (1970). FitzHugh’s approach is based on
the fact that some of the model variables have fast kinetics, while others are much
slower. In particular, m and v are fast variables (i.e., the Na+ channel activates quickly,
and the membrane potential changes quickly), while n and h are slow variables (i.e.,
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Na+ channels are inactivated slowly, and the K+ channels are activated slowly). Thus,
during the initial stages of the action potential, n and h remain essentially constant
while m and v vary. This allows the full four-dimensional phase space to be simplified
by fixing the slow variables and considering the behavior of the model as a function
only of the two fast variables. Although this description is accurate only for the initial
stages of the action potential, it provides a useful way to study the process of excitation.

The Fast Phase Plane
Thus motivated, we fix the slow variables n and h at their respective resting states,
which we call n0 and h0, and consider how m and v behave in response to stimulation.
The differential equations for the fast phase plane are

Cm
dv
dt

= −ḡKn4
0(v− vK)− ḡNam3h0(v− vNa)− ḡL(v− vL), (5.31)

dm
dt

= αm(1−m)− βmm, (5.32)

or, equivalently,

τm
dm
dt

= m∞ −m. (5.33)

This is a two-dimensional system and can be studied in the (m, v) phase plane, a plot
of which is given in Fig. 5.8. The curves defined by dv/dt = 0 and dm/dt = 0 are the v
and m nullclines, respectively. The m nullcline is the curve m = m∞(v), which we have
seen before (in Fig. 5.5), while the v nullcline is the curve

v = ḡNam3h0vNa + ḡKn4
0vK + ḡLvL

ḡNam3h0 + ḡKn4
0 + ḡL

. (5.34)

For the parameters of the Hodgkin–Huxley equations, the m and v nullclines intersect in
three places, corresponding to three steady states of the fast equations. Note that these
three intersections are not steady states of the full model, only of the fast subsystem,
and, to be precise, should be called pseudo-steady states. However, in the context of
the fast phase plane we continue to call them steady states. We label the three steady
states vr, vs, and ve (for resting, saddle, and excited).

It is left as an exercise to show that vr and ve are stable steady states of the fast sub-
system, while vs is a saddle point. Since vs is a saddle point, it has a one-dimensional
stable manifold, shown as a dot-dash line in Fig. 5.8. This stable manifold divides the
(m, v) plane into two regions: any trajectory starting to the left of the stable mani-
fold is prevented from reaching ve and must eventually return to the resting state, vr.
However, any trajectory starting to the right of the stable manifold is prevented from
returning to the resting state and must eventually end up at the excited state, ve. Hence,
the stable manifold, in combination with the two stable steady states, gives rise to a
threshold phenomenon. Any perturbation from the resting state that is not large enough
to cross the stable manifold eventually dies away, but a perturbation that crosses the
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Figure 5.8 The Hodgkin–Huxley fast phase plane, showing the nullclines dv/dt = 0 and
dm/dt = 0 (with h0 = 0.596, n0 = 0.3176), two sample trajectories and the stable manifold of
the saddle point vs .

stable manifold results in a large excursion in the voltage to the excited state. Sample
trajectories are sketched in Fig. 5.8.

If m and v were the only variables in the model, then v would stay at ve indefinitely.
However, as pointed out before, ve is not a steady state of the full model. Thus, to see
what happens on a longer time scale, we must consider how slow variations in n and h
affect the fast phase plane. First note that since ve > vr, it follows that h∞(ve) < h∞(vr)

and n∞(ve) > n∞(vr). Hence, while v is at the excited state, h begins to decrease,
thus inactivating the Na+ conductance, and n starts to increase thus activating the
K+ conductance. Next note that although the m nullcline in the fast phase plane is
independent of n and h, the v nullcline is not. In Fig. 5.8 the nullclines were drawn
using the steady-state values for n and h: different values of n and h change the shape
of the v nullcline. As n increases and h decreases, the v nullcline moves to the left and
up, as illustrated in Fig. 5.9. As the v nullcline moves up and to the left, ve and vs move
toward each other, while vr moves to the left. During this phase the voltage is at ve
and thus decreases slowly. Eventually, ve and vs coalesce and disappear in a saddle-
node bifurcation. When this happens vr is the only remaining steady state, and so the
solution must return to the resting state. Note that since the v nullcline has moved up
and to the left, vr is not a steady state of the full system. However, when v decreases
to vr, n and h both return to their steady states and as they do so, vr slowly increases
until the steady state of the full system is reached and the action potential is complete.
A schematic diagram of a complete action potential is shown in Fig. 5.10.
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Figure 5.9 The Hodgkin–Huxley fast phase plane as a function of the slow variables, showing
the m nullcline (dashed), the movement of the v nullcline (solid) and the disappearance of the
steady states. For these curves, parameter values are (1) h0 = 0.596, n0 = 0.3176; (2) h0 = 0.4,
n0 = 0.5; (3) h0 = 0.2, n0 = 0.7; and (4) h0 = 0.1, n0 = 0.8.

The Fast–Slow Phase Plane
In the above analysis, the four-dimensional phase space was simplified by taking a
series of two-dimensional cross-sections, those with various fixed values of n and h.
However, by taking a different cross-section other aspects of the action potential can
be highlighted. In particular, by taking a cross-section involving one fast variable and
one slow variable we obtain a description of the Hodgkin–Huxley equations that has
proven to be extraordinarily useful.

We extract a single fast variable by assuming that m is always in instantaneous
equilibrium, and thus m = m∞(v). This corresponds to assuming that activation of
the Na+ conductance is on a time scale faster than that of the voltage. Next, FitzHugh
noticed that during the course of an action potential, h+n≈0.8 (notice the approximate
symmetry of n(t) and h(t) in Fig. 5.6), and thus h can be eliminated by setting h = 0.8−n.
With these simplifications, the Hodgkin–Huxley equations contain one fast variable v
and one slow variable n, and can be written as

−Cm
dv
dt

= ḡKn4(v− vK) + ḡNam3
∞(v)(0.8− n)(v− vNa) + ḡL(v− vL), (5.35)

dn
dt

= αn(1− n)− βnn. (5.36)
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Figure 5.10 Schematic diagram of a complete action potential. A: Superthreshold stimulus
causes a fast increase of v to the excited state. B: v is sitting at the excited state, ve , decreasing
slowly as n increases and h decreases, i.e., as ve moves toward vs . C: ve and vs disappear at
a saddle-node bifurcation, and so, D:The solution must return to the resting state vr . E: n and
h slowly return to their resting states, and as they do so, vr slowly increases until the steady
state of the full four-dimensional system is reached.

For convenience we let f (v, n) denote the right-hand side of (5.35), i.e.,

−f (v, n) = ḡKn4(v− vK) + ḡNam3
∞(v)(0.8− n)(v− vNa) + ḡL(v− vL). (5.37)

A plot of the nullclines of the fast–slow subsystem is given in Fig. 5.11A. The v
nullcline is defined by f (v, n) = 0 and has a cubic shape, while the n nullcline is n∞(v)

and is monotonically increasing. There is a single intersection (at least for the given
parameter values) and thus a single steady state. Because v is a fast variable and n is
a slow one, the solution trajectories are almost horizontal except where f (v, n) ≈ 0.
The curve f (v, n) = 0 is called the slow manifold. Along the slow manifold the solution
moves slowly in the direction determined by the sign of dn/dt, but away from the
slow manifold the solution moves quickly in a horizontal direction. From the sign of
dv/dt it follows that the solution trajectories move away from the middle branch of
the slow manifold and toward the left and right branches. Thus, the middle branch
is termed the unstable branch of the slow manifold. This unstable branch acts as a
threshold. If a perturbation from the steady state is small enough so that v does not
cross the unstable manifold, then the trajectory moves horizontally toward the left
and returns to the steady state. However, if the perturbation is large enough so that v
crosses the unstable manifold, then the trajectory moves to the right until it reaches
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Figure 5.11 A: Fast–slow phase plane of the Hodgkin–Huxley equations (with Iapp = 0),
showing the nullclines and an action potential. B: Action potential of panel A, plotted as a
function of time.

the right branch of the slow manifold, which corresponds to the excited state. On this
right branch dn/dt > 0, and so the solution moves slowly up the slow manifold until the
turning point is reached. At the turning point, n cannot increase any further, as the right
branch of the slow manifold ceases to exist, and so the solution moves over to the left
branch of the slow manifold. On this left branch dn/dt < 0, and so the solution moves
down the left branch until the steady state is reached, completing the action potential
(Fig. 5.11A). A plot of the potential as a function of time is shown in Fig. 5.11B.

The variables v and n are usually called the excitation and recovery variables,
respectively: excitation because v governs the rise to the excited state, and recovery
because n causes the return to the steady state. In the absence of n the solution would
stay at the excited state indefinitely.

There is a close relationship between the fast phase plane and the fast–slow phase
plane. Recall that in the fast phase plane, the v and m nullclines have three intersection
points when n = n0 and h = h0. These three intersections correspond to the three
branches of the curve f (v, n0) = 0. In other words, when n is fixed at n0, the equation
f (v, n0) = 0 has three possible solutions, corresponding to vr, vs and ve in the fast
phase plane. However, consideration of Fig. 5.11 shows that, as n increases, the two
rightmost branches of the slow manifold (i.e., the dashed line) coalesce and disappear.
This is analogous to the merging and disappearance of ve and vs seen in the fast phase
plane (Fig. 5.9). The fast–slow phase plane is a convenient way of summarizing how
vr, vs, and ve depend on the slow variables.

This representation of the Hodgkin–Huxley equations in terms of two variables,
one fast and one slow, is the basis of the FitzHugh–Nagumo model of excitability, and
models of this generic type are discussed in some detail throughout this book.
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Figure 5.12 A: Fast–slow phase plane of the Hodgkin–Huxley equations, with Iapp = 50,
showing the nullclines and an oscillation. B:The oscillations of panel A, plotted as a function
of time.

Oscillations in the Fast–Slow Phase Plane
As was true for the full Hodgkin–Huxley equations, the addition of an applied current
to the fast–slow phase plane gives rise to oscillations. Why this is so can be seen in
Fig. 5.12. As Iapp increases, the cubic nullcline moves across and up, until the two null-
clines intersect on the middle branch of the cubic. The trajectory can never approach
this steady state, always falling off each of the branches of the cubic, and alternating
periodically between the two stable branches in what is called a relaxation limit cycle.

5.2 The FitzHugh–Nagumo Equations

There is considerable value in studying systems of equations that are simpler than the
Hodgkin–Huxley equations but that retain many of their qualitative features. This is
the motivation for the FitzHugh–Nagumo equations and their variants. Basically, the
FitzHugh–Nagumo equations extract the essential behavior of the Hodgkin–Huxley
fast–slow phase plane and presents it in a simplified form. Thus, the FitzHugh–Nagumo
equations have two variables, one fast (v) and one slow (w). The fast variable has a
cubic nullcline and is called the excitation variable, while the slow variable is called the
recovery variable and has a nullcline that is monotonically increasing. The nullclines
have a single intersection point, which, without loss of generality, is assumed to be
at the origin. A schematic diagram of the phase plane is given in Fig. 5.13, where we
introduce some of the notation used later in this section.
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Figure 5.13 Schematic diagram of the generalized FitzHugh–Nagumo phase plane.

The traditional FitzHugh–Nagumo equations are obtained by assuming a cubic
nullcline for v and a linear nullcline for w. Thus,

ϵ
dv
dt

= f (v)−w + Iapp, (5.38)

dw
dt

= v− γw, (5.39)

where

f (v) = v(1− v)(v− α), for 0 < α < 1, ϵ ≪ 1. (5.40)

Iapp is the applied current. Typical values would be α = 0.1, γ = 0.5 and ϵ = 0.01.
Other choices for f (v) include the McKean model (McKean, 1970), for which

f (v) = H(v− α)− v, (5.41)

where H is the Heaviside function. This choice recommends itself because then the
model is piecewise linear, allowing explicit solutions of many interesting problems.
Another piecewise-linear model (also proposed by McKean, 1970) has

f (v) =

⎧
⎨

⎩

−v, for v < α/2,
v− α, for α

2 < v < 1+α
2 ,

1− v, for v > 1+α
2 .

(5.42)

A third piecewise-linear model that has found widespread usage is the Pushchino
model, so named because of its development in Pushchino (about 70 miles south of
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Figure 5.14 Circuit diagram for the
FitzHugh–Nagumo equations.

Moscow), by Krinsky, Panfilov, Pertsov, Zykov, and their coworkers. The details of the
Pushchino model are described in Exercise 13.

The FitzHugh–Nagumo equations can be derived from a simplified model of the cell
membrane (Fig. 5.14). Here the cell (or membrane patch) consists of three components,
a capacitor representing the membrane capacitance, a nonlinear current–voltage device
for the fast current, and a resistor, inductor, and battery in series for the recovery
current. In the 1960s Nagumo, a Japanese electrical engineer, built this circuit using
a tunnel diode as the nonlinear element (Nagumo et al., 1964), thereby attaching his
name to this system.

Using Kirchhoff’s laws, we can write down equations for the behavior of this
membrane circuit diagram. We find

Cm
dV
dτ

+ F(V) + i = −I0, (5.43)

L
di
dτ

+ Ri = V − V0, (5.44)

where I0 is the applied external current, i is the current through the resistor–inductor,
V = Vi − Ve is the membrane potential, and V0 is the potential gain across the battery.
Here τ is used to represent dimensional time because we shortly introduce t as a di-
mensionless time variable. The function F(V) is assumed to be of cubic shape, having
three zeros, of which the smallest V = 0 and largest V = V1 are stable solutions of
the differential equation dV/dτ = −F(V). We take R1 to be the passive resistance of
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the nonlinear element, R1 = 1/F′(0). Now we introduce the dimensionless variables
v = V/V1, w = R1i/V1, f (v) = −R1F(V1v)/V1, and t = Lτ/R1. Then (5.43) and (5.44)
become

ϵ
dv
dt

= f (v)−w−w0, (5.45)

dw
dt

= v− γw− v0, (5.46)

where ϵ = R2
1Cm/L, w0 = R1I0/V1, v0 = V0/V1, and γ = R/R1.

An important variant of the FitzHugh–Nagumo equations is the van der Pol oscilla-
tor. An electrical engineer, van der Pol built the circuit using triodes because it exhibits
stable oscillations. As there was little interest in oscillatory circuits at the time, he pro-
posed his circuit as a model of an oscillatory cardiac pacemaker (van der Pol and van
der Mark, 1928). Since then it has become a classic example of a system with limit cycle
behavior and relaxation oscillations, included in almost every textbook on oscillations
(see, for example, Stoker, 1950, or Minorsky, 1962).

If we eliminate the resistor R from the circuit in Fig. 5.14, differentiate (5.43), and
eliminate the current i, we get the second-order differential equation

Cm
d2V
dτ2 + F′(V)

dV
dτ

+ V
L

= V0

L
. (5.47)

Following rescaling, and setting F(v) = A(v3/3−v), we arrive at the van der Pol equation

v′′ + a(v2 − 1)v′ + v = 0. (5.48)

5.2.1 The Generalized FitzHugh-Nagumo Equations

From now on, by the generalized FitzHugh–Nagumo equations we mean the system of
equations

ϵ
dv
dt

= f (v, w), (5.49)

dw
dt

= g(v, w), (5.50)

where the nullcline f (v, w) = 0 is of “cubic” shape. By this we mean that for a finite
range of values of w, there are three solutions v = v(w) of the equation f (v, w) = 0.
These we denote by v = V−(w), v = V0(w), and v = V+(w), and, where comparison is
possible (since these functions need not all exist for the same range of w),

V−(w) ≤ V0(w) ≤ V+(w). (5.51)

We denote the minimal value of w for which V−(w) exists by W∗, and the maximal
value of w for which V+(w) exists by W∗. For values of w above the nullcline f (v, w) =
0, f (v, w) < 0, and below the nullcline, f (v, w) > 0 (in other words, fw(v, w) < 0).

The nullcline g(v, w) = 0 is assumed to have precisely one intersection with the
curve f (v, w) = 0. Increasing v beyond the curve g(v, w) = 0 makes g(v, w) positive
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(i.e., gv(v, w) > 0), and decreasing w below the curve g(v, w) = 0 increases g(v, w)

(hence gw(v, w) < 0). The nullclines f and g are illustrated in Fig. 5.13.

5.2.2 Phase-Plane Behavior

One attractive feature of the FitzHugh–Nagumo equations is that because they form a
two-variable system, they can be studied using phase-plane techniques. (For an example
of a different approach, see Troy, 1976.) There are two characteristic phase portraits
possible (shown in Figs. 5.15 and 5.16). By assumption, there is only one steady state,
at v = v∗, w = w∗, with f (v∗, w∗) = g(v∗, w∗) = 0. Without loss of generality, we assume
that this steady state occurs at the origin, as this involves only a shift of the variables.
Furthermore, it is typical that the parameter ϵ is a small number. For small ϵ, if the
steady state lies on either the left or right solution branch of f (v, w) = 0, i.e., the curves
v = V± (w), it is linearly stable. Somewhere on the middle solution branch v = V0(w),
near the extremal values of the curve f (v, w) = 0, there is a Hopf bifurcation point.
If parameters are varied so that the steady-state solution passes through this point, a
periodic orbit arises as a continuous solution branch and bifurcates into a stable limit
cycle oscillation.

When the steady state is on the leftmost branch, but close to the minimum
(Fig. 5.15), the system is excitable. This is because even though the steady state is

Figure 5.15 Phase portrait for the FitzHugh–Nagumo equations, (5.38)–(5.40), with α = 0.1,
γ = 0.5, ϵ = 0.01 and zero applied current. For these parameter values the system has a unique
globally stable rest point, but is excitable.The inset at top right shows the action potential as
a function of time.
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Figure 5.16 Phase portrait for the FitzHugh–Nagumo equations, (5.38)–(5.40), with α = 0.1,
γ = 0.5, ϵ = 0.01 and Iapp = 0.5. For these parameter values, the unique rest point is unstable
and there is a globally stable periodic orbit. The inset at top right shows the periodic orbit
plotted against time.

linearly stable, a sufficiently large perturbation from the steady state sends the state
variable on a trajectory that runs away from the steady state before eventually return-
ing to rest. Such a trajectory goes rapidly to the rightmost branch, which it hugs as
it gradually creeps upward, where upon reaching the maximum, it goes rapidly to the
leftmost branch and then gradually returns to rest, staying close to this branch as it
does. Plots of the variables v and w are shown as functions of time in Fig. 5.15.

The mathematical description of these events follows from singular perturbation
theory. With ϵ ≪ 1, the variable v is a fast variable and the variable w is a slow variable.
This means that if possible, v is adjusted rapidly to maintain a pseudo-equilibrium at
f (v, w) = 0. In other words, if possible, v clings to the stable branches of f (v, w) = 0,
namely v = V± (w). Along these branches the dynamics of w are governed by the reduced
dynamics

dw
dt

= g(V± (w), w) = G± (w). (5.52)

When it is not possible for v to be in quasi-equilibrium, the motion is governed
approximately by the differential equations,

dv
dτ

= f (v, w),
dw
dτ

= 0, (5.53)
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found by making the change of variables to the fast time scale t = ϵτ , and then setting
ϵ = 0. On this time scale, w is constant, while v equilibrates to a stable solution of
f (v, w) = 0.

The evolution of v and w starting from specified initial conditions v0 and w0 can
now be described. Suppose v0 is greater than the rest value v∗. If v0 < V0(w), then v
returns directly to the steady state. If v0 > V0(w), then v goes rapidly to the upper branch
V+(w) with w remaining nearly constant at w0. The curve v = V0(w) is a threshold curve.
While v remains on the upper branch, w increases according to

dw
dt

= G+(w), (5.54)

as long as possible. However, in the finite time

Te =
∫ W∗

w0

dw
G+(w)

, (5.55)

w reaches the “knee” of the nullcline f (v, w) = 0. This period of time constitutes the
excited phase of the action potential.

When w reaches W∗ it is no longer possible for v to stay on the excited branch, so
it must return to the lower branch V−(w). Once on this branch, w decreases following
the dynamics

dw
dt

= G−(w). (5.56)

If the rest point lies on the lower branch, then G−(w∗) = 0, and w gradually returns to
rest on the lower branch.

Applied Current and Oscillations
When a current is applied to the generalized FitzHugh–Nagumo equations, they
become

ϵ
dv
dt

= f (v, w) + Iapp, (5.57)

dw
dt

= g(v, w). (5.58)

As with the fast–slow phase plane of the Hodgkin–Huxley equations, the cubic nullcline
moves up as Iapp increases. Thus, when Iapp takes values in some intermediate range,
the steady state lies on the middle branch, V0(w), and is unstable. Instead of returning
to rest after one excursion on the excited branch, the trajectory alternates periodically
between the upper and lower branches, with w varying between W∗ and W∗ (Fig. 5.16).
This limit cycle behavior, where there are fast jumps between regions in which the so-
lution moves more slowly, is called a relaxation oscillation. In this figure, the relaxation
nature of the oscillations is not very pronounced; however, as ϵ decreases, the jumps
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Figure 5.17 Bifurcation diagram of the FitzHugh–Nagumo equations, (5.38)–(5.40), with α =
0.1, γ = 0.5, ϵ = 0.01, with the applied current as the bifurcation parameter. The steady-state
solution is labeled ss, while osc max and osc min denote, respectively, the maximum and
minimum of v over an oscillation. HB denotes a Hopf bifurcation point.

become faster. For small ϵ, the period of the oscillation is approximately

T =
∫ W∗

W∗

(
1

G+(w)
− 1

G−(w)

)
dw. (5.59)

This number is finite because G+(w) > 0, and G−(w) < 0 for all appropriate w.
As with the Hodgkin–Huxley equations, the behavior of the periodic orbits as Iapp

varies can be summarized in a bifurcation diagram. For each value of Iapp we plot the
value of v at the steady state, and (where appropriate) the maximum and minimum
values of v over a periodic orbit. As Iapp increases, a branch of periodic orbits appears
in a Hopf bifurcation at Iapp = 0.1 and disappears again in another Hopf bifurcation at
Iapp = 1.24. Between these two points there is a branch of stable periodic orbits. The
bifurcation diagram is shown in Fig. 5.17.

5.3 Exercises
1. Show that, if k > 1, then (1− e−x)k has an inflection point, but (e−x)k does not.

2. Explain why replacing the extracellular Na+ with choline has little effect on the resting
potential of an axon. Calculate the new resting potential with 90% of the extracellular
Na+ removed. Why is the same not true if K+ is replaced? (Assume the conductances are
constant.)

3. Plot the nullclines of the Hodgkin–Huxley fast subsystem. Show that vr and ve in the
Hodgkin–Huxley fast subsystem are stable steady states, while vs is a saddle point. Compute
the stable manifold of the saddle point and compute sample trajectories in the fast phase
plane, demonstrating the threshold effect.
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4. Show how the Hodgkin–Huxley fast subsystem depends on the slow variables; i.e., show
how the v nullcline moves as n and h are changed, and demonstrate the saddle-node
bifurcation in which ve and vs disappear.

5. Plot the nullclines of the fast–slow Hodgkin–Huxley phase plane and compute a complete
action potential.

6. How does the phase plane of the fast–slow Hodgkin–Huxley equations change with applied
current? How much applied current in the fast–slow Hodgkin–Huxley equations is needed
to generate oscillations? Plot a typical oscillation in the phase plane. Plot the maximum of
the oscillation against the applied current to construct a bifurcation diagram.

7. Suppose that in the Hodgkin–Huxley fast–slow phase plane, v is slowly decreased to v∗ < v0
(where v0 is the steady state), held there for a considerable time, and then released. Describe
what happens in qualitative terms, i.e., without actually computing the solution. This is
called anode break excitation (Hodgkin and Huxley, 1952d. Also see Peskin, 1991). What
happens if v is instantaneously decreased to v∗ and then released immediately? Why do
these two solutions differ?

8. In the text, the Hodgkin–Huxley equations are written in terms of v = V − Veq. Show that
in terms of V the equations are

Cm
dV
dt

= −ḡKn4(V − VK)− ḡNam3h(V − VNa)

− ḡL(V − VL) + Iapp, (5.60)

dm
dt

= αm(1−m)− βmm, (5.61)

dn
dt

= αn(1− n)− βnn, (5.62)

dh
dt

= αh(1− h)− βhh, (5.63)

where (in units of (ms)−1),

αm = 0.1
−40− V

exp
(
−40−V

10

)
− 1

, (5.64)

βm = 4 exp
(−V − 65

18

)
, (5.65)

αh = 0.07 exp
(−V − 65

20

)
, (5.66)

βh = 1

exp(−35−V
10 ) + 1

, (5.67)

αn = 0.01
−55− V

exp(−55−V
10 )− 1

, (5.68)

βn = 0.125 exp
(−V − 65

80

)
, (5.69)

and

ḡNa = 120, ḡK = 36, ḡL = 0.3, (5.70)

VNa = 55, VK = −77, VL = −54.4, Veq = −65. (5.71)
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9. Solve the full Hodgkin–Huxley equations numerically with a variety of constant cur-
rent inputs. For what range of inputs are there self-sustained oscillations? Construct the
bifurcation diagram as in Exercise 6.

10. The Hodgkin–Huxley equations are for the squid axon at 6.3◦C. Using that the absolute
temperature enters the equations through the Nernst equation, determine how changes in
temperature affect the behavior of the equations. In particular, simulate the equations at
0◦C and 30◦C to determine whether the equations become more or less excitable with an
increase in temperature.

11. Show that a Hopf bifurcation occurs in the generalized FitzHugh–Nagumo equations when
fv(v∗, w∗) = −ϵgw(v∗, w∗), assuming that

fv(v∗, w∗)gw(v∗, w∗)− gv(v∗, w∗)fw(v∗, w∗) > 0.

On which side of the minimum of the v nullcline can this condition be satisfied?

12. Morris and Lecar (1981) proposed the following two-variable model of membrane potential
for a barnacle muscle fiber:

Cm
dV
dT

+ Iion(V , W) = Iapp, (5.72)

dW
dT

= φ((V)[W∞(V)−W], (5.73)

where V = membrane potential, W = fraction of open K+ channels, T = time, Cm =
membrane capacitance, Iapp = externally applied current, φ = maximum rate for closing
K+ channels, and

Iion(V , W) = gCaM∞(V)(V − VCa) + gKW(V − VK) + gL(V − VL), (5.74)

M∞(V) = 1
2

(
1 + tanh

(
V − V1

V2

))
, (5.75)

W∞(V) = 1
2

(
1 + tanh

(
V − V3

V4

))
, (5.76)

((V) = cosh
(

V − V3
2V4

)
. (5.77)

Typical rate constants in these equations are shown in Table 5.1.

.Table 5.1 Typical parameter values for the Morris–Lecar model.

Cm = 20 µF/cm2 Iapp = 0.06 mA/cm2

gCa = 4.4 mS/cm2 gK = 8 mS/cm2

gL = 2 mS/cm2 φ = 0.04 (ms)−1

V1 = −1.2 mV V2 = 18 mV

V3 = 2 V4 = 30 mV

VCa = 120 mV VK = −84 mV

VL = −60 mV
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(a) Make a phase portrait for the Morris–Lecar equations. Plot the nullclines and show
some typical trajectories, demonstrating that the model is excitable.

(b) Does the Morris–Lecar model exhibit anode break excitation (see Exercise 7)? If not,
why not?

13. The Pushchino model is a piecewise-linear model of FitzHugh–Nagumo type proposed as
a model of the ventricular action potential. The model has

f (v, w) = F(v)−w, (5.78)

g(v, w) = 1
τ (v)

(v−w), (5.79)

where

F(v) =

⎧
⎨

⎩

−30v, for v < v1,
γ v− 0.12, for v1 < v < v2,
−30(v− 1), for v > v2,

(5.80)

τ (v) =
{

2, for v < v1,
16.6, for v > v1, (5.81)

with v1 = 0.12/(30 + γ ) and v2 = 30.12/(30 + γ ).
Simulate the action potential for this model. What is the effect on the action potential

of changing τ (v)?

14. Perhaps the most important example of a nonphysiological excitable system is the
Belousov–Zhabotinsky reaction. This reaction denotes the oxidation of malonic acid by bro-
mate in acidic solution in the presence of a transition metal ion catalyst. Kinetic equations
describing this reaction are (Tyson and Fife, 1980)

ϵ
du
dt

= −fv
u− q
u + q

+ u− u2, (5.82)

dv
dt

= u− v, (5.83)

where u denotes the concentration of bromous acid and v denotes the concentration of
the oxidized catalyst metal. Typical values for parameters are ϵ ≈ 0.01, f = 1, q ≈ 10−4.
Describe the phase portrait for this system of equations.

15. It is not particularly difficult to build an electrical analogue of the FitzHugh–Nagumo equa-
tions with inexpensive and easily obtained electronic components. The parts list for one
“cell” (shown in Fig. 5.20) includes two op-amps (operational amplifiers), two power sup-
plies, a few resistors, and two capacitors, all readily available from any consumer electronics
store (Keener, 1983).

The key component is an operational amplifier (Fig. 5.18). An op-amp is denoted in
a circuit diagram by a triangle with two inputs on the left and a single output from the
vertex on the right. Only three circuit connections are shown on a diagram, but two more

-

v 0
v

v

+ +

-
Figure 5.18 Diagram for an operational amplifier (op-amp).
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are assumed, being necessary to connect with the power supply to operate the op-amp.
Corresponding to the supply voltages Vs− and Vs+, there are voltages Vr− and Vr+, called
the rail voltages, which determine the operational range for the output of an op-amp. The
job of an op-amp is to compare the two input voltages v+ and v−, and if v+ > v−, to set (if
possible) the output voltage v0 to the high rail voltage Vr+, whereas if v+ < v−, then v0 is set
to Vr−. With reliable electronic components it is a good first approximation to assume that
the input draws no current, while the output v0 can supply whatever current is necessary
to maintain the required voltage level.

The response of an op-amp to changes in input is not instantaneous, but is described
reasonably well by the differential equation

ϵs
dv0
dt

= g(v+ − v−)− v0. (5.84)

The function g(v) is continuous, but quite close to the piecewise-constant function

g(v) = Vr+H(v) + Vr−H(−v), (5.85)

with H(v) the Heaviside function. The number ϵs is small, and is the inverse of the slew-rate,
which is typically on the order of 106–107 V/sec. For all of the following circuit analysis,
take ϵs → 0.

(a) Show that the simple circuit shown in Fig. 5.19 is a linear amplifier, with

v0 = R1 + R2
R2

v+, (5.86)

provided that v0 is within the range of the rail voltages.

(b) Show that if R1 = 0, R2 = ∞, then the device in Fig. 5.19 becomes a voltage follower
with v0 = v+.

(c) Find the governing equations for the circuit in Fig. 5.20, assuming that the rail voltages
for op-amp 2 are well within the range of the rail voltages for op-amp 1.
Show that

C1
dv
dt

+ i2

(
1− R4

R5

)
+ F(v)

R3
+ v− vg

R5
= 0, (5.87)

C2R5
di2
dt

+ R4i2 = v− vg, (5.88)

+

-

R2 R1

v

+

-

v0

v

Figure 5.19 Linear amplifier using an
op-amp.
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+

i3

C 1

2
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R2

R5

R4

-

v

C2 i2i1

vg

R3

R 1

+

Figure 5.20 FitzHugh–Nagumo circuit using op-amps.

.Table 5.2 Parts list for the FitzHugh–Nagumo analog circuit.

2 LM 741 op-amps (National Semiconductor)
R1 = R2 = 100k! R3 = 2.4!
R4 = 1k! R5 = 10k!
C1 = 0.01µF C2 = 0.5µF
Power supplies:
± 15V for op-amp #1 ± 12V for op-amp #2

where F(v) is the piecewise-linear function

F(v) =

⎧
⎪⎨

⎪⎩

v− Vr+ , for v > αVr+ ,
−R1

R2
v, for αVr− ≤ v ≤ αVr+ ,

v− Vr− , for v < αVr− ,
(5.89)

and α = R2
R1+R2

.

(d) Sketch the phase portrait for these circuit equations. Show that this is a piecewise-
linear FitzHugh–Nagumo system.

(e) Use the singular perturbation approximation (5.59) to estimate the period of oscillation
for the piecewise-linear analog FitzHugh–Nagumo circuit in Fig. 5.20.
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Neuroendocrine Cells

There are many hormones that circulate through the body, controlling a diverse array
of functions, from appetite to body temperature to blood pH. These hormones are se-
creted from specialized cells in various glands, such as the hypothalamus and pituitary,
the pancreas, or the thyroid. Models of hormone physiology at the level of the entire
body are discussed in Chapter 16. Here, we consider models of the cells that secrete
the hormones, the neuroendocrine cells. They are called neuroendocrine (or sometimes
neurosecretory) as they have many of the hallmarks of neurons, such as membrane ex-
citability, but are specialized, not to secrete neurotransmitter into a synaptic cleft, but
to secrete hormones into the blood. However, not only is there a fine line between
hormones and neurotransmitters, there is also little qualitative difference between se-
cretion into a synaptic cleft, and secretion into the bloodstream. Thus it does not pay
to draw too rigid a distinction between neurons and neuroendocrine cells.

Although, unsurprisingly, there is a great variety of neuroendocrine cells, they have
certain characteristics that serve to unify their study. First, they are excitable and there-
fore have action potentials. Second, the electrical activity usually is not a simple action
potential, or periodic train of action potentials (Chapter 5). Instead, the action poten-
tials are characterized by bursts of rapid oscillatory activity interspersed with quiescent
periods during which the membrane potential changes only slowly. This behavior is
called bursting. Third, bursting is often closely regulated by the intracellular Ca2+ con-
centration (Chapter 7). Thus, models of neurosecretory cells typically combine models
of membrane electrical excitability and Ca2+ excitability, leading to a fascinating array
of dynamic behaviors.

Other factors can also influence bursting; for example, as is described later in this
chapter, recent models of bursting in the pancreatic β cell include models of the gly-
colytic pathway, thus leading to models that incorporate, in a single cell, many of the
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complexities described in Chapters 1, 5 and 7. Neuroendocrine cells are thus won-
derful examples of how multiple oscillatory mechanisms can interact, and provide an
enormous range of interesting behaviors to explore.

9.1 Pancreatic β Cells

In response to glucose, β cells of the pancreatic islet secrete insulin, which causes the
increased use or uptake of glucose in target tissues such as muscle, liver, and adipose
tissue. When blood levels of glucose decline, insulin secretion stops, and the tissues
begin to use their energy stores instead. Interruption of this control system results in
diabetes, a disease that, if left uncontrolled, can result in kidney failure, heart disease,
and death. It is believed that bursting, a typical example of which is shown in Fig. 9.1,
plays an important (but not exclusive) role in the release of insulin from β cells.

9.1.1 Bursting in the Pancreatic β Cell

Bursting in the pancreatic β cell occurs with a wide variety of periods, ranging from
a few seconds to a few minutes. Typically, these are divided into three groups; fast
bursting, with periods of around 2 to 5 s; medium bursting, with periods of around 10
to 60 s; and slow bursting, with periods of around 2 to 4 minutes.

Although bursting has been studied extensively for many years, most mathematical
studies are based on the pioneering work of Rinzel (1985, 1987), which was in turn
based on one of the first biophysical models of a pancreatic β cell (Chay and Keizer,
1983). Rinzel’s interpretation of bursting in terms of nonlinear dynamics provides an
excellent example of how mathematics can be used to understand complex biological
dynamical systems.

Figure 9.1 Bursting oscillations in the pancreatic β cell. Provided by Les Satin, Min Zhang
and Richard Bertram.
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Models of bursting in pancreatic β cells can be divided into two major groups (well
summarized by de Vries, 1995). Earlier models were generally based on the assumption
that bursting was caused by an underlying slow oscillation in the intracellular Ca2+

concentration (Chay, 1986, 1987; Chay and Cook, 1988; Chay and Kang, 1987; Himmel
and Chay, 1987; Keizer and Magnus, 1989). In light of more recent experimental ev-
idence showing that Ca2+ is not the slow variable underlying bursting, more recent
models have modified this assumption, relying on alternative mechanisms to produce
the underlying slow oscillation (Keizer and Smolen, 1991; Smolen and Keizer, 1992;
Bertram and Sherman, 2004a,b; Nunemaker et al., 2006).

One of the first models of bursting was proposed by Atwater et al. (1980).
It was based on extensive experimental data, incorporating the important cellular
mechanisms that were thought to underlie bursting, and was later developed into a
mathematical model by Chay and Keizer (1983). Although the mathematical model
includes only those processes believed to be essential to the bursting process and thus
omits many features of the cell, it is able to reproduce many of the basic properties of
bursting. The ionic currents in the model are:

1. A Ca2+-activated K+ channel with conductance an increasing function of c =[
Ca2+] of the form

gK,Ca = ḡK,Ca
c

Kd + c
, (9.1)

for some constant ḡK,Ca.
2. A voltage-gated K+ channel modeled in the same way as in the Hodgkin–Huxley

equations, with

gK = ḡKn4, (9.2)

where n obeys the same differential equation as in the Hodgkin–Huxley equations
(Chapter 5), except that the voltage is shifted by V∗, so that V in (5.28) and (5.29)
is replaced by V + V∗. For example, βn(V) = 0.125 exp[(−V − V∗)/80].

3. A voltage-gated Ca2+ channel, with conductance

gCa = ḡCam3h, (9.3)

where m and h satisfy Hodgkin–Huxley differential equations for Na+ gating,
shifted along the voltage axis by V ′. That is, the inward Ca2+ current is modeled
by the Na+ current of the Hodgkin–Huxley equations.

Combining these ionic currents and adding a leak current gives

Cm
dV
dt

= −(gK,Ca + gK)(V − VK)− 2gCa(V − VCa)− gL(V − VL), (9.4)

where Cm is the membrane capacitance.
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To complete the model, there is an equation for the regulation of intracellular Ca2+,

dc
dt

= f (−k1ICa − kcc), (9.5)

where the Ca2+ current is ICa = ḡCam3h(V − VCa) and where k1 and kc are constants.
The constant f is a scale factor relating total changes in

[
Ca2+] to the changes in free[

Ca2+] (as discussed in the section on Ca2+ buffering in Chapter 7) and is usually a
small number, while kc is the rate at which Ca2+ is removed from the cytoplasm by the
membrane ATPase pump.

For this model it is assumed that glucose regulates the rate of removal of Ca2+

from the cytoplasm. Thus, kc is assumed to be an (unspecified) increasing function of
glucose concentration. However, the concentration of glucose is not a dynamic variable
of the model, so that kc can be regarded as fixed, and the behavior of the model can be
studied for a range of values of kc.

A numerically computed solution of this model, shown in Fig. 9.2, exhibits bursts
that bear a qualitative resemblance to those seen experimentally. It is also readily seen
that there is a slow oscillation in c underlying the bursts, with bursting occurring during
the peak of the Ca2+ oscillation. The fact that Ca2+ oscillations occur on a slower time
scale is built into the Ca2+ equation (9.5) explicitly by means of the parameter f . As f
becomes smaller, the Ca2+ equation evolves more slowly, and thus the relative speeds of

( 
M

)

Figure 9.2 Bursting oscillations in the Chay–Keizer β cell model, calculated using the
parameter values inTable 9.1.



9.1: Pancreatic β Cells 389

.Table 9.1 Parameters of the model of electrical bursting in pancreatic β cells.

Cm = 1 µF/cm2 ḡK,Ca = 0.02 mS/cm2

ḡK = 3 mS/cm2 ḡCa = 3.2 mS/cm2

ḡL = 0.012 mS/cm2 VK = −75 mV

VCa = 100 mV VL = −40 mV

V ∗ = 30 mV V ′ = 50 mV

Kd = 1 µM f = 0.007

k1 = 0.0275 µM cm2/nC kc = 0.02 ms−1

the voltage and Ca2+ equations are directly controlled. It therefore appears that there
are two oscillatory processes interacting to give bursting, with a fast oscillation in V
superimposed on a slower oscillation in c. This is the basis of the phase-plane analysis
that we describe next.

Phase-Plane Analysis
The β cell model can be simplified by ignoring the dynamics of m and h, thus removing
the time dependence (but not the voltage dependence) of the Ca2+ current (Rinzel and
Lee, 1986). The simplified model equations are

Cm
dV
dt

= −ICa(V)−
(

ḡKn4 + ḡK,Cac
Kd + c

)
(V − VK)− ḡL(V − VL), (9.6)

τn(V)
dn
dt

= n∞(V)− n, (9.7)

dc
dt

= f (−k1ICa(V)− kcc), (9.8)

where ICa = ḡCam3
∞(V)h∞(V)(V − VCa).

Since f is small, this β cell model separates into a fast subsystem (the V and n
equations) and a slow equation for c. The fast subsystem can be studied using phase-
plane methods, and then the behavior of the full system can be understood as slow
variations of the fast phase plane system.

We first consider the structure of the fast subsystem as a function of c, treating c
as a fixed parameter.

When c is low, the Ca2+-activated K+ channel is not activated, and the fast subsys-
tem has a unique fixed point with V high. Conversely, when c is high, the Ca2+-activated
K+ channel is fully activated, and the fast subsystem has a unique fixed point with V
low, as the high conductance of the Ca2+-activated K+ channels pulls the membrane
potential closer to the K+ Nernst potential, about −75 mV. However, for intermediate
values of c there are three fixed points, and the phase plane is much more intricate.
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n

V

n

V

A B

Figure 9.3 Phase planes of the fast subsystem of the Chay–Keizer β cell model, for two
different values of c, both in the intermediate range.The phase planes are sketched, not drawn
to scale. Nullclines are denoted by dashed lines, and the intersections of the nullclines show
the positions of the fixed points. For both values of c there are three fixed points, of which the
middle one is a saddle point. However, in A (with chb < c < chc; see Fig. 9.4) the unstable node
is surrounded by a stable limit cycle, while in B (corresponding to c > chc) the limit cycle has
disappeared via a homoclinic bifurcation.

Phase planes of the V , n subsystem for two different intermediate values of c are shown
in Fig. 9.3.

In both cases, the lower fixed point is stable, the middle fixed point is a saddle
point, and the upper fixed point is unstable. For some values of c the upper fixed point
is surrounded by a stable limit cycle, which in turn is surrounded by the stable manifold
of the saddle point (Fig. 9.3A). However, as c increases (still in the intermediate range),
the limit cycle “hits” the saddle point and forms a homoclinic connection (a homoclinic
bifurcation). Increasing c further breaks the homoclinic connection, and the stable
manifold of the saddle point forms a heteroclinic connection with the upper, unstable,
critical point (Fig. 9.3B). There is now no limit cycle.

This sequence of bifurcations can be summarized in a bifurcation diagram, with V
plotted against the control parameter c (Fig. 9.4A). The Z-shaped curve is the curve of
fixed points, and as usual, the stable oscillation around the upper steady state is depicted
by the maximum and minimum of V through one cycle. As c increases, oscillations
appear via a Hopf bifurcation (chb) and disappear again via a homoclinic bifurcation
(chc). For a range of values of c the fast subsystem is bistable, with a lower stable fixed
point and an upper stable periodic orbit. This bistability is crucial to the appearance
of bursting.

We now couple the dynamics of the fast subsystem to the slower dynamics of c.
Included in Fig. 9.4A is the curve defined by dc/dt = 0, i.e., the c nullcline. When
V is above the c nullcline, dc/dt > 0, and so c increases, but when V is below the c
nullcline, c decreases. Now suppose V starts on the lower fixed point for a value of
c that is greater than chc. Since V is below the c nullcline, c starts to decrease, and
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A

B

c

V

dc/dt = 0

HC

SN

chc

HB

Vss

max Vosc

min Vosc

chb

c

V

dc/dt = 0

Vss

Figure 9.4 A: Sketch of the bi-
furcation diagram of the simplified
Chay–Keizer β cell model, with c as
the bifurcation parameter. Vss denotes
the curve of steady states of V as a
function of c. A solid line indicates
a stable steady state; a dashed line
indicates an unstable steady state.
The two branches of Vosc denote the
maximum and minimum of V over
one oscillatory cycle. HB denotes a
Hopf bifurcation, HC denotes a ho-
moclinic bifurcation, and SN denotes
a saddle-node bifurcation. B: A burst
cycle projected on the (V , c) plane.
(Adapted from Rinzel and Lee, 1986,
Fig. 3.)

V follows the lower branch of fixed points. However, when c becomes too small, this
lower branch of fixed points disappears in a saddle-node bifurcation (SN), and so V
must switch to the upper branch of the Z-shaped curve. Since this upper branch is
unstable and surrounded by a stable limit cycle, V begins to oscillate. However, since
V now lies entirely above the c nullcline, c begins to increase. Eventually, c increases
enough to cross the homoclinic bifurcation at chc, the stable limit cycles disappear,
and V switches back to the lower branch, completing the cycle. Repetition of this
process causes bursting. The quiescent phase of the bursting cycle is when V is on the
lower branch of the Z-shaped curve, and during this phase V increases slowly. A burst
of oscillations occurs when V switches to the upper branch, and disappears again
after passage through the homoclinic bifurcation. Clearly, in this scenario, bursting
relies on the coexistence of both a stable fixed point and a stable limit cycle, and the
bursting cycle is a hysteresis loop that switches between branches of the Z-shaped
curve. Bursting also relies on the c nullcline intersecting the Z-shaped curve in the
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right location. For example, if the c nullcline intersects the Z-shaped curve on its lower
branch, there is a unique stable fixed point for the whole system, and bursting does not
occur. A projection of the bursting cycle on the (V , c) phase plane is shown in Fig. 9.4B.
The periods of the oscillations in the burst increase through the burst, as the limit
cycles get closer to the homoclinic trajectory, which has infinite period.

The relationship between bursting patterns and glucose concentration can also be
deduced from Fig. 9.4. Notice that the dc

dt = 0 nullcline, given by c = −k1
kc

ICa(V), is

inversely proportional to kc. Increasing kc moves the dc
dt = 0 nullcline to the left while

decreasing kc moves it to the right. Thus, when kc is sufficiently small, the nullcline
intersects the lower branch of the V nullcline. On the other hand, if kc is extremely
large, the c nullcline intersects the upper branch of the V nullcline, possibly to the left
of chb. At intermediate values of c, the c nullclines intersects the middle branch of the
V nullcline.

Under the assumption that kc is monotonically related to the glucose concentration,
when the glucose concentration is low, the system is at a stable rest point on the lower
V nullcline; there is no bursting. If glucose is increased so that the c nullcline intersects
the middle V nullcline with c < chc, there is bursting. However, the length of the
bursting phase increases and the length of the resting phase decreases with increasing
glucose, because Ca2+ increases at a slower rate and decreases at a faster rate when
kc is increased. For large enough kc the bursting is sustained with no rest phase, as c
becomes stalled below chc. Finally, at extremely high kc values, bursting is replaced by
a permanent high membrane potential, with c < chb. This dependence of the bursting
phase on glucose is confirmed by experiments.

9.1.2 ER Calcium as a Slow Controlling Variable

There are two major problems with the above model. First, it does not reproduce the
wide variety of periods and bursting patterns actually seen in bursting pancreatic β
cells, being limited to a narrow range of fast bursting frequencies.

Second, more recent experimental evidence has shown that Ca2+ oscillates much
too fast to be viewed as a slow control variable. This is illustrated in Fig. 9.5, which
shows simultaneous Ca2+ and voltage measurements. The bursting oscillations in the
voltage are mirrored by bursting oscillations in the cytoplasmic Ca2+ concentration,
and the rise in Ca2+ concentration is almost as fast as the rise in voltage.

So the question arises of what controls the length of bursting. One possibility is
that the ER Ca2+ concentration varies much more slowly than the cytoplasmic Ca2+

and could provide the necessary control mechanism. This would be the case if most
of the Ca2+ during active bursting were coming from the extracellular space through
transmembrane ion channels, and only a small amount of Ca2+ flowed between the
cytoplasm and the ER. If this were the case, ER Ca2+ would act like a low pass filter
for cytoplasmic Ca2+, and therefore could be used to detect and regulate the length of
bursting activity. The possible usefulness of a low-pass filter is seen in the Ca2+ traces
shown in Fig. 9.5, where, during a burst, Ca2+ concentration oscillates rapidly around
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Figure 9.5 Simultaneous Ca2+ and voltage measurements from a bursting pancreatic β cell.
(Adapted from Zhang et al., 2003, Fig. 4.)

a raised baseline. A low-pass filter would measure the length of time that the Ca2+

baseline is elevated, but filter out the rapid oscillations.
Thus, it was proposed by Chay (1996a,b, 1997) that slow variations in ER Ca2+

could be an important control mechanism, and could, in addition, generate a wider
range of bursting periods. This proposal was analyzed in detail by Bertram and
Sherman (2004a) who showed that the interaction of a (not very slow) cytoplasmic
Ca2+ variable, with a (much slower) ER Ca2+ variable, could lead to bursting with a
wide range of periods. They named this a phantom bursting model, as it can lead to
bursting with a period intermediate between that of the slow variables.

The Membrane Voltage Submodel
The electrical part of the phantom bursting model is similar to the Chay–Keizer model,
but with slight differences, so we present it in full here. As before, the current is the sum
of a Ca2+ current, a K+ current, and a Ca2+-sensitive K+ current, with an additional
ATP-sensitive K+ current, which is important below. The only current not assumed to
be at pseudo-steady state is the K+ current. Thus,

Cm
dV
dt

= −ICa − IK − IK,Ca − IK,ATP, (9.9)

τn
dn
dt

= n∞(V)− n, (9.10)

ICa = gCam∞(V)(V − VCa), (9.11)

IK = gKn(V − VK), (9.12)

IK,Ca = gK,Caω(c)(V − VK), (9.13)

IK,ATP = gK,ATP(V − VK), (9.14)
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where c denotes the free cytoplasmic Ca2+ concentration. The functions m∞ and n∞
are given by

m∞(V) = 1
1 + e(vm−V)/sm)

, (9.15)

n∞(V) = 1
1 + e(vn−V)/sn)

. (9.16)

The variable ω is the fraction of open Ca2+-sensitive K+ channels, and is close to a step
function,

ω(c) = c5

c5 + k5
D

. (9.17)

The Calcium Submodel
These equations for the electrical properties of the membrane must be coupled to
equations that model the cytoplasmic and ER Ca2+ concentrations. The Ca2+ model is
chosen to be relatively simple; more complex models of Ca2+ dynamics are discussed
in Chapter 7.

As usual, let c and ce denote the free concentrations of Ca2+ in the cytoplasm and
ER respectively. The equations for c and ce are simple balances of fluxes.

1. ICa, the transmembrane Ca2+ current as discussed above.
2. Pumping of Ca2+ across the plasma and ER membranes, denoted by Jpm and Jserca

respectively. Both of these fluxes are assumed to be linear functions of Ca2+, and
thus

Jserca = ksercac, (9.18)

Jpm = kpmc. (9.19)

3. Jleak, a leak from the ER. This is assumed to be proportional to the difference
between the ER and cytoplasmic concentrations, and thus

Jleak = kleak(ce − c). (9.20)

Because of Ca2+ buffering, only a small fraction of each flux contributes to a change
in the free Ca2+ concentration. If we assume that buffering is fast and unsaturated,
then we need only multiply each flux by a scaling factor to get the change in free Ca2+

concentration (Section 7.4).
We put all these fluxes together to get

dc
dt

= fcyt(−αICa − Jpm + Jleak − Jserca), (9.21)

dce

dt
= −γ fer(Jleak − Jserca). (9.22)

Here, γ is the ratio of the cytoplasmic volume to the ER volume, while fcyt and fer are
the buffering scaling factors for the cytoplasm and the ER.
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.Table 9.2 Parameters of the phantom bursting model.The values of gK,Ca and gK,ATP used
for each simulation are given in the figure captions.

gCa = 1200 pS gK = 3000 pS

VCa = 25 mV VK = −75 mV

Cm = 5300 fF α = 4.5× 10−6µM fA−1 ms−1

τn = 16 ms fcyt = 0.01

kpm = 0.2 ms−1 kD = 0.3 µM

vn = −16 mV sn = 5 mV

vm = −20 mV sm = 12 mV

kserca = 0.4 ms−1 fer = 0.01

γ = 5 pleak = 0.0005 ms−1

The parameter values for this model are given in Table 9.2.

Fast Bursting
When the Ca2+-sensitive K+ conductance is high (900 pS), the model exhibits fast
bursting, as shown in Fig. 9.6. The ER Ca2+ concentration varies little over the course
of a burst, and indeed, if ce is set to be a constant, the solution is nearly identical. As
can be seen from the middle panel of Fig. 9.6, although c is slightly slower than V , it
changes a lot faster than ce, and is not obviously a slow variable.

A full analysis of this model requires examining a three-dimensional phase space,
a difficult exercise. However, even though it is only an approximate analysis, it is useful
to analyze this model in the same way as Rinzel’s analysis of the Chay–Keizer model, as
discussed previously. To do so, we pretend that c is a bifurcation parameter, and draw
the bifurcation diagram of V against c (Fig. 9.7). This gives a diagram qualitatively
similar to that shown in Fig. 9.4. A Z-shaped curve of steady-state solutions becomes
unstable at a Hopf bifurcation, and the branch of stable limit cycles intersects the Z-
shaped curve of steady states in a homoclinic bifurcation. This gives rise to bistability,
where a stable steady state and a stable limit cycle exist simultaneously.

Bursting occurs in the same manner as the Chay–Keizer model. Above the dc/dt = 0
nullcline the solution trajectory moves to the right, and lives (approximately) on the
branch of stable limit cycles, giving the active phase of the burst. When it moves far
enough to the right, it falls off the branch of limit cycles and heads to the lower branch
of stable steady states. Since this branch is below the c nullcline, the solution then
moves to the left, eventually falling off the saddle-node to repeat the cycle. This way
of interpreting the solution is only an approximate one, as it can be seen from Fig. 9.7
that the actual solution follows accurately neither the branch of periodic orbits nor
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Figure 9.6 Fast bursting oscillations in the phantom bursting model.These solutions were
computed with gK,Ca = 900 pS and gK,ATP = 227.5 pS. Note that the ER Ca2+ varies only
slightly.

the lower branch of steady states. The upper turning point of the burst is close to
oscmax, but the lower turning point is not close at all to oscmin. Similarly, when the
solution falls off the branch of periodic orbits, it does so well before the homoclinic
bifurcation, and then does not follow the lower branch of steady states closely. This
happens because c is not really a slow parameter after all. In the limit as c becomes
infinitely slow, the solution would track much more closely the bifurcation diagram of
the fast subsystem. Despite these quantitative disagreements, the phase plane of the
fast subsystem is nonetheless a useful way to interpret and understand the solutions
of the full system.

However, there is one important difference between this model and the Chay–
Keizer model. In this model there is a second slow variable, ce, and thus the dc/dt = 0
nullcline moves as ce varies (the Z-shaped curve, however, is independent of ce). From
(9.21) we see that the dc/dt = 0 nullcline is given by

c = pleakce − αICa

kpm + pleak + kserca
, (9.23)
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Figure 9.7 Fast bursting in the phantom bursting model (computed with gK,Ca = 900 pS and
gK,ATP = 227.5 pS) superimposed on the bifurcation diagram of the fast subsystem, treating
c as the bifurcation parameter. HB — Hopf bifurcation; HC — homoclinic bifurcation; SN —
saddle-node bifurcation.

and thus, as ce increases, the nullcline moves to the right. For the fast bursting shown in
Fig. 9.6 the changes in ce are so small that this movement of the nullcline has no effect
on the bursting. However, for different parameter values, more interesting behaviors
emerge.

Medium Bursting
One way to get a longer burst period would be to stretch the Z-shaped curve horizontally,
so that the homoclinic bifurcation and the saddle-node are further apart. This can be
accomplished by decreasing gK,Ca. However, if the c nullcline remains unchanged, for
small enough gK,Ca it intersects the Z-shaped curve on its upper branch, inside the
branch of stable limit cycles. In this case, the limit cycle is a stable solution of the full
system, and the solution remains stuck in the active phase.

Now the slow dynamics of ce come into play. During the active phase ce increases
(see Exercise 4), gradually moving the c nullcline to the right; the oscillations chase the
c nullcline to the right, as shown in Fig. 9.8. When the c nullcline is moved far enough
to the right, the solution falls off the limit cycles (i.e., leaves the active phase), moves
toward the lower branch of steady-state solutions (thus starting the silent phase), and
moves to the left toward the saddle-node. However, movement along this lower branch
is very slow, as the c nullcline intersects the Z-shaped curve on its lower branch, giving
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Figure 9.8 Medium bursting in the phantom bursting model (computed with gK,Ca = 700 pS
and gK,ATP = 300 pS) superimposed on the bifurcation diagram of the fast subsystem, treating
c as the bifurcation parameter. HC — homoclinic bifurcation; SN — saddle-node bifurcation.
The Hopf bifurcation occurs at a negative value of c and so does not appear here.Two dc/dt = 0
nullclines are shown, for the maximum and minimum values of ce over a burst.

a stable quasi-steady state. The solution is thus forced to move at the same speed as the
slow variable ce, tracking the quasi-steady state as it moves to the left. Eventually, the
c nullcline moves sufficiently far to the left that the quasi-steady state disappears, the
solution leaves the lower branch of the Z-shaped curve, and the burst cycle repeats.

Thus, in medium bursting the burst cycle relies on the slow movement of the c
nullcline, which is caused by the slow increase of ce during the active phase of the
burst, and the slow decrease of ce during the silent phase. Because the c nullcline
moves slowly, this results in medium bursting with a longer period. Both the active
and silent phases are longer than for fast bursting, giving a much longer burst period,
and the ER Ca2+ varies much more over a cycle. Typical solutions are shown in Fig. 9.9.

The Effect of Agonists
Pancreatic β cells are also regulated by the nervous system. Secretion of acetylcholine
from parasympathetic nerves increases the rate of insulin secretion, an effect due partly
to changes in the electrical activity and Ca2+ dynamics of individual β cells. Since the
action of acetylcholine is via the production of inositol trisphosphate (IP3; see Chapter
7), and consequent release of Ca2+ from the ER, it can be modeled by including an
additional term for a Ca2+ flux through IP3 receptors (Exercise 3). When [IP3] is raised
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Figure 9.9 Medium bursting oscillations in the phantom bursting model. These solutions
were computed with gK,Ca = 700 pS and gK,ATP = 300 pS.The active phase is not completely
regular due to inadequate numerical resolution of the timestep.

from 0 to 0.3 µM the burst pattern changes from medium to fast, a change which is
observed experimentally.

9.1.3 Slow Bursting and Glycolysis

Bursting in pancreatic β cells is highly sensitive to the level of glucose; as the concentra-
tion of glucose increases, so does the active fraction of the burst cycle. During the active
fraction of the burst cycle the Ca2+ concentration is raised, and this in turn causes the
secretion of insulin. Thus, the rate of insulin secretion is an increasing function of
glucose concentration.

This effect of glucose is believed to be mediated by the ATP-sensitive K+ channel,
which is activated by ADP and inhibited by ATP. At low glucose concentrations the
ATP/ADP ratio is low, the K+ channel is open, hyperpolarizing the cell and thus pre-
venting bursting. As glucose increases, so does the ATP/ADP ratio; this decreases the
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conductance of the ATP-sensitive K+ channels, thus depolarizing the cell and allowing
bursting to occur.

There are two important features of bursting and insulin secretion that we have
not, as yet, addressed. First, bursting often occurs with a much longer period than that
so far reproduced by the models above, and second, such slow bursting can take a
more complex form than that shown in Figs. 9.6 and 9.9. In particular, slow bursting
can occur as “compound” bursting, or bursts of bursts, in which each active phase itself
consists of alternating active and silent subphases.

One hypothesis is that compound bursting and a long burst period arise from a
slow oscillation in the glycolytic pathway (Chapter 1), which causes slow oscillations
in the ATP/ADP ratio. One of the earliest quantitative models of this hypothesis was
that of Wierschem and Bertram (2004), who showed that, by linking the Goldbeter–
Lefever model of glycolytic oscillations (Chapter 1) to a simple bursting model, the
burst pattern could be modulated on a long time scale, to obtain both compound and
slow bursting. This initial model, more a proof of principle than a quantitative model,
was quickly followed by much more detailed realizations, first using the Smolen model
of glycolytic oscillations (Smolen, 1995; Bertram et al., 2004; Nunemaker et al., 2006),
and then linking the Smolen model to the Magnus–Keizer model of mitochondrial
metabolism (Magnus and Keizer, 1997, 1998a, 1998b; Bertram et al., 2006a, 2007a,b).

The later models being too complex to present in full here, we instead examine
briefly the original model of Wierschem and Bertram (2004), as it contains most of the
essentials of the more complex models.

The Glycolysis, Electrical and Calcium Submodels
To model glycolytic oscillations in a simple way we use the reduced Goldbeter–Lefever
model discussed in Section 1.6. Thus,

τc
d[ATP]

dt
= v1 − F([ATP], [ADP]), (9.24)

τc
d[ADP]

dt
= F([ATP], [ADP])− v2[ADP], (9.25)

where (as in (1.125))

F([ATP], [ADP]) = [ATP](1 + kADP[ADP])2. (9.26)

The only change introduced to this version of the glycolytic model is the time constant,
τc, which is convenient for changing the period of the glycolytic oscillations.

The electrical submodel is almost the same as the models discussed previously in
this chapter. The currents are described by (9.9)–(9.14) and (9.15), the only difference
being that, instead of (9.17), we take

ω(c) = c
c + kD

. (9.27)
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.Table 9.3 Parameters of the compound bursting model.

gCa = 1200 pS gK = 3000 pS

gK,Ca = 300 pS gK,ATP = 350 pS

VCa = 25 mV VK = −75 mV

Cm = 5300 fF α = 2.25× 10−6µM fA−1 ms−1

τn = 16 ms f = 0.001

kc = 0.1 ms−1 kD = 0.3 µM

vn = −16 mV sn = 5.6 mV

vm = −20 mV sm = 12 mV

τc = 1.2× 10−6 ms v1 = 10 mM

v2 = 185 kADP = 20 mM−1

Finally, the Ca2+ submodel is the same as that of the Chay–Keizer model. We thus
ignore ER Ca2+ to get a single equation for c (as in (9.5)),

dc
dt

= −f (αICa + kcc). (9.28)

All the parameters of the compound bursting model are given in Table 9.3.

Compound Bursting
A typical example of compound bursting in this model is shown in Fig. 9.10. The
bursting occurs in clusters, with the duration of the active phase increasing and then
decreasing through each cluster. As can be seen from the dotted curve, [ATP] is os-
cillating also; here these oscillations are independent of c and V , although this is not
necessarily so in more complex models.

The reason for the compound bursting can be seen if we consider the fast–slow
bifurcation structure of the electrical submodel, for various fixed values of [ATP]. As
for the Chay–Keizer model, we treat c as a slow variable and construct the bifurcation
diagrams using c as a bifurcation parameter.

At all values of [ATP], the curve of steady states (labeled ss in Fig. 9.10) is Z-shaped.
The unstable branches of this Z-shaped curve are shown as a dashed line. For low values
of c the steady state becomes unstable in a Hopf bifurcation, from which emerges a
branch of stable periodic solutions (the dot-dash curve, labeled oscmax and oscmin in
Fig. 9.10, panel a).

As [ATP] increases, the Z-shaped curve moves to the right, but the dc/dt = 0 null-
cline remains unchanged. Thus, when [ATP] is low, the dc/dt = 0 nullcline intersects
the Z-shaped curve on the lower, stable, branch, a situation that gives no bursting at all
(panel a). Conversely, when [ATP] is high, the dc/dt = 0 nullcline intersects the branch
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Figure 9.10 Compound bursting in the model with glycolytic oscillations. The upper panel
shows a compound bursting pattern, in which the bursts are grouped in clusters that occur in
a periodic manner. In panels a, b, and c are shown the bifurcation diagrams corresponding
approximately to the regions labeled a, b and c in the top panel.The dashed lines are unstable
branches of steady states, and the dot-dash lines are the maximum and minimum of stable
periodic solutions.

of periodic orbits, which leads to a continuous active phase (panel c). When [ATP] takes
intermediate values, the length of the active phase is either longer or shorter, depending
on where the dc/dt = 0 nullcline intersects the Z-shaped curve (panel b).

Hence, as [ATP] varies over the course of an oscillation, so does the length of the
active phase, thus giving compound bursting.


