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Prolog:
A Breakthrough on HIV

Los Alamos, 1994
Alan Perelson was frustrated. For some years, he, and many other researchers, had been
staring at an enigmatic graph (Figure 0.1). Like any graph, it consisted of dry, unemotional
squiggles. But like any graph, it also told a story.

The enigmatic feature of the graph was precisely what made HIV so dangerous: After a
brief spike, the concentration of virus particles in the blood fell to a low, steady level. Thus,
after a short, flu-like episode, the typical patient had no serious symptoms, but remained

Figure 0.1 [Sketch graph.] The time course of HIV infection, representing the progression of the disease as it was understood
in the early 1990s. After a brief, sharp peak, the concentration of virus particles in the blood (“viral load”) settled down to a low,
nearly steady level for up to ten years. During this period, the patient showed no symptoms. Ultimately, however, the viral load
increased and the symptoms of full AIDS appeared. [After Weiss, 1993.]
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Figure 0.2 [Metaphor.] Steady state in a leaky container. Inflow at a rate Qin replenishes the container, compensating outflow
at a rate Qout. If we observe that the volume V of liquid in the container is steady, we can conclude that Qout matches Qin, but we
can’t determine the actual value of either quantity without more information. In the analogy to viral dynamics, Qin corresponds
to the body’s production of virus particles and Qout to the immune system’s rate of virus clearance (see Chapter 1).

contagious, for up to ten years. Inevitably, however, the virus level eventually rose again, and
the patient died.

In the early 1990s, many researchers believed that these facts implied that HIV was a
slow virus, which remained in the body, nearly dormant, for years before rising sharply in
number. But how could such a long latency period be possible? What was happening during
those ten years? How could the patient’s immune system fight the virus effectively at first,
and then ultimately succumb?

Perelson and others had suspected for some time that maybe HIV was not slow or
dormant at all during the apparent latent period. He made an analogy to a physical system:
If we see a leaky container that nevertheless retains water at some constant level, we can
conclude that there must be water flowing into it (Figure 0.2). But we can’t determine how
fast water is flowing in. All we can say is that the rate of inflow equals the rate of outflow.
Both of those rates could be small—or both could be large. Applying this idea to HIV,
Perelson realized that, during the long period of low blood concentration, the virus might
actually be multiplying rapidly, but after the brief initial episode, it could be eliminated by
the body just as rapidly.

A real leaky container has another simple property reminiscent of the HIV data:
Because the outflow rate Qout(V ) increases as the volume of the water (and hence its
pressure at the exit point) goes up, the system can self-adjust to a steady state, no mat-
ter what inflow rate Qin we select. Similarly, different HIV-infected patients have quite
different steady levels of virus concentration, but all maintain that steady level for long
periods.
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Perelson was head of the Theoretical Biology and Biophysics Group at Los Alamos
National Laboratory. By 1994, he had already developed a number of elaborate mathe-
matical models in an attempt to see if they could describe clinical reality. But his models
were full of unknown parameters. The available data (Figure 0.1) didn’t help very much.
How could he make progress without some better knowledge of the underlying cellular
events giving rise to the aggregate behavior?

NewYork City, 1994
David Ho was puzzled. As the head of the Aaron Diamond AIDS Research Center, he had
the resources to conduct clinical trials. He also had access to the latest anti-HIV drugs and
had begun tests with ritonavir, a “protease inhibitor” designed to stop the replication of the
HIV virus.

Something strange was beginning to emerge from these trials: The effect of treatment
with ritonavir seemed to be a very sudden drop in the patient’s total number of virus
particles. This was a paradoxical result, because it was known that ritonavir by itself didn’t
destroy existing virus particles, but simply stopped the creation of new ones. If HIV were
really a slow virus, as many believed, wouldn’t it also stay around for a long time, even once
its replication was stopped? What was going on?

Also, it had been known for some time that patients treated with antiviral drugs got
much better, but only temporarily. After a few months, ritonavir and other such drugs always
lost their effectiveness. Some radically new viewpoint was needed.

Hilton Head Island, 1994
Perelson didn’t know about the new drugs; he just knew he needed quantitative data. At a
conference on HIV, he heard a talk by one of Ho’s colleagues, R. Koup, on a different topic.
Intrigued, he later phoned to discuss Koup’s work. The conversation turned to the surprising
results just starting to emerge with ritonavir. Koup said that the group was looking for a
collaborator to help make sense of the strange data they had been getting. Was Perelson
interested? He was.

Ho and his colleagues suspected that simply measuring viral populations before and
after a month of treatment (the usual practice at the time) was not showing enough detail.
The crucial measurement would be one that examined an asymptomatic patient, not one
with full AIDS, and that monitored the blood virus concentration every day after adminis-
tering the drug.

More clinical trials followed. Measurements from patient after patient told the same
story (Figure 0.3): Shutting down the replication of virus particles brought a hundredfold drop
in their population in 2–3 weeks.

Perelson and Ho were stunned. The rapid drop implied that the body was constantly
clearing the virus at a tremendous rate; in the language of Figure 0.2, Qout was huge. That
could only mean that,without the drug, the production rate Qin was also huge. Similar results
were soon obtained with several other types of antiviral drugs. The virus wasn’t dormant at
all; it was replicating like mad. Analysis of the data yielded a numerical value for Qout, as we’ll
see in Chapter 1. Using this measurement, the researchers estimated that the typical asymp-
tomatic patient’s body was actually making at least a billion new virus particles each day.3

As often happens,elsewhere another research group, led by George Shaw, independently
pursued a similar program. This group, too, contained an “outsider” to AIDS

3Later, more refined estimates showed that the average production rate was actually even larger than this initial
lower bound.
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Figure 0.3 [Experimental data with preliminary fit.] Virus concentration in a patient’s blood (“viral load”) after treatment
with a protease inhibitor, showing the rapid decline after treatment. In this semilog plot, the solid line shows the time course
corresponding to elimination of half the total viral population every 1.4 days. The dashed line highlights a deviation from this
behavior at early times (the “initial plateau”); see Chapter 1. [Data from Perelson, 2002; see Dataset 1.]

research, a mathematician named Martin Nowak. Both groups published their findings
simultaneously in Nature. The implications of this work were profound. Because the virus is
replicating so rapidly, it can easily mutate to find a form resistant to any given drug.4 Indeed,
as we’ll see later, the virus mutates often enough to generate every possible single-base
mutation every few hours. Hence, every infected patient already has some resistant mutant
viruses before the drug is even administered; in a couple of weeks, this strain takes over
and the patient is sick again. The same observation also goes to the heart of HIV’s ability to
evade total destruction by the body: It is constantly, furiously, playing cat-and-mouse with
the patient’s immune system.

But what if we simultaneously administer two antiviral drugs? It’s not so easy for a virus
to sample every possible pair of mutations, and harder still to get three or more. And in fact,
subsequent work showed that “cocktails” of three different drugs can halt the progression of
HIV infection, apparently indefinitely. The patients taking these drugs have not been cured;
they still carry low levels of the virus. But they are alive, thanks to the treatment.

The message
This book is about basic science. It’s not about AIDS, nor indeed is it directly about medicine
at all. But the story just recounted has some important lessons.

The two research groups mentioned above made significant progress against a terrible
disease. They did this by following some general steps:

1. Assemble (or join) an interdisciplinary team to look at the problem with different sets
of tools;

2. Apply simple physical metaphors (the leaky container of water) and the corresponding
disciplines (dynamical systems theory, an area of physics) to make a hypothesis; and

4Actually the fact of mutation had already been established a few years earlier. Prior to the experiments described
here, however, it was difficult to understand how mutation could lead to fast evolution.
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3. Perform experiments specifically designed to give new, quantitative data to support or
refute the hypothesis.

This strategy will continue to yield important results in the future.
The rest of the book will get a bit dry in places. There will be many abstract ideas.

But abstract ideas do matter when you understand them well enough to find their concrete
applications. In fact, sometimes their abstractness just reflects the fact that they are so
widely applicable: Good ideas can jump like wildfires from one discipline to another. Let’s
get started.
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