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C H A P T E R 1

Biochemical Reactions

Cells can do lots of wonderful things. Individually they can move, contract, excrete,
reproduce, signal or respond to signals, and carry out the energy transactions necessary
for this activity. Collectively they perform all of the numerous functions of any living
organism necessary to sustain life. Yet, remarkably, all of what cells do can be described
in terms of a few basic natural laws. The fascination with cells is that although the rules
of behavior are relatively simple, they are applied to an enormously complex network of
interacting chemicals and substrates. The effort of many lifetimes has been consumed
in unraveling just a few of these reaction schemes, and there are many more mysteries
yet to be uncovered.

1.1 The Law of Mass Action

The fundamental “law” of a chemical reaction is the law of mass action. This law
describes the rate at which chemicals, whether large macromolecules or simple
ions, collide and interact to form different chemical combinations. Suppose that two
chemicals, say A and B, react upon collision with each other to form product C,

A + B k−→ C. (1.1)

The rate of this reaction is the rate of accumulation of product, d[C]
dt . This rate is the

product of the number of collisions per unit time between the two reactants and the
probability that a collision is sufficiently energetic to overcome the free energy of acti-
vation of the reaction. The number of collisions per unit time is taken to be proportional
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to the product of the concentrations of A and B with a factor of proportionality that
depends on the geometrical shapes and sizes of the reactant molecules and on the
temperature of the mixture. Combining these factors, we have

d[C]
dt

= k[A][B]. (1.2)

The identification of (1.2) with the reaction (1.1) is called the law of mass action, and
the constant k is called the rate constant for the reaction. However, the law of mass
action is not a law in the sense that it is inviolable, but rather it is a useful model, much
like Ohm’s law or Newton’s law of cooling. As a model, there are situations in which
it is not valid. For example, at high concentrations, doubling the concentration of one
reactant need not double the overall reaction rate, and at extremely low concentrations,
it may not be appropriate to represent concentration as a continuous variable.

For thermodynamic reasons all reactions proceed in both directions. Thus, the
reaction scheme for A, B, and C should have been written as

A + B
k+
−→
←−
k−

C, (1.3)

with k+ and k− denoting, respectively, the forward and reverse rate constants of re-
action. If the reverse reaction is slow compared to the forward reaction, it is often
ignored, and only the primary direction is displayed. Since the quantity A is consumed
by the forward reaction and produced by the reverse reaction, the rate of change of [A]
for this bidirectional reaction is

d[A]
dt

= k−[C]− k+[A][B]. (1.4)

At equilibrium, concentrations are not changing, so that

k−
k+
≡ Keq = [A]eq[B]eq

[C]eq
. (1.5)

The ratio k−/k+, denoted by Keq, is called the equilibrium constant of the reaction.
It describes the relative preference for the chemicals to be in the combined state C
compared to the dissociated state. If Keq is small, then at steady state most of A and B
are combined to give C.

If there are no other reactions involving A and C, then [A] + [C] = A0 is constant,
and

[C]eq = A0
[B]eq

Keq + [B]eq
, [A]eq = A0

Keq

Keq + [B]eq
. (1.6)

Thus, when [B]eq = Keq, half of A is in the bound state at equilibrium.
There are several other features of the law of mass action that need to be mentioned.

Suppose that the reaction involves the dimerization of two monomers of the same
species A to produce species C,
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A + A
k+
−→
←−
k−

C. (1.7)

For every C that is made, two of A are used, and every time C degrades, two copies of
A are produced. As a result, the rate of reaction for A is

d[A]
dt

= 2k−[C]− 2k+[A]2. (1.8)

However, the rate of production of C is half that of A,

d[C]
dt

= −1
2

d[A]
dt

, (1.9)

and the quantity [A]+2[C] is conserved (provided there are no other reactions).
In a similar way, with a trimolecular reaction, the rate at which the reaction takes

place is proportional to the product of three concentrations, and three molecules are
consumed in the process, or released in the degradation of product. In real life, there
are probably no truly trimolecular reactions. Nevertheless, there are some situations
in which a reaction might be effectively modeled as trimolecular (Exercise 2).

Unfortunately, the law of mass action cannot be used in all situations, because not
all chemical reaction mechanisms are known with sufficient detail. In fact, a vast num-
ber of chemical reactions cannot be described by mass action kinetics. Those reactions
that follow mass action kinetics are called elementary reactions because presumably,
they proceed directly from collision of the reactants. Reactions that do not follow mass
action kinetics usually proceed by a complex mechanism consisting of several elemen-
tary reaction steps. It is often the case with biochemical reactions that the elementary
reaction steps are not known or are very complicated to write down.

1.2 Thermodynamics and Rate Constants

There is a close relationship between the rate constants of a reaction and thermody-
namics. The fundamental concept is that of chemical potential, which is the Gibbs free
energy, G, per mole of a substance. Often, the Gibbs free energy per mole is denoted
by µ rather than G. However, because µ has many other uses in this text, we retain the
notation G for the Gibbs free energy.

For a mixture of ideal gases, Xi, the chemical potential of gas i is a function of
temperature, pressure, and concentration,

Gi = G0
i (T, P) + RT ln(xi), (1.10)

where xi is the mole fraction of Xi, R is the universal gas constant, T is the absolute
temperature, and P is the pressure of the gas (in atmospheres); values of these constants,
and their units, are given in the appendix. The quantity G0

i (T, P) is the standard free
energy per mole of the pure ideal gas, i.e., when the mole fraction of the gas is 1. Note
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that, since xi ≤ 1, the free energy of an ideal gas in a mixture is always less than that
of the pure ideal gas. The total Gibbs free energy of the mixture is

G =
∑

i

niGi, (1.11)

where ni is the number of moles of gas i.
The theory of Gibbs free energy in ideal gases can be extended to ideal dilute

solutions. By redefining the standard Gibbs free energy to be the free energy at a
concentration of 1 M, i.e., 1 mole per liter, we obtain

G = G0 + RT ln(c), (1.12)

where the concentration, c, is in units of moles per liter. The standard free energy, G0,
is obtained by measuring the free energy for a dilute solution and then extrapolating
to c = 1 M. For biochemical applications, the dependence of free energy on pressure
is ignored, and the pressure is assumed to be 1 atm, while the temperature is taken to
be 25◦C. Derivations of these formulas can be found in physical chemistry textbooks
such as Levine (2002) and Castellan (1971).

For nonideal solutions, such as are typical in cells, the free energy formula (1.12)
should use the chemical activity of the solute rather than its concentration. The re-
lationship between chemical activity a and concentration is nontrivial. However, for
dilute concentrations, they are approximately equal.

Since the free energy is a potential, it denotes the preference of one state compared
to another. Consider, for example, the simple reaction

A −→ B. (1.13)

The change in chemical potential!G is defined as the difference between the chemical
potential for state B (the product), denoted by GB, and the chemical potential for state
A (the reactant), denoted by GA,

!G = GB −GA

= G0
B −G0

A + RT ln([B])− RT ln([A])
= !G0 + RT ln([B]/[A]). (1.14)

The sign of!G is important, which is why it is defined with only one reaction direction
shown, even though we know that the back reaction also occurs. In fact, there is a
wonderful opportunity for confusion here, since there is no obvious way to decide
which is the forward and which is the backward direction for a given reaction. If
!G < 0, then state B is preferred to state A, and the reaction tends to convert A into
B, whereas, if !G > 0, then state A is preferred to state B, and the reaction tends to
convert B into A. Equilibrium occurs when neither state is preferred, so that !G = 0,
in which case

[B]eq

[A]eq
= e

−!G0
RT . (1.15)
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Expressing this reaction in terms of forward and backward reaction rates,

A
k+
−→
←−
k−

B, (1.16)

we find that in steady state, k+[A]eq = k−[B]eq, so that

[A]eq

[B]eq
= k−

k+
= Keq. (1.17)

Combining this with (1.15), we observe that

Keq = e
!G0
RT . (1.18)

In other words, the more negative the difference in standard free energy, the greater
the propensity for the reaction to proceed from left to right, and the smaller is Keq.
Notice, however, that this gives only the ratio of rate constants, and not their individual
amplitudes. We learn nothing about whether a reaction is fast or slow from the change
in free energy.

Similar relationships hold when there are multiple components in the reaction.
Consider, for example, the more complex reaction

αA + βB −→ γC + δD. (1.19)

The change of free energy for this reaction is defined as

!G = γGC + δGD − αGA − βGB

= γG0
C + δG0

D − αG0
A − βG0

B + RT ln
( [C]γ [D]δ

[A]α[B]β
)

= !G0 + RT ln
( [C]γ [D]δ

[A]α[B]β
)

, (1.20)

and at equilibrium,

!G0 = RT ln

(
[A]αeq[B]βeq

[C]γeq[D]δeq

)

= RT ln(Keq). (1.21)

An important example of such a reaction is the hydrolysis of adenosine triphosphate
(ATP) to adenosine diphosphate (ADP) and inorganic phosphate Pi, represented by the
reaction

ATP −→ ADP + Pi. (1.22)

The standard free energy change for this reaction is

!G0 = G0
ADP + G0

Pi
−G0

ATP = −31.0 kJ mol−1, (1.23)
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A

B C

k1 k2

k3

k-1 k-2
k-3

Figure 1.1 Schematic diagram of a reaction loop.

and from this we could calculate the equilibrium constant for this reaction. However,
the primary significance of this is not the size of the equilibrium constant, but rather
the fact that ATP has free energy that can be used to drive other less favorable reactions.
For example, in all living cells, ATP is used to pump ions against their concentration
gradient, a process called free energy transduction. In fact, if the equilibrium constant
of this reaction is achieved, then one can confidently assert that the system is dead. In
living systems, the ratio of [ATP] to [ADP][Pi] is held well above the equilibrium value.

1.3 Detailed Balance

Suppose that a set of reactions forms a loop, as shown in Fig. 1.1. By applying the law
of mass action and setting the derivatives to zero we can find the steady-state concen-
trations of A, B and C. However, for the system to be in thermodynamic equilibrium
a stronger condition must hold. Thermodynamic equilibrium requires that the free
energy of each state be the same so that each individual reaction is in equilibrium.
In other words, at equilibrium there is not only, say, no net change in [B], there is
also no net conversion of B to C or B to A. This condition means that, at equilibrium,
k1[B] = k−1[A], k2[A] = k−2[C] and k3[C] = k−3[B]. Thus, it must be that

k1k2k3 = k−1k−2k−3, (1.24)

or

K1K2K3 = 1, (1.25)

where Ki = k−i/ki. Since this condition does not depend on the concentrations of A, B
or C, it must hold in general, not only at equilibrium.

For a more general reaction loop, the principle of detailed balance requires that the
product of rates in one direction around the loop must equal the product of rates in the
other direction. If any of the rates are dependent on concentrations of other chemicals,
those concentrations must also be included.
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1.4 Enzyme Kinetics

To see where some of the more complicated reaction schemes come from, we consider a
reaction that is catalyzed by an enzyme. Enzymes are catalysts (generally proteins) that
help convert other molecules called substrates into products, but they themselves are
not changed by the reaction. Their most important features are catalytic power, speci-
ficity, and regulation. Enzymes accelerate the conversion of substrate into product by
lowering the free energy of activation of the reaction. For example, enzymes may aid
in overcoming charge repulsions and allowing reacting molecules to come into contact
for the formation of new chemical bonds. Or, if the reaction requires breaking of an
existing bond, the enzyme may exert a stress on a substrate molecule, rendering a
particular bond more easily broken. Enzymes are particularly efficient at speeding up
biological reactions, giving increases in speed of up to 10 million times or more. They
are also highly specific, usually catalyzing the reaction of only one particular substrate
or closely related substrates. Finally, they are typically regulated by an enormously
complicated set of positive and negative feedbacks, thus allowing precise control over
the rate of reaction. A detailed presentation of enzyme kinetics, including many differ-
ent kinds of models, can be found in Dixon and Webb (1979), the encyclopedic Segel
(1975) or Kernevez (1980). Here, we discuss only some of the simplest models.

One of the first things one learns about enzyme reactions is that they do not follow
the law of mass action directly. For, as the concentration of substrate (S) is increased,
the rate of the reaction increases only to a certain extent, reaching a maximal reaction
velocity at high substrate concentrations. This is in contrast to the law of mass action,
which, when applied directly to the reaction of S with the enzyme E

S + E −→ P + E

predicts that the reaction velocity increases linearly as [S] increases.
A model to explain the deviation from the law of mass action was first proposed

by Michaelis and Menten (1913). In their reaction scheme, the enzyme E converts the
substrate S into the product P through a two-step process. First E combines with S
to form a complex C which then breaks down into the product P releasing E in the
process. The reaction scheme is represented schematically by

S + E
k1
−→
←−
k−1

C
k2
−→
←−
k−2

P + E.

Although all reactions must be reversible, as shown here, reaction rates are typically
measured under conditions where P is continually removed, which effectively prevents
the reverse reaction from occurring. Thus, it often suffices to assume that no reverse
reaction occurs. For this reason, the reaction is usually written as

S + E
k1
−→
←−
k−1

C
k2−→P + E.

The reversible case is considered in Section 1.4.5.
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There are two similar, but not identical, ways to analyze this equation; the
equilibrium approximation, and the quasi-steady-state approximation. Because these
methods give similar results it is easy to confuse them, so it is important to understand
their differences.

We begin by defining s = [S], c = [C], e = [E], and p = [P]. The law of mass action
applied to this reaction mechanism gives four differential equations for the rates of
change of s, c, e, and p,

ds
dt

= k−1c− k1se, (1.26)

de
dt

= (k−1 + k2)c− k1se, (1.27)

dc
dt

= k1se− (k2 + k−1)c, (1.28)

dp
dt

= k2c. (1.29)

Note that p can be found by direct integration, and that there is a conserved quantity
since de

dt + dc
dt = 0, so that e + c = e0, where e0 is the total amount of available enzyme.

1.4.1 The Equilibrium Approximation

In their original analysis, Michaelis and Menten assumed that the substrate is in
instantaneous equilibrium with the complex, and thus

k1se = k−1c. (1.30)

Since e + c = e0, we find that

c = e0s
K1 + s

, (1.31)

where K1 = k−1/k1. Hence, the velocity, V , of the reaction, i.e., the rate at which the
product is formed, is given by

V = dp
dt

= k2c = k2e0s
K1 + s

= Vmaxs
K1 + s

, (1.32)

where Vmax = k2e0 is the maximum reaction velocity, attained when all the enzyme is
complexed with the substrate.

At small substrate concentrations, the reaction rate is linear, at a rate proportional
to the amount of available enzyme e0. At large concentrations, however, the reaction
rate saturates to Vmax, so that the maximum rate of the reaction is limited by the
amount of enzyme present and the dissociation rate constant k2. For this reason, the

dissociation reaction C
k2−→P + E is said to be rate limiting for this reaction. At s = K1,

the reaction rate is half that of the maximum.
It is important to note that (1.30) cannot be exactly correct at all times; if it were,

then according to (1.26) substrate would not be used up, and product would not be
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formed. This points out the fact that (1.30) is an approximation. It also illustrates the
need for a systematic way to make approximate statements, so that one has an idea of
the magnitude and nature of the errors introduced in making such an approximation.

It is a common mistake with the equilibrium approximation to conclude that since
(1.30) holds, it must be that ds

dt = 0, which if this is true, implies that no substrate is
being used up, nor product produced. Furthermore, it appears that if (1.30) holds, then
it must be (from (1.28)) that dc

dt = −k2c, which is also false. Where is the error here?
The answer lies with the fact that the equilibrium approximation is equivalent to

the assumption that the reaction (1.26) is a very fast reaction, faster than others, or
more precisely, that k−1 ≫ k2. Adding (1.26) and (1.28), we find that

ds
dt

+ dc
dt

= −k2c, (1.33)

expressing the fact that the total quantity s + c changes on a slower time scale. Now
when we use that c = e0s

Ks+s , we learn that

d
dt

(
s + e0s

K1 + s

)
= −k2

e0s
K1 + s

, (1.34)

and thus,

ds
dt

(
1 + e0K1

(K1 + s)2

)
= −k2

e0s
K1 + s

, (1.35)

which specifies the rate at which s is consumed.
This way of simplifying reactions by using an equilibrium approximation is used

many times throughout this book, and is an extremely important technique, par-
ticularly in the analysis of Markov models of ion channels, pumps and exchangers
(Chapters 2 and 3). A more mathematically systematic description of this approach is
left for Exercise 20.

1.4.2 The Quasi-Steady-State Approximation

An alternative analysis of an enzymatic reaction was proposed by Briggs and Haldane
(1925) who assumed that the rates of formation and breakdown of the complex were
essentially equal at all times (except perhaps at the beginning of the reaction, as the
complex is “filling up”). Thus, dc/dt should be approximately zero.

To give this approximation a systematic mathematical basis, it is useful to introduce
dimensionless variables

σ = s
s0

, x = c
e0

, τ = k1e0t, κ = k−1 + k2

k1s0
, ϵ = e0

s0
, α = k−1

k1s0
, (1.36)
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in terms of which we obtain the system of two differential equations

dσ
dτ

= −σ + x(σ + α), (1.37)

ϵ
dx
dτ

= σ − x(σ + κ). (1.38)

There are usually a number of ways that a system of differential equations can be
nondimensionalized. This nonuniqueness is often a source of great confusion, as it is
often not obvious which choice of dimensionless variables and parameters is “best.” In
Section 1.6 we discuss this difficult problem briefly.

The remarkable effectiveness of enzymes as catalysts of biochemical reactions is
reflected by their small concentrations needed compared to the concentrations of the
substrates. For this model, this means that ϵ is small, typically in the range of 10−2

to 10−7. Therefore, the reaction (1.38) is fast, equilibrates rapidly and remains in
near-equilibrium even as the variable σ changes. Thus, we take the quasi-steady-state
approximation ϵ dx

dτ = 0. Notice that this is not the same as taking dx
dτ = 0. However,

because of the different scaling of x and c, it is equivalent to taking dc
dt = 0 as suggested

in the introductory paragraph.
One useful way of looking at this system is as follows; since

dx
dτ

= σ − x(σ + κ)

ϵ
, (1.39)

dx/dτ is large everywhere, except where σ−x(σ+κ) is small, of approximately the same
size as ϵ. Now, note that σ − x(σ + κ) = 0 defines a curve in the σ , x phase plane, called
the slow manifold (as illustrated in the right panel of Fig. 1.14). If the solution starts
away from the slow manifold, dx/dτ is initially large, and the solution moves rapidly
to the vicinity of the slow manifold. The solution then moves along the slow manifold
in the direction defined by the equation for σ ; in this case, σ is decreasing, and so the
solution moves to the left along the slow manifold.

Another way of looking at this model is to notice that the reaction of x is an ex-
ponential process with time constant at least as large as κ

ϵ . To see this we write (1.38)
as

ϵ
dx
dτ

+ κx = σ (1− x). (1.40)

Thus, the variable x “tracks” the steady state with a short delay.
It follows from the quasi-steady-state approximation that

x = σ

σ + κ
, (1.41)

dσ
dτ

= − qσ
σ + κ

, (1.42)
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where q = κ − α = k2
k1s0

. Equation (1.42) describes the rate of uptake of the substrate
and is called a Michaelis–Menten law. In terms of the original variables, this law is

V = dp
dt

= −ds
dt

= k2e0s
s + Km

= Vmaxs
s + Km

, (1.43)

where Km = k−1+k2
k1

. In quasi-steady state, the concentration of the complex satisfies

c = e0s
s + Km

. (1.44)

Note the similarity between (1.32) and (1.43), the only difference being that the equi-
librium approximation uses K1, while the quasi-steady-state approximation uses Km.
Despite this similarity of form, it is important to keep in mind that the two results
are based on different approximations. The equilibrium approximation assumes that
k−1 ≫ k2 whereas the quasi-steady-state approximation assumes that ϵ ≪ 1. No-
tice, that if k−1 ≫ k2, then Km ≈ K1, so that the two approximations give similar
results.

As with the law of mass action, the Michaelis–Menten law (1.43) is not universally
applicable but is a useful approximation. It may be applicable even if ϵ = e0/s0 is not
small (see, for example, Exercise 14), and in model building it is often invoked without
regard to the underlying assumptions.

While the individual rate constants are difficult to measure experimentally, the ratio
Km is relatively easy to measure because of the simple observation that (1.43) can be
written in the form

1
V

= 1
Vmax

+ Km

Vmax

1
s

. (1.45)

In other words, 1/V is a linear function of 1/s. Plots of this double reciprocal curve are
called Lineweaver–Burk plots, and from such (experimentally determined) plots, Vmax
and Km can be estimated.

Although a Lineweaver–Burk plot makes it easy to determine Vmax and Km from
reaction rate measurements, it is not a simple matter to determine the reaction rate
as a function of substrate concentration during the course of a single experiment.
Substrate concentrations usually cannot be measured with sufficient accuracy or time
resolution to permit the calculation of a reliable derivative. In practice, since it is more
easily measured, the initial reaction rate is determined for a range of different initial
substrate concentrations.

An alternative method to determine Km and Vmax from experimental data is the di-
rect linear plot (Eisenthal and Cornish-Bowden, 1974; Cornish-Bowden and Eisenthal,
1974). First we write (1.43) in the form

Vmax = V + V
s

Km, (1.46)
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and then treat Vmax and Km as variables for each experimental measurement of V and s.
(Recall that typically only the initial substrate concentration and initial velocity are
used.) Then a plot of the straight line of Vmax against Km can be made. Repeating this
for a number of different initial substrate concentrations and velocities gives a family
of straight lines, which, in an ideal world free from experimental error, intersect at the
single point Vmax and Km for that reaction. In reality, experimental error precludes an
exact intersection, but Vmax and Km can be estimated from the median of the pairwise
intersections.

1.4.3 Enzyme Inhibition

An enzyme inhibitor is a substance that inhibits the catalytic action of the enzyme.
Enzyme inhibition is a common feature of enzyme reactions, and is an important
means by which the activity of enzymes is controlled. Inhibitors come in many different
types. For example, irreversible inhibitors, or catalytic poisons, decrease the activity of
the enzyme to zero. This is the method of action of cyanide and many nerve gases.
For this discussion, we restrict our attention to competitive inhibitors and allosteric
inhibitors.

To understand the distinction between competitive and allosteric inhibition, it is
useful to keep in mind that an enzyme molecule is usually a large protein, considerably
larger than the substrate molecule whose reaction is catalyzed. Embedded in the large
enzyme protein are one or more active sites, to which the substrate can bind to form the
complex. In general, an enzyme catalyzes a single reaction of substrates with similar
structures. This is believed to be a steric property of the enzyme that results from the
three-dimensional shape of the enzyme allowing it to fit in a “lock-and-key” fashion
with a corresponding substrate molecule.

If another molecule has a shape similar enough to that of the substrate molecule,
it may also bind to the active site, preventing the binding of a substrate molecule, thus
inhibiting the reaction. Because the inhibitor competes with the substrate molecule
for the active site, it is called a competitive inhibitor.

However, because the enzyme molecule is large, it often has other binding sites,
distinct from the active site, the binding of which affects the activity of the enzyme
at the active site. These binding sites are called allosteric sites (from the Greek for
“another solid”) to emphasize that they are structurally different from the catalytic
active sites. They are also called regulatory sites to emphasize that the catalytic activity
of the protein is regulated by binding at this allosteric site. The ligand (any molecule
that binds to a specific site on a protein, from Latin ligare, to bind) that binds at the
allosteric site is called an effector or modifier, which, if it increases the activity of the
enzyme, is called an allosteric activator, while if it decreases the activity of the enzyme,
is called an allosteric inhibitor. The allosteric effect is presumed to arise because of a
conformational change of the enzyme, that is, a change in the folding of the polypeptide
chain, called an allosteric transition.
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Competitive Inhibition
In the simplest example of a competitive inhibitor, the reaction is stopped when the
inhibitor is bound to the active site of the enzyme. Thus,

S + E
k1
−→
←−
k−1

C1
k2−→E + P,

E + I
k3
−→
←−
k−3

C2.

Using the law of mass action we find

ds
dt

= −k1se + k−1c1, (1.47)

di
dt

= −k3ie + k−3c2, (1.48)

dc1

dt
= k1se− (k−1 + k2)c1, (1.49)

dc2

dt
= k3ie− k−3c2. (1.50)

where s = [S], c1 = [C1], and c2 = [C2]. We know that e + c1 + c2 = e0, so an equation
for the dynamics of e is superfluous. As before, it is not necessary to write an equation
for the accumulation of the product. To be systematic, the next step is to introduce
dimensionless variables, and identify those reactions that are rapid and equilibrate
rapidly to their quasi-steady states. However, from our previous experience (or from a
calculation on a piece of scratch paper), we know, assuming the enzyme-to-substrate
ratios are small, that the fast equations are those for c1 and c2. Hence, the quasi-steady
states are found by (formally) setting dc1/dt = dc2/dt = 0 and solving for c1 and c2.
Recall that this does not mean that c1 and c2 are unchanging, rather that they are
changing in quasi-steady-state fashion, keeping the right-hand sides of these equations
nearly zero. This gives

c1 = Kie0s
Kmi + Kis + KmKi

, (1.51)

c2 = Kme0i
Kmi + Kis + KmKi

, (1.52)

where Km = k−1+k2
k1

, Ki = k−3/k3. Thus, the velocity of the reaction is

V = k2c1 = k2e0sKi

Kmi + Kis + KmKi
= Vmaxs

s + Km(1 + i/Ki)
. (1.53)

Notice that the effect of the inhibitor is to increase the effective equilibrium constant of
the enzyme by the factor 1+ i/Ki, from Km to Km(1+ i/Ki), thus decreasing the velocity
of reaction, while leaving the maximum velocity unchanged.
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Figure 1.2 Diagram of the possible states of an enzyme with one allosteric and one catalytic
binding site.

Allosteric Inhibitors
If the inhibitor can bind at an allosteric site, we have the possibility that the enzyme
could bind both the inhibitor and the substrate simultaneously. In this case, there
are four possible binding states for the enzyme, and transitions between them, as
demonstrated graphically in Fig. 1.2.

The simplest analysis of this reaction scheme is the equilibrium analysis. (The more
complicated quasi-steady-state analysis is left for Exercise 6.) We define Ks = k−1/k1,
Ki = k−3/k3, and let x, y, and z denote, respectively, the concentrations of ES, EI and
EIS. Then, it follows from the law of mass action that at equilibrium (take each of the
4 transitions to be at equilibrium),

(e0 − x− y− z)s− Ksx = 0, (1.54)

(e0 − x− y− z)i− Kiy = 0, (1.55)

ys− Ksz = 0, (1.56)

xi− Kiz = 0, (1.57)

where e0 = e + x + y + z is the total amount of enzyme. Notice that this is a linear
system of equations for x, y, and z. Although there are four equations, one is a linear
combination of the other three (the system is of rank three), so that we can determine
x, y, and z as functions of i and s, finding

x = e0Ki

Ki + i
s

Ks + s
. (1.58)

It follows that the reaction rate, V = k2x, is given by

V = Vmax

1 + i/Ki

s
Ks + s

, (1.59)

where Vmax = k2e0. Thus, in contrast to the competitive inhibitor, the allosteric in-
hibitor decreases the maximum velocity of the reaction, while leaving Ks unchanged.
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(The situation is more complicated if the quasi-steady-state approximation is used, and
no such simple conclusion follows.)

1.4.4 Cooperativity

For many enzymes, the reaction velocity is not a simple hyperbolic curve, as predicted
by the Michaelis–Menten model, but often has a sigmoidal character. This can re-
sult from cooperative effects, in which the enzyme can bind more than one substrate
molecule but the binding of one substrate molecule affects the binding of subsequent
ones.

Much of the original theoretical work on cooperative behavior was stimulated by
the properties of hemoglobin, and this is often the context in which cooperativity is
discussed. A detailed discussion of hemoglobin and oxygen binding is given in Chapter
13, while here cooperativity is discussed in more general terms.

Suppose that an enzyme can bind two substrate molecules, so it can exist in one of
three states, namely as a free molecule E, as a complex with one occupied binding site,
C1, and as a complex with two occupied binding sites, C2. The reaction mechanism is
then

S + E
k1
−→
←−
k−1

C1
k2−→E + P, (1.60)

S + C1

k3
−→
←−
k−3

C2
k4−→C1 + P. (1.61)

Using the law of mass action, one can write the rate equations for the 5 concen-
trations [S], [E], [C1], [C2], and [P]. However, because the amount of product [P] can be
determined by quadrature, and because the total amount of enzyme molecule is con-
served, we only need three equations for the three quantities [S], [C1], and [C2]. These
are

ds
dt

= −k1se + k−1c1 − k3sc1 + k−3c2, (1.62)

dc1

dt
= k1se− (k−1 + k2)c1 − k3sc1 + (k4 + k−3)c2, (1.63)

dc2

dt
= k3sc1 − (k4 + k−3)c2, (1.64)

where s = [S], c1 = [C1], c2 = [C2], and e + c1 + c2 = e0.
Proceeding as before, we invoke the quasi-steady-state assumption that dc1/dt =

dc2/dt = 0, and solve for c1 and c2 to get

c1 = K2e0s
K1K2 + K2s + s2 , (1.65)

c2 = e0s2

K1K2 + K2s + s2 , (1.66)
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where K1 = k−1+k2
k1

and K2 = k4+k−3
k3

. The reaction velocity is thus given by

V = k2c1 + k4c2 = (k2K2 + k4s)e0s
K1K2 + K2s + s2 . (1.67)

Use of the equilibrium approximation to simplify this reaction scheme gives, as
expected, similar results, in which the formula looks the same, but with different
definitions of K1 and K2 (Exercise 10).

It is instructive to examine two extreme cases. First, if the binding sites act inde-
pendently and identically, then k1 = 2k3 = 2k+, 2k−1 = k−3 = 2k− and 2k2 = k4, where
k+ and k− are the forward and backward reaction rates for the individual binding sites.
The factors of 2 occur because two identical binding sites are involved in the reaction,
doubling the amount of the reactant. In this case,

V = 2k2e0(K + s)s
K2 + 2Ks + s2 = 2

k2e0s
K + s

, (1.68)

where K = k−+k2
k+

is the Km of the individual binding site. As expected, the rate of
reaction is exactly twice that for the individual binding site.

In the opposite extreme, suppose that the binding of the first substrate molecule is
slow, but that with one site bound, binding of the second is fast (this is large positive
cooperativity). This can be modeled by letting k3 →∞ and k1 → 0, while keeping k1k3
constant, in which case K2 → 0 and K1 →∞ while K1K2 is constant. In this limit, the
velocity of the reaction is

V = k4e0s2

K2
m + s2 = Vmaxs2

K2
m + s2 , (1.69)

where K2
m = K1K2, and Vmax = k4e0.

In general, if n substrate molecules can bind to the enzyme, there are n equilibrium
constants, K1 through Kn. In the limit as Kn → 0 and K1 → ∞ while keeping K1Kn
fixed, the rate of reaction is

V = Vmaxsn

Kn
m + sn , (1.70)

where Kn
m = *n

i=1Ki. This rate equation is known as the Hill equation. Typically, the
Hill equation is used for reactions whose detailed intermediate steps are not known
but for which cooperative behavior is suspected. The exponent n and the parameters
Vmax and Km are usually determined from experimental data. Observe that

n ln s = n ln Km + ln
(

V
Vmax − V

)
, (1.71)

so that a plot of ln( V
Vmax−V ) against ln s (called a Hill plot) should be a straight line of

slope n. Although the exponent n suggests an n-step process (with n binding sites), in
practice it is not unusual for the best fit for n to be noninteger.

An enzyme can also exhibit negative cooperativity (Koshland and Hamadani, 2002),
in which the binding of the first substrate molecule decreases the rate of subsequent
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Figure 1.3 Reaction velocity plotted against substrate concentration, for three different cases.
Positive cooperativity, K1 = 1000, K2 = 0.001; independent binding sites, K1 = 0.5, K2 = 2; and
negative cooperativity, K1 = 0.5, K2 = 100. The other parameters are e0 = 1, k2 = 1, k4 = 2.
Concentration and time units are arbitrary.

binding. This can be modeled by decreasing k3. In Fig. 1.3 we plot the reaction velocity
against the substrate concentration for the cases of independent binding sites (no coop-
erativity), extreme positive cooperativity (the Hill equation), and negative cooperativity.
From this figure it can be seen that with positive cooperativity, the reaction velocity
is a sigmoidal function of the substrate concentration, while negative cooperativity
primarily decreases the overall reaction velocity.

The Monod–Wyman–Changeux Model
Cooperative effects occur when the binding of one substrate molecule alters the rate
of binding of subsequent ones. However, the above models give no explanation of how
such alterations in the binding rate occur. The earliest model proposed to account for
cooperative effects in terms of the enzyme’s conformation was that of Monod, Wyman,
and Changeux (1965). Their model is based on the following assumptions about the
structure and behavior of enzymes.

1. Cooperative proteins are composed of several identical reacting units, called pro-
tomers, or subunits, each containing one binding site, that occupy equivalent
positions within the protein.

2. The protein has two conformational states, usually denoted by R and T, which
differ in their ability to bind ligands.
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Figure 1.4 Diagram of the states of
the protein, and the possible transi-
tions, in a six-state Monod–Wyman–
Changeux model.

3. If the binding of a ligand to one protomer induces a conformational change in
that protomer, an identical conformational change is induced in all protomers.
Because of this assumption, Monod–Wyman–Changeux (MWC) models are often
called concerted models, as each subunit acts in concert with the others.

To illustrate how these assumptions can be quantified, we consider a protein with
two binding sites. Thus, the protein can exist in one of six states: Ri, i = 0, 1, 2, or
Ti, i = 0, 1, 2, where the subscript i is the number of bound ligands. (In the original
model of Monod, Wyman and Changeux, R denoted a relaxed state, while T denoted a
tense state.) For simplicity, we also assume that R1 cannot convert directly to T1, or vice
versa, and similarly for R2 and T2. The general case is left for Exercise 7. The states
of the protein and the allowable transitions are illustrated in Fig. 1.4. As with other
enzyme models, we assume that the production rate of product is proportional to the
amount of substrate that is bound to the enzyme.

We now assume that all the reactions are in equilibrium. We let a lowercase letter
denote a concentration, and thus ri and ti denote the concentrations of chemical species
Ri and Ti respectively. Also, as before, we let s denote the concentration of the substrate.
Then, the fraction Y of occupied sites (also called the saturation function) is

Y = r1 + 2r2 + t1 + 2t2
2(r0 + r1 + r2 + t0 + t1 + t2)

. (1.72)

(This is also proportional to the production rate of product.) Furthermore, with Ki =
k−i/ki, for i = 1, 2, 3, we find that

r1 = 2sK−1
1 r0, r2 = s2K−2

1 r0, (1.73)

t1 = 2sK−1
3 t0, t2 = s2K−2

3 t0. (1.74)

Substituting these into (1.72) gives

Y = sK−1
1 (1 + sK−1

1 ) + K−1
2 [sK−1

3 (1 + sK−1
3 )]

(1 + sK−1
1 )2 + K−1

2 (1 + sK−1
3 )2

, (1.75)
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where we have used that r0/t0 = K2. More generally, if there are n binding sites, then

Y = sK−1
1 (1 + sK−1

1 )n−1 + K−1
2 [sK−1

3 (1 + sK−1
3 )n−1]

(1 + sK−1
1 )n + K−1

2 (1 + sK−1
3 )n

. (1.76)

In general, Y is a sigmoidal function of s.
It is not immediately apparent how cooperative binding kinetics arises from this

model. After all, each binding site in the R conformation is identical, as is each binding
site in the T conformation. In order to get cooperativity it is necessary that the binding
affinity of the R conformation be different from that of the T conformation. In the
special case that the binding affinities of the R and T conformations are equal (i.e.,
K1 = K3 = K, say) the binding curve (1.76) reduces to

Y = s
K + s

, (1.77)

which is simply noncooperative Michaelis–Menten kinetics.
Suppose that one conformation, T say, binds the substrate with a higher affinity

than does R. Then, when the substrate concentration increases, T0 is pushed through
to T1 faster than R0 is pushed to R1, resulting in an increase in the amount of substrate
bound to the T state, and thus increased overall binding of substrate. Hence the
cooperative behavior of the model.

If K2 = ∞, so that only one conformation exists, then once again the saturation
curve reduces to the Michaelis–Menten equation, Y = s/(s + K1). Hence each con-
formation, by itself, has noncooperative Michaelis–Menten binding kinetics. It is only
when the overall substrate binding can be biased to one conformation or the other that
cooperativity appears.

Interestingly, MWC models cannot exhibit negative cooperativity. No matter
whether K1 > K3 or vice versa, the binding curve always exhibits positive cooperativity.

The Koshland–Nemethy–Filmer model
One alternative to the MWC model is that proposed by Koshland, Nemethy and Filmer
in 1966 (the KNF model). Instead of requiring that all subunit transitions occur in
concert, as in the MWC model, the KNF model assumes that substrate binding to one
subunit causes a conformational change in that subunit only, and that this conforma-
tional change causes a change in the binding affinity of the neighboring subunits. Thus,
in the KNF model, each subunit can be in a different conformational state, and tran-
sitions from one state to the other occur sequentially as more substrate is bound. For
this reason KNF models are often called sequential models. The increased generality
of the KNF model allows for the possibility of negative cooperativity, as the binding to
one subunit can decrease the binding affinity of its neighbors.

When binding shows positive cooperativity, it has proven difficult to distinguish
between the MWC and KNF models on the basis of experimental data. In one of the
most intensely studied cooperative mechanisms, that of oxygen binding to hemoglobin,
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there is experimental evidence for both models, and the actual mechanism is probably
a combination of both.

There are many other models of enzyme cooperativity, and the interested reader is
referred to Dixon and Webb (1979) for a comprehensive discussion and comparison of
other models in the literature.

1.4.5 Reversible Enzyme Reactions

Since all enzyme reactions are reversible, a general understanding of enzyme kinetics
must take this reversibility into account. In this case, the reaction scheme is

S + E
k1
−→
←−
k−1

C
k2
−→
←−
k−2

P + E.

Proceeding as usual, we let e + c = e0 and make the quasi-steady-state assumption

0 = dc
dt

= k1s(e0 − c)− (k−1 + k2)c + k−2p(e0 − c), (1.78)

from which it follows that

c = e0(k1s + k−2p)

k1s + k−2p + k−1 + k2
. (1.79)

The reaction velocity, V = dP
dt = k2c− k−2pe, can then be calculated to be

V = e0
k1k2s− k−1k−2p

k1s + k−2p + k−1 + k2
. (1.80)

When p is small (e.g., if product is continually removed), the reverse reaction is
negligible and we get the previous answer (1.43).

In contrast to the irreversible case, the equilibrium and quasi-steady-state assump-
tions for reversible enzyme kinetics give qualitatively different answers. If we assume
that S, E, and C are in fast equilibrium (instead of assuming that C is at quasi-steady
state) we get

k1s(e0 − c) = k−1c, (1.81)

from which it follows that

V = k2c− k−2p(e0 − c) = e0
k1k2s− k−1k−2p

k1s + k−1
. (1.82)

Comparing this to (1.80), we see that the quasi-steady-state assumption gives addi-
tional terms in the denominator involving the product p. These differences result from
the assumption underlying the fast-equilibrium assumption, that k−1 and k1 are both
substantially larger than k−2 and k2, respectively. Which of these approximations is
best depends, of course, on the details of the reaction.

Calculation of the equations for a reversible enzyme reaction in which the enzyme
has multiple binding sites is left for the exercises (Exercise 11).
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1.4.6 The Goldbeter–Koshland Function

As is seen in many ways in this book, cooperativity is an important ingredient in the
construction of biochemical switches. However, highly sensitive switching behavior re-
quires large Hill coefficients, which would seem to require multiple interacting enzymes
or binding sites, making these unlikely to occur. An alternative mechanism by which
highly sensitive switching behavior is possible, suggested by Goldbeter and Koshland
(1981), uses only two enzymatic transitions. In this model reaction, a substrate can be
in one of two forms, say W and W∗, and transferred from state W to W∗ by one enzyme,
say E1, and transferred from state W∗ to W by another enzyme, say E2. For example,
W∗ could be a phosphorylated state of some enzyme, E1 could be the kinase that phos-
phorylates W, and E2 could be the phosphatase that dephosphorylates W∗. Numerous
reactions of this type are described in Chapter 10, where W is itself an enzyme whose
activity is determined by its phosphorylation state. Thus, the reaction scheme is

W + E1

k1
−→
←−
k−1

C1
k2−→E1 + W∗,

W∗ + E2

k3
−→
←−
k−3

C2
k4−→E2 + W.

Although the full analysis of this reaction scheme is not particularly difficult, a simpli-
fied analysis quickly shows the salient features. If we suppose that the enzyme reactions
take place at Michaelis–Menten rates, the reaction simplifies to

W
r1
−→
←−
r−1

W∗, (1.83)

where

r1 = V1E1

K1 + W
, r−1 = V2E2

K2 + W∗
, (1.84)

and the concentration of W is governed by the differential equation

dW
dt

= r−1(Wt −W)− r1W, (1.85)

where W + W∗ = Wt. In steady state, the forward and backward reaction rates are the
same, leading to the equation

V1E1

V2E2
= W∗(K1 + W)

W(K2 + W∗)
. (1.86)

This can be rewritten as

v1

v2
= (1− y)(K̂1 + y)

y(K̂2 + 1− y)
, (1.87)
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Figure 1.5 Plots of y as a function of the ratio v1
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.

where y = W
Wt

, K̂i = Ki/Wt, vi = ViEi, for i = 1, 2. Plots of y as a function of the ratio
v1
v2

are easy to draw. One simply plots v1
v2

as a function of y and then reverses the axes.
Examples of these are shown in Fig. 1.5. As is seen in this figure, the ratio v1

v2
controls

the relative abundance of y in a switch-like fashion. In particular, the switch becomes
quite sharp when the equilibrium constants K̂1 and K̂2 are small compared to 1. In
other words, if the enzyme reactions are running at highly saturated levels, then there
is sensitive switch-like dependence on the enzyme velocity ratio v1

v2
.

Equation (1.87) is a quadratic polynomial in y, with explicit solution

y = β −
√
β2 − 4αγ
2α

, (1.88)

where

α = v1

v2
− 1, (1.89)

β = (1− K̂1)− v1

v2
(K̂2 + 1), (1.90)

γ = K̂1. (1.91)

The function

G(v1, v2, K̂1, K̂2) = β −
√
β2 − 4αγ
2α

(1.92)

is called the Goldbeter–Koshland function. The Goldbeter–Koshland function is often
used in descriptions of biochemical networks (Chapter 10). For example, V1 and V2
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could depend on the concentration of another enzyme, Ẽ say, leading to switch-like
regulation of the concentration of W as a function of the concentration of Ẽ. In this
way, networks of biochemical reactions can be constructed in which some of the
components are switched on or switched off, relatively abruptly, by other components.

1.5 Glycolysis and Glycolytic Oscillations

Metabolism is the process of extracting useful energy from chemical bonds. A metabolic
pathway is the sequence of enzymatic reactions that take place in order to transfer
chemical energy from one form to another. The common carrier of energy in the cell
is the chemical adenosine triphosphate (ATP). ATP is formed by the addition of an
inorganic phosphate group (HPO2−

4 ) to adenosine diphosphate (ADP), or by the ad-
dition of two inorganic phosphate groups to adenosine monophosphate (AMP). The
process of adding an inorganic phosphate group to a molecule is called phosphorylation.
Since the three phosphate groups on ATP carry negative charges, considerable energy
is required to overcome the natural repulsion of like-charged phosphates as additional
groups are added to AMP. Thus, the hydrolysis (the cleavage of a bond by water) of ATP
to ADP releases large amounts of energy.

Energy to perform chemical work is made available to the cell by the oxidation of
glucose to carbon dioxide and water, with a net release of energy. The overall chemical
reaction for the oxidation of glucose can be written as

C6H12O6 + 6O2 −→ 6CO2 + 6H2O + energy, (1.93)

but of course, this is not an elementary reaction. Instead, this reaction takes place in
a series of enzymatic reactions, with three major reaction stages, glycolysis, the Krebs
cycle, and the electron transport (or cytochrome) system.

The oxidation of glucose is associated with a large negative free energy, !G0 =
−2878.41 kJ/mol, some of which is dissipated as heat. However, in living cells much of
this free energy in stored in ATP, with one molecule of glucose resulting in 38 molecules
of ATP.

Glycolysis involves 11 elementary reaction steps, each of which is an enzymatic
reaction. Here we consider a simplified model of the initial steps. (To understand more
of the labyrinthine complexity of glycolysis, interested readers are encouraged to con-
sult a specialized book on biochemistry, such as Stryer, 1988.) The first three steps of
glycolysis are (Fig. 1.6)

1. the phosphorylation of glucose to glucose 6-phosphate;
2. the isomerization of glucose 6-phosphate to fructose 6-phosphate; and
3. the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate.

The direct reaction of glucose with phosphate to form glucose 6-phosphate has
a relatively large positive standard free energy change (!G0 = 14.3 kJ/mol) and so
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Figure 1.6 The first three reactions in the glycolytic
pathway.

does not occur significantly under physiological conditions. However, the first step
of metabolism is coupled with the hydrolysis of ATP to ADP (catalyzed by the enzyme
hexokinase), giving this step a net negative standard free energy change and making the
reaction strongly spontaneous. This feature turns out to be important for the efficient
operation of glucose membrane transporters, which are described in the next chapter.

The second step of glycolysis has a relatively small positive standard free energy
change (!G0 = 1.7 kJ/mol), with an equilibrium constant of 0.5. This means that
significant amounts of product are formed under normal conditions.

The third step is, like the first step, energetically unfavorable, were it not cou-
pled with the hydrolysis of ATP. However, the net standard free energy change
(!G0 = −14.2 kJ/mol) means that not only is this reaction strongly favored, but also
that it augments the reaction in the second step by depleting the product of the second
step.

This third reaction is catalyzed by the enzyme phosphofructokinase (PFK1). PFK1
is an example of an allosteric enzyme as it is allosterically inhibited by ATP. Note that
ATP is both a substrate of PFK1, binding at a catalytic site, and an allosteric inhibitor,
binding at a regulatory site. The inhibition due to ATP is removed by AMP, and thus the
activity of PFK1 increases as the ratio of ATP to AMP decreases. This feedback enables
PFK1 to regulate the rate of glycolysis based on the availability of ATP. If ATP levels
fall, PFK1 activity increases thereby increasing the rate of production of ATP, whereas,
if ATP levels become high, PFK1 activity drops shutting down the production of ATP.
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As PFK1 phosphorylates fructose 6-P, ATP is converted to ADP. ADP, in turn, is
converted back to ATP and AMP by the reaction

2ADP −→←− ATP + AMP,

which is catalyzed by the enzyme adenylate kinase. Since there is normally little AMP
in cells, the conversion of ADP to ATP and AMP serves to significantly decrease the
ATP/AMP ratio, thus activating PFK1. This is an example of a positive feedback loop;
the greater the activity of PFK1, the lower the ATP/AMP ratio, thus further increasing
PFK1 activity.

It was discovered in 1980 that in some cell types, another important allosteric
activator of PFK1 is fructose 2,6-bisphosphate (Stryer, 1988), which is formed from
fructose 6-phosphate in a reaction catalyzed by phosphofructokinase 2 (PFK2), a differ-
ent enzyme from phosphofructokinase (PFK1) (you were given fair warning about the
labyrinthine nature of this process!). Of particular significance is that an abundance of
fructose 6-phosphate leads to a corresponding abundance of fructose 2,6-bisphosphate,
and thus a corresponding increase in the activity of PFK1. This is an example of a
negative feedback loop, where an increase in the substrate concentration leads to a
greater rate of substrate reaction and consumption. Clearly, PFK1 activity is controlled
by an intricate system of reactions, the collective behavior of which is not obvious a
priori.

Under certain conditions the rate of glycolysis is known to be oscillatory, or even
chaotic (Nielsen et al., 1997). This biochemical oscillator has been known and studied
experimentally for some time. For example, Hess and Boiteux (1973) devised a flow
reactor containing yeast cells into which a controlled amount of substrate (either glu-
cose or fructose) was continuously added. They measured the pH and fluorescence
of the reactants, thereby monitoring the glycolytic activity, and they found ranges of
continuous input under which glycolysis was periodic.

Interestingly, the oscillatory behavior is different in intact yeast cells and in yeast
extracts. In intact cells the oscillations are sinusoidal in shape, and there is strong
evidence that they occur close to a Hopf bifurcation (Danø et al., 1999). In yeast extract
the oscillations are of relaxation type, with widely differing time scales (Madsen et al.,
2005).

Feedback on PFK is one, but not the only, mechanism that has been proposed as
causing glycolytic oscillations. For example, hexose transport kinetics and autocatal-
ysis of ATP have both been proposed as possible mechanisms (Madsen et al., 2005),
while some authors have claimed that the oscillations arise as part of the entire net-
work of reactions, with no single feedback being of paramount importance (Bier et al.,
1996; Reijenga et al., 2002). Here we focus only on PFK regulation as the oscillatory
mechanism.

A mathematical model describing glycolytic oscillations was proposed by Sel’kov
(1968) and later modified by Goldbeter and Lefever (1972). It is designed to capture only
the positive feedback of ADP on PFK1 activity. In the Sel’kov model, PFK1 is inactive
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in its unbound state but is activated by binding with several ADP molecules. Note that,
for simplicity, the model does not take into account the conversion of ADP to AMP and
ATP, but assumes that ADP activates PFK1 directly, since the overall effect is similar.
In the active state, the enzyme catalyzes the production of ADP from ATP as fructose-
6-P is phosphorylated. Sel’kov’s reaction scheme for this process is as follows: PFK1
(denoted by E) is activated or deactivated by binding or unbinding with γ molecules
of ADP (denoted by S2)

γS2 + E
k3
−→
←−
k−3

ESγ2 ,

and ATP (denoted S1) can bind with the activated form of enzyme to produce a product
molecule of ADP. In addition, there is assumed to be a steady supply rate of S1, while
product S2 is irreversibly removed. Thus,

v1−→S1, (1.94)

S1 + ESγ2
k1
−→
←−
k−1

S1ESγ2
k2−→ESγ2 + S2, (1.95)

S2
v2−→. (1.96)

Note that (1.95) is an enzymatic reaction of exactly Michaelis–Menten form so we
should expect a similar reduction of the governing equations.

Applying the law of mass action to the Sel’kov kinetic scheme, we find five differ-
ential equations for the production of the five species s1 = [S1], s2 = [S2], e = [E], x1 =
[ESγ2 ], x2 = [S1ESγ2 ]:

ds1

dt
= v1 − k1s1x1 + k−1x2, (1.97)

ds2

dt
= k2x2 − γk3sγ2 e + γk−3x1 − v2s2, (1.98)

dx1

dt
= −k1s1x1 + (k−1 + k2)x2 + k3sγ2 e− k−3x1, (1.99)

dx2

dt
= k1s1x1 − (k−1 + k2)x2. (1.100)

The fifth differential equation is not necessary, because the total available enzyme is
conserved, e+x1+x2 = e0. Now we introduce dimensionless variables σ1 = k1s1

k2+k−1
, σ2 =

( k3
k−3

)1/γ s2, u1 = x1/e0, u2 = x2/e0, t = k2+k−1
e0k1k2

τ and find

dσ1

dτ
= ν − k2 + k−1

k2
u1σ1 + k−1

k2
u2, (1.101)

dσ2

dτ
= α

[
u2 −

γk−3

k2
σ
γ
2 (1− u1 − u2) + γk−3

k2
u1

]
− ησ2, (1.102)
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ϵ
du1

dτ
= u2 − σ1u1 + k−3

k2 + k−1

[
σ
γ
2 (1− u1 − u2)− u1

]
, (1.103)

ϵ
du2

dτ
= σ1u1 − u2, (1.104)

where ϵ = e0k1k2
(k2+k−1)2 , ν = v1

k2e0
, η = v2(k2+k−1)

k1k2e0
,α = k2+k−1

k1
( k3

k−3
)1/γ . If we assume that ϵ is a

small number, then both u1 and u2 are fast variables and can be set to their quasi-steady
values,

u1 = σ
γ
2

σ
γ
2 σ1 + σ

γ
2 + 1

, (1.105)

u2 = σ1σ
γ
2

σ
γ
2 σ1 + σ

γ
2 + 1

= f (σ1, σ2), (1.106)

and with these quasi-steady values, the evolution of σ1 and σ2 is governed by

dσ1

dτ
= ν − f (σ1, σ2), (1.107)

dσ2

dτ
= αf (σ1, σ2)− ησ2. (1.108)

The goal of the following analysis is to demonstrate that this system of equations
has oscillatory solutions for some range of the supply rate ν. First observe that because
of saturation, the function f (σ1, σ2) is bounded by 1. Thus, if ν > 1, the solutions of the
differential equations are not bounded. For this reason we consider only 0 < ν < 1.
The nullclines of the flow are given by the equations

σ1 = ν

1− ν
1 + σ

γ
2

σ
γ
2

(
dσ1

dτ
= 0

)
, (1.109)

σ1 = 1 + σ
γ
2

σ
γ−1
2 (p− σ2)

(
dσ2

dτ
= 0

)
, (1.110)

where p = α/η. These two nullclines are shown plotted as dotted and dashed curves
respectively in Fig. 1.7.

The steady-state solution is unique and satisfies

σ2 = pν, (1.111)

σ1 = ν(1 + σ
γ
2 )

(1− ν)σγ2
. (1.112)

The stability of the steady solution is found by linearizing the differential equations
about the steady-state solution and examining the eigenvalues of the linearized system.
The linearized system has the form

dσ̃1

dτ
= −f1σ̃1 − f2σ̃2, (1.113)

dσ̃2

dτ
= αf1σ̃1 + (αf2 − η)σ̃2, (1.114)
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Figure 1.7 Phase portrait of the Sel’kov glycolysis model with ν = 0.0285, η = 0.1,α = 1.0,
and γ = 2. Dotted curve: dσ1

dτ = 0. Dashed curve: dσ2
dτ = 0.

where fj = ∂f
∂σj

, j= 1, 2, evaluated at the steady-state solution, and where σ̃i denotes
the deviation from the steady-state value of σi. The characteristic equation for the
eigenvalues λ of the linear system (1.113)–(1.114) is

λ2 − (αf2 − η − f1)λ+ f1η = 0. (1.115)

Since f1 is always positive, the stability of the linear system is determined by the sign of
H = αf2−η− f1, being stable if H < 0 and unstable if H > 0. Changes of stability, if they
exist, occur at H = 0, and are Hopf bifurcations to periodic solutions with approximate
frequency ω =

√
f1η.

The function H(ν) is given by

H(ν) = (1− ν)
(1 + y)

(ηγ + (ν − 1)y)− η, (1.116)

y = (pν)γ . (1.117)

Clearly, H(0) = η(γ − 1), H(1) = −η, so for γ > 1, there must be at least one Hopf
bifurcation point, below which the steady solution is unstable. Additional computa-
tions show that this Hopf bifurcation is supercritical, so that for ν slightly below the
bifurcation point, there is a stable periodic orbit.

An example of this periodic orbit is shown in Fig. 1.7 with coefficients ν =
0.0285, η = 0.1,α = 1.0, and γ = 2. The evolution of σ1 and σ2 are shown plotted
as functions of time in Fig. 1.8.

A periodic orbit exists only in a very small region of parameter space, rapidly ex-
panding until it becomes infinitely large in amplitude as ν decreases. For still smaller
values of ν, there are no stable trajectories. This information is summarized in a bi-
furcation diagram (Fig. 1.9), where we plot the steady state, σ1, against one of the
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Figure 1.8 Evolution of σ1 and σ2 for the Sel’kov glycolysis model toward a periodic solution.
Parameters are the same as in Fig. 1.7.
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Figure 1.9 Bifurcation diagram for the Sel’kov glycolysis model.

parameters, in this case ν. Thus, ν is called the bifurcation parameter. The dashed line
labeled “unstable ss” is the curve of unstable steady states as a function of ν, while the
solid line labeled “stable ss” is the curve of stable steady states as a function of ν. As is
typical in such bifurcation diagrams, we also include the maximum of the oscillation
(when it exists) as a function of ν. We could equally have chosen to plot the minimum
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of the oscillation (or both the maximum and the minimum). Since the oscillation is
stable, the maximum of the oscillation is plotted with a solid line.

From the bifurcation diagram we see that the stable branch of oscillations origi-
nates at a supercritical Hopf bifurcation (labeled HB), and that the periodic orbits only
exist for a narrow range of values of ν. The question of how this branch of periodic
orbits terminates is not important for the discussion here, so we ignore this important
point for now.

We use bifurcation diagrams throughout this book, and many are considerably
more complicated than that shown in Fig. 1.9. Readers who are unfamiliar with the ba-
sic theory of nonlinear bifurcations, and their representation in bifurcation diagrams,
are urged to consult an elementary book such as Strogatz (1994).

While the Sel’kov model has certain features that are qualitatively correct, it fails
to agree with the experimental results at a number of points. Hess and Boiteux (1973)
report that for high and low substrate injection rates, there is a stable steady-state
solution. There are two Hopf bifurcation points, one at the flow rate of 20 mM/hr
and another at 160 mM/hr. The period of oscillation at the low flow rate is about 8
minutes and decreases as a function of flow rate to about 3 minutes at the upper
Hopf bifurcation point. In contrast, the Sel’kov model has but one Hopf bifurcation
point.

To reproduce these additional experimental features we consider a more de-
tailed model of the reaction. In 1972, Goldbeter and Lefever proposed a model of
Monod–Wyman–Changeux type that provided a more accurate description of the os-
cillations. More recently, by fitting a simpler model to experimental data on PFK1
kinetics in skeletal muscle, Smolen (1995) has shown that this level of complexity is
not necessary; his model assumes that PFK1 consists of four independent, identical
subunits, and reproduces the observed oscillations well. Despite this, we describe only
the Goldbeter–Lefever model in detail, as it provides an excellent example of the use of
Monod–Wyman–Changeux models.

In the Goldbeter–Lefever model of the phosphorylation of fructose-6-P, the enzyme
PFK1 is assumed to be a dimer that exists in two states, an active state R and an
inactive state T. The substrate, S1, can bind to both forms, but the product, S2, which
is an activator, or positive effector, of the enzyme, binds only to the active form. The
enzymatic forms of R carrying substrate decompose irreversibly to yield the product
ADP. In addition, substrate is supplied to the system at a constant rate, while product
is removed at a rate proportional to its concentration. The reaction scheme for this is
as follows: let Tjrepresent the inactive T form of the enzyme bound to jmolecules of
substrate and let Rijrepresent the active form R of the enzyme bound to i substrate
molecules and jproduct molecules. This gives the reaction diagram shown in Fig. 1.10.
In this system, the substrate S1 holds the enzyme in the inactive state by binding with
T0 to produce T1 and T2, while product S2 holds the enzyme in the active state by
binding with R00 to produce R01 and binding with R01 to produce R02. There is a factor
of two in the rates of reaction because a dimer with two available binding sites reacts
like twice the same amount of monomer.
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Figure 1.10 Possible states of the en-
zyme PFK1 in the Goldbeter–Lefever
model of glycolytic oscillations.

In addition to the reactions shown in Fig. 1.10, the enzyme complex can disassociate
to produce product via the reaction

Rij
k−→Ri−1,j+ S2, (1.118)

provided i ≥ 1.
The analysis of this reaction scheme is substantially more complicated than that of

the Sel’kov scheme, although the idea is the same. We use the law of mass action to write
differential equations for the fourteen chemical species. For example, the equation for
s1 = [S1] is

ds1

dt
= v1 − F, (1.119)

where

F = k−2(r10 + r11 + r12) + 2k−2(r20 + r21 + r22)

− 2k2s1(r00 + r01 + r02)− k2s1(r10 + r11 + r12)

− 2k3s1t0 − k3s1t1 + k−3t1 + 2k−3t2, (1.120)

and the equation for r00 = [R00] is

dr00

dt
= −(k1 + 2k2s1 + 2k2s2)r00 + (k−2 + k)r10 + k−2r01 + k−1t0. (1.121)
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We then assume that all twelve of the intermediates are in quasi-steady state. This leads
to a 12 by 12 linear system of equations, which, if we take the total amount of enzyme
to be e0, can be solved. We substitute this solution into the differential equations for s1
and s2 with the result that

ds1

dt
= v1 − F(s1, s2), (1.122)

ds2

dt
= F(s1, s2)− v2s2, (1.123)

where

F(s1, s2) =
(

2k2k−1ke0

k + k−2

)
⎛

⎜⎝
s1

(
1 + k2

k+k−2
s1

)
(s2 + K2)2

K2
2 k1

(
k3

k−3
s1 + 1

)2
+ k−1

(
1 + k2

k+k−2
s1

)2
(K2 + s2)2

⎞

⎟⎠ ,

(1.124)
where K2 = k−2

k2
. Now we introduce dimensionless variables σ1 = s1

K2
, σ2 = s2

K2
, t = τ

τc

and parameters ν = k2v1
k−2τc

, η = v2
τc

, where τc = 2k2k−1ke0
k1(k+k−2)

, and arrive at the system (1.107)–
(1.108), but with a different function f (σ1, σ2), and with α = 1. If, in addition, we assume
that

1. the substrate does not bind to the T form (k3 = 0, T is completely inactive),
2. T0 is preferred over R00 (k1 ≫ k−1), and
3. if the substrate S1 binds to the R form, then formation of product S2 is preferred

to dissociation (k≫ k−2),

then we can simplify the equations substantially to obtain

f (σ1, σ2) = σ1(1 + σ2)2. (1.125)

The nullclines for this system of equations are somewhat different from the Sel’kov
system, being

σ1 = ν

(1 + σ2)2

(
dσ1

dτ
= 0

)
, (1.126)

σ1 = ησ2

(1 + σ2)2

(
dσ2

dτ
= 0

)
, (1.127)

and the unique steady-state solution is given by

σ1 = ν

(1 + σ2)2 , (1.128)

σ2 = ν

η
. (1.129)

The stability of the steady-state solution is again determined by the characteristic
equation (1.115), and the sign of the real part of the eigenvalues is the same as the sign
of

H = f2 − f1 − η = 2σ1(1 + σ2)− (1 + σ2)2 − η, (1.130)
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evaluated at the steady state (1.126)–(1.127). Equation (1.130) can be written as the
cubic polynomial

1
η

y3 − y + 2 = 0, y = 1 + ν

η
. (1.131)

For η sufficiently large, the polynomial (1.131) has two roots greater than 2, say, y1 and
y2. Recall that ν is the nondimensional flow rate of substrate ATP. To make some corre-
spondence with the experimental data, we assume that the flow rate ν is proportional
to the experimental supply rate of glucose. This is not strictly correct, although ATP is
produced at about the same rate that glucose is supplied. Accepting this caveat, we see
that to match experimental data, we require

y2 − 1
y1 − 1

= ν2

ν1
= 160

20
= 8. (1.132)

Requiring (1.131) to hold at y1 and y2 and requiring (1.132) to hold as well, we find
numerical values

y1 = 2.08, y2 = 9.61, η = 116.7, (1.133)

corresponding to ν1 = 126 and ν2 = 1005.
At the Hopf bifurcation point, the period of oscillation is

Ti = 2π
ωi

= 2π√
η(1 + σ2)

= 2π√
ηyi

. (1.134)

For the numbers (1.133), we obtain a ratio of periods T1/T2 = 4.6, which is acceptably
close to the experimentally observed ratio T1/T2 = 2.7.

The behavior of the solution as a function of the parameter ν is summarized in
the bifurcation diagram, Fig. 1.11, shown here for η = 120. The steady-state solution
is stable below η = 129 and above η = 1052. Between these values of η the steady-
state solution is unstable, but there is a branch of stable periodic solutions which
terminates and collapses into the steady-state solution at the two points where the
stability changes, the Hopf bifurcation points.

A typical phase portrait for the periodic solution that exists between the Hopf
bifurcation points is shown in Fig. 1.12, and the concentrations of the two species
are shown as functions of time in Fig. 1.13.

1.6 Appendix: Math Background

It is certain that some of the mathematical concepts and tools that we routinely in-
voke here are not familiar to all of our readers. In this first chapter alone, we have
used nondimensionalization, phase-plane analysis, linear stability analysis, bifurca-
tion theory, and asymptotic analysis, all the while assuming that these are familiar to
the reader.
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Figure 1.11 Bifurcation diagram for the reduced Goldbeter–Lefever glycolysis model, with
η = 120.

Figure 1.12 Phase portrait of
the Goldbeter–Lefever model with
ν = 200, η = 120. Dotted curve:
dσ1
dτ = 0. Dashed curve: dσ2

dτ = 0.

Figure 1.13 Solution of the
Goldbeter–Lefever model with
ν = 200, η = 120.
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The purpose of this appendix is to give a brief guide to those techniques that are a
basic part of the applied mathematician’s toolbox.

1.6.1 Basic Techniques

In any problem, there are a number of parameters that are dictated by the problem.
However, it often happens that not all parameter variations are independent; that is,
different variations in different parameters may lead to identical changes in the behav-
ior of the model. Second, there may be parameters whose influence on a behavior is
negligible and can be safely ignored for a given context.

The way to identify independent parameters and to determine their relative mag-
nitudes is to nondimensionalize the problem. Unfortunately, there is not a unique
algorithm for nondimensionalization; nondimensionalization is as much art as it is
science.

There are, however, rules of thumb to apply. In any system of equations, there
are a number of independent variables (time, space, etc.), dependent variables
(concentrations, etc.) and parameters (rates of reaction, sizes of containers, etc.).
Nondimensionalization begins by rescaling the independent and dependent variables
by “typical” units, rendering them thereby dimensionless. One goal may be to ensure
that the dimensionless variables remain of a fixed order of magnitude, not becoming
too large or negligibly small. This usually requires some a priori knowledge about the
solution, as it can be difficult to choose typical scales unless something is already known
about typical solutions. Time and space scales can be vastly different depending on the
context.

Once this selection of scales has been made, the governing equations are written
in terms of the rescaled variables and dimensionless combinations of the remaining
parameters are identified. The number of remaining free dimensionless parameters is
usually less than the original number of physical parameters. The primary difficulty
(at least to understand and apply the process) is that there is not necessarily a single
way to scale and nondimensionalize the equations. Some scalings may highlight cer-
tain features of the solution, while other scalings may emphasize others. Nonetheless,
nondimensionalization often (but not always) provides a good starting point for the
analysis of a model system.

An excellent discussion of scaling and nondimensionalization can be found in Lin
and Segel (1988, Chapter 6). A great deal of more advanced work has also been done
on this subject, particularly its application to the quasi-steady-state approximation, by
Segel and his collaborators (Segel, 1988; Segel and Slemrod, 1989; Segel and Perelson,
1992; Segel and Goldbeter, 1994; Borghans et al., 1996; see also Frenzen and Maini,
1988).

Phase-plane analysis and linear stability analysis are standard fare in introductory
courses on differential equations. A nice introduction to these topics for the biologically
inclined can be found in Edelstein-Keshet (1988, Chapter 5) or Braun (1993, Chapter
4). A large number of books discuss the qualitative theory of differential equations,
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for example, Boyce and Diprima (1997), or at a more advanced level, Hale and Koçak
(1991), or Hirsch and Smale (1974).

Bifurcation Theory
Bifurcation theory is a topic that is gradually finding its way into introductory litera-
ture. The most important terms to understand are those of steady-state bifurcations,
Hopf bifurcations, homoclinic bifurcations, and saddle-node bifurcations, all of which
appear in this book. An excellent introduction to these concepts is found in Strogatz
(1994, Chapters 3, 6, 7, 8), and an elementary treatment, with particular application to
biological systems, is given by Beuter et al. (2003, Chapters 2, 3). More advanced treat-
ments include those in Guckenheimer and Holmes (1983), Arnold (1983) or Wiggins
(2003).

One way to summarize the behavior of the model is with a bifurcation diagram
(examples of which are shown in Figs. 1.9 and 1.11), which shows how certain features
of the model, such as steady states or limit cycles, vary as a parameter is varied. When
models have many parameters there is a wide choice for which parameter to vary. Often,
however, there are compelling physiological or experimental reasons for the choice of
parameter. Bifurcation diagrams are important in a number of chapters of this book,
and are widely used in the analysis of nonlinear systems. Thus, it is worth the time
to become familiar with their properties and how they are constructed. Nowadays,
most bifurcation diagrams of realistic models are constructed numerically, the most
popular choice of software being AUTO (Doedel, 1986; Doedel et al., 1997, 2001). The
bifurcation diagrams in this book were all prepared with XPPAUT (Ermentrout, 2002),
a convenient implementation of AUTO.

In this text, the bifurcation that is seen most often is the Hopf bifurcation. The
Hopf bifurcation theorem describes conditions for the appearance of small periodic
solutions of a differential equation, say

du
dt

= f (u, λ), (1.135)

as a function of the parameter λ. Suppose that there is a steady-state solution, u = u0(λ),
and that the system linearized about u0,

dU
dt

= ∂f (u0(λ), λ)
∂u

U, (1.136)

has a pair of complex eigenvalues µ(λ) = α(λ) ± iβ(λ). Suppose further that α(λ0) = 0,
α′(λ0) ̸= 0, and β(λ0) ̸= 0, and that at λ = λ0 no other eigenvalues of the system have
zero real part. Then λ0 is a Hopf bifurcation point, and there is a branch of periodic
solutions emanating from the point λ = λ0. The periodic solutions could exist (locally)
for λ > λ0, for λ < λ0, or in the degenerate (nongeneric) case, for λ = λ0. If the periodic
solutions occur in the region of λ for which α(λ) > 0, then the periodic solutions
are stable (provided all other eigenvalues of the system have negative real part), and
this branch of solutions is said to be supercritical. On the other hand, if the periodic
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solutions occur in the region of λ for which α(λ) < 0, then the periodic solutions are
unstable, and this branch of solutions is said to be subcritical.

The Hopf bifurcation theorem applies to ordinary differential equations and delay
differential equations. For partial differential equations, there are some technical issues
having to do with the nature of the spectrum of the linearized operator that complicate
matters, but we do not concern ourselves with these here. Instead, rather than checking
all the conditions of the theorem, we find periodic solutions by looking only for a change
of the sign of the real part of an eigenvalue, using numerical computations to verify
the existence of periodic solutions, and calling it good.

1.6.2 Asymptotic Analysis

Applied mathematicians love small parameters, because of the hope that the solution
of a problem with a small parameter might be approximated by an asymptotic represen-
tation. A commonplace notation has emerged in which ϵ is often the small parameter.
An asymptotic representation has a precise mathematical meaning. Suppose that G(ϵ)

is claimed to be an asymptotic representation of g(ϵ), expressed as

g(ϵ) = G(ϵ) + O(φ(ϵ)). (1.137)

The precise meaning of this statement is that there is a constant A such that
∣∣∣∣
g(ϵ)−G(ϵ)

φ(ϵ)

∣∣∣∣ ≤ A (1.138)

for all ϵ with |ϵ| ≤ ϵ0 and ϵ > 0. The function φ(ϵ) is called a gauge function, a typical
example of which is a power of ϵ.

Perturbation Expansions
It is often the case that an asymptotic representation can be found as a power series in
powers of the small parameter ϵ. Such representations are called perturbation expan-
sions. Usually, a few terms of this power series representation suffice to give a good
approximation to the solution. It should be kept in mind that under no circumstances
does this power series development imply that a complete power series (with an infinite
number of terms) exists or is convergent. Terminating the series at one or two terms is
deliberate.

However, there are times when a full power series could be found and would be
convergent in some nontrivial ϵ domain. Such problems are called regular perturbation
problems because their solutions are regular, or analytic, in the parameter ϵ.

There are numerous examples of regular perturbation problems, including all of
those related to bifurcation theory. These problems are regular because their solutions
can be developed in a convergent power series of some parameter.

There are, however, many problems with small parameters whose solutions are
not regular, called singular perturbation problems. Singular perturbation problems are
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characterized by the fact that their dependence on the small parameter is not regular,
but singular, and their convergence as a function of ϵ is not uniform.

Singular problems come in two basic varieties. Characteristic of the first type is a
small region of width ϵ somewhere in the domain of interest (either space or time) in
which the solution changes rapidly. For example, the solution of the boundary value
problem

ϵu′′ + u′ + u = 0 (1.139)

subject to boundary conditions u(0) = u(1) = 1 is approximated by the asymptotic
representation

u(x; ϵ) = (1− e)e−x/ϵ + e1−x + O(ϵ). (1.140)

Notice the nonuniform nature of this solution, as

e = lim
x→0+

(
lim
ϵ→0+

u(x; ϵ)
)
̸= lim

ϵ→0+

(
lim

x→0+
u(x; ϵ)

)
= 1.

Here the term e−x/ϵ is a boundary layer correction, as it is important only in a small
region near the boundary at x = 0.

Other terms that are typical in singular perturbation problems are interior layers
or transition layers, typified by expressions of the form tan( x−x0

ϵ ), and corner layers,
locations where the derivative changes rapidly but the solution itself changes little.
Transition layers are of great significance in the study of excitable systems (Chapter 5).
While corner layers show up in this book, we do not study or use them in any detail.

Singular problems of this type can often be identified by the fact that the order of
the system decreases if ϵ is set to zero. An example that we have already seen is the
quasi-steady-state analysis used to simplify reaction schemes in which some reactions
are significantly faster than others. Setting ϵ to zero in these examples reduces the
order of the system of equations, signaling a possible problem. Indeed, solutions of
these equations typically have initial layers near time t = 0. We take a closer look at
this example below.

The second class of singular perturbation problems is that in which there are two
scales in operation everywhere in the domain of interest. Problems of this type show
up throughout this book. For example, action potential propagation in cardiac tissue
is through a cellular medium whose detailed structure varies rapidly compared to the
length scale of the action potential wave front. Physical properties of the cochlear
membrane in the inner ear vary slowly compared to the wavelength of waves that
propagate along it. For problems of this type, one must make explicit the dependence on
multiple scales, and so solutions are often expressed as functions of two variables, say
x and x/ϵ, which are treated as independent variables. Solution techniques that exploit
the multiple-scale nature of the solution are called multiscale methods or averaging
methods.

Detailed discussions of these asymptotic methods may be found in Murray (1984),
Kevorkian and Cole (1996), and Holmes (1995).
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1.6.3 Enzyme Kinetics and Singular Perturbation Theory

In most of the examples of enzyme kinetics discussed in this chapter, extensive use was
made of the quasi-steady-state approximation (1.44), according to which the concen-
tration of the complex remains constant during the course of the reaction. Although this
assumption gives the right answers (which, some might argue, is justification enough),
mathematicians have sought for ways to justify this approximation rigorously. Bowen
et al. (1963) and Heineken et al. (1967) were the first to show that the quasi-steady-state
approximation can be derived as the lowest-order term in an asymptotic expansion of
the solution. This has since become one of the standard examples of the application
of singular perturbation theory to biological systems, and it is discussed in detail by
Rubinow (1973), Lin and Segel (1988), and Murray (2002), among others.

Starting with (1.37) and (1.38),

dσ
dτ

= −σ + x(σ + α), (1.141)

ϵ
dx
dτ

= σ − x(σ + κ), (1.142)

with initial conditions

σ (0) = 1, (1.143)

x(0) = 0, (1.144)

we begin by looking for solutions of the form

σ = σ0 + ϵσ1 + ϵ2σ2 + · · · , (1.145)

x = x0 + ϵx1 + ϵ2x2 + · · · . (1.146)

We substitute these solutions into the differential equations and equate coefficients
of powers of ϵ. To lowest order (i.e., equating all those terms with no ϵ) we get

dσ0

dτ
= −σ0 + x0(σ0 + α), (1.147)

0 = σ0 − x0(σ0 + κ). (1.148)

Note that, because we are matching powers of ϵ, the differential equation for x has
been converted into an algebraic equation for x0, which can be solved to give

x0 = σ0

σ0 + κ
. (1.149)

It follows that

dσ0

dτ
= −σ0 + x0(σ0 + α) = −σ0

(
κ − α
σ0 + κ

)
. (1.150)

These solutions for x0 and σ0 (i.e., for the lowest-order terms in the power series
expansion) are the quasi-steady-state approximation of Section 1.4.2. We could carry
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on and solve for σ1 and x1, but since the calculations rapidly become quite tedious,
with little to no benefit, the lowest-order solution suffices.

However, it is important to notice that this lowest-order solution cannot be correct
for all times. For, clearly, the initial conditions σ (0) = 1, x(0) = 0 are inconsistent with
(1.149). In fact, by setting ϵ to be zero, we have decreased the order of the differential
equations system, making it impossible to satisfy the initial conditions.

There must therefore be a brief period of time at the start of the reaction during
which the quasi-steady-state approximation does not hold. It is not that ϵ is not small,
but rather that ϵ dx

dt is not small during this initial period, since dx/dt is large. Indeed, it
is during this initial time period that the enzyme is “filling up” with substrate, until the
concentration of complexed enzyme reaches the value given by the quasi-steady-state
approximation. Since there is little enzyme compared to the total amount of substrate,
the concentration of substrate remains essentially constant during this period.

For most biochemical reactions this transition to the quasi-steady state happens
so fast that it is not physiologically important, but for mathematical reasons, it is
interesting to understand these kinetics for early times as well. To see how the reaction
behaves for early times, we make a change of time scale, η = τ/ϵ. This change of
variables expands the time scale on which we look at the reaction and allows us to
study events that happen on a fast time scale. To be more precise, we also denote the
solution on this fast time scale by a tilde. In the new time scale, (1.37)–(1.38) become

dσ̃
dη

= ϵ(−σ̃ + x̃(σ̃ + α)), (1.151)

dx̃
dη

= σ̃ − x̃(σ̃ + κ). (1.152)

The initial conditions are σ̃ (0) = 1, x̃(0) = 0.
As before, we expand σ̃ and x̃ in power series in ϵ, substitute into the differential

equations, and equate coefficients of powers of ϵ. To lowest order in ϵ this gives

dσ̃0

dη
= 0, (1.153)

dx̃0

dη
= σ̃0 − x̃0(σ̃0 + κ). (1.154)

Simply stated, this means that σ̃0 does not change on this time scale, so that σ̃0 = 1.
Furthermore, we can solve for x̃0 as

x̃0 = 1
1 + κ

(1− e−(1+κ)η), (1.155)

where we have used the initial condition x̃0(0) = 0.
Once again, we could go on to solve for σ̃1 and x̃1, but such calculations, being long

and of little use, are rarely done. Thus, from now on, we omit the subscript 0, since it
plays no essential role.

One important thing to notice about this solution for σ̃ and x̃ is that it cannot be
valid at large times. After all, σ cannot possibly be a constant for all times. Thus, σ̃ and
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x̃ are valid for small times (since they satisfy the initial conditions), but not for large
times.

At first sight, it looks as if we are at an impasse. We have a solution, σ and x, that
works for large times but not for small times, and we have another solution, σ̃ and x̃,
that works for small times, but not for large ones. The goal now is to match them to
obtain a single solution that is valid for all times. Fortunately, this is relatively simple
to do for this example.

In terms of the original time variable τ , the solution for x̃ is

x̃(τ ) = σ̃

σ̃ + κ
(1− e−(1+κ) τϵ ). (1.156)

As τ gets larger than order ϵ, the exponential term disappears, leaving only

x̃(τ ) = σ̃

σ̃ + κ
, (1.157)

which has the same form as (1.149). It thus follows that the solution

x(τ ) = σ

σ + κ
(1− e−(1+κ) τϵ ) (1.158)

is valid for all times.
The solution for σ is obtained by direct solution of (1.150), which gives

σ + κ log σ = (α − κ)t + 1, (1.159)

where we have used the initial condition σ (0) = 1. Since σ does not change on the short
time scale, this solution is valid for both small and large times.

This simple analysis shows that there is first a time span during which the enzyme
products rapidly equilibrate, consuming little substrate, and after this initial “layer” the
reaction proceeds according to Michaelis–Menten kinetics along the quasi-steady-state
curve. This is shown in Fig. 1.14. In the phase plane one can see clearly how the solution
moves quickly until it reaches the quasi-steady-state curve (the slow manifold) and

Figure 1.14 The solution to the quasi-steady-state approximation, plotted as functions of time
(left panel) and in the phase plane (right panel). Calculated using κ = 1.5, α = 0.5, ϵ = 0.05.
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then moves slowly along that curve toward the steady state. Note that the movement
to the quasi-steady-state curve is almost vertical, since during that time σ remains
approximately unchanged from its initial value. A similar procedure can be followed
for the equilibrium approximation (Exercise 20). In this case, the fast movement to
the slow manifold is not along lines of constant σ , but along lines of constant σ + αx,
where α = e0/s0.

In this problem, the analysis of the initial layer is relatively easy and not particularly
revealing. However, this type of analysis is of much greater importance later in this book
when we discuss the behavior of excitable systems.

1.7 Exercises
1. Consider the simple chemical reaction in which two monomers of A combine to form a

dimer B, according to

A + A
k+−→←−
k−

B.

(a) Use the law of mass action to find the differential equations governing the rates of
production of A and B.

(b) What quantity is conserved? Use this conserved quantity to find an equation governing
the rate of production of A that depends only on the concentration of A.

(c) Nondimensionalize this equation and show that these dynamics depend on only one
dimensionless parameter.

2. In the real world trimolecular reactions are rare, although trimerizations are not. Consider
the following trimerization reaction in which three monomers of A combine to form the
trimer C,

A + A
k1−→←−

k−1

B,

A + B
k2−→←−

k−2

C.

(a) Use the law of mass action to find the rate of production of the trimer C.

(b) Suppose k−1 ≫ k−2, k2A. Use the appropriate quasi-steady-state approximation to
find the rates of production of A and C, and show that the rate of production of C is
proportional to [A]3. Explain in words why this is so.

3. The length of microtubules changes by a process called treadmilling, in which monomer is
added to one end of the microtubule and taken off at the other end. To model this process,
suppose that monomer A1 is self-polymerizing in that it can form dimer A2 via

A1 + A1
k+−→A2.
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Furthermore, suppose A1 can polymerize an n-polymer An at one end making an n + 1-
polymer An+1

A1 + An
k+−→An+1.

Finally, degradation can occur one monomer at a time from the opposite end at rate k−.
Find the steady-state distribution of polymer lengths after an initial amount of monomer
A0 has fully polymerized.

4. Suppose that the reaction rates for the three reactant loop of Fig. 1.1 do not satisfy detailed
balance. What is the net rate of conversion of A into B when the reaction is at steady state?

5. Consider an enzymatic reaction in which an enzyme can be activated or inactivated by the
same chemical substance, as follows:

E + X
k1−→←−

k−1

E1, (1.160)

E1 + X
k2−→←−

k−2

E2, (1.161)

E1 + S
k3−→ P + Q + E. (1.162)

Suppose further that X is supplied at a constant rate and removed at a rate proportional
to its concentration. Use quasi-steady-state analysis to find the nondimensional equation
describing the degradation of X,

dx
dt

= γ − x− βxy
1 + x + y + α

δ x2 . (1.163)

Identify all the parameters and variables, and the conditions under which the quasi-steady
state approximation is valid.

6. Using the quasi-steady-state approximation, show that the velocity of the reaction for an
enzyme with an allosteric inhibitor (Section 1.4.3) is given by

V =
(

VmaxK3
i + K3

)(
s(k−1 + k3i + k1s + k−3)

k1(s + K1)2 + (s + K1)(k3i + k−3 + k2) + k2k−3/k1

)
. (1.164)

Identify all parameters. Under what conditions on the rate constants is this a valid
approximation? Show that this reduces to (1.59) in the case K1 = κ1.

7. (a) Derive the expression (1.76) for the fraction of occupied sites in a Monod–Wyman–
Changeux model with n binding sites.

(b) Modify the Monod–Wyman–Changeux model shown in Fig. 1.4 to include transitions
between states R1 and T1, and between states R2 and T2. Use the principle of de-
tailed balance to derive an expression for the equilibrium constant of each of these
transitions. Find the expression for Y , the fraction of occupied sites, and compare it
to (1.72).

8. An enzyme-substrate system is believed to proceed at a Michaelis–Menten rate. Data for
the (initial) rate of reaction at different concentrations is shown in Table 1.1.

(a) Plot the data V vs. s. Is there evidence that this is a Michaelis–Menten type reaction?

(b) Plot V vs. V/s. Are these data well approximated by a straight line?
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.Table 1.1 Data for Problem 8.

Substrate Reaction
Concentration (mM) Velocity (mM/s)

0.1 0.04
0.2 0.08
0.5 0.17
1.0 0.24
2.0 0.32
3.5 0.39
5.0 0.42

.Table 1.2 Data for Problem 9.

Substrate Reaction
Concentration (mM) Velocity (mM/s)

0.2 0.01
0.5 0.06
1.0 0.27
1.5 0.50
2.0 0.67
2.5 0.78
3.5 0.89
4.0 0.92
4.5 0.94
5.0 0.95

(c) Use linear regression and (1.46) to estimate Km and Vmax. Compare the data to the
Michaelis–Menten rate function using these parameters. Does this provide a reasonable
fit to the data?

9. Suppose the maximum velocity of a chemical reaction is known to be 1 mM/s, and the
measured velocity V of the reaction at different concentrations s is shown in Table 1.2.

(a) Plot the data V vs. s. Is there evidence that this is a Hill type reaction?

(b) Plot ln
(

V
Vmax−V

)
vs. ln(s). Is this approximately a straight line, and if so, what is its

slope?

(c) Use linear regression and (1.71) to estimate Km and the Hill exponent n. Compare the
data to the Hill rate function with these parameters. Does this provide a reasonable fit
to the data?

10. Use the equilibrium approximation to derive an expression for the reaction velocity of the
scheme (1.60)–(1.61).
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Answer:

V = (k2K3 + k4s)e0s
K1K3 + K3s + s2 , (1.165)

where K1 = k−1/k1 and K3 = k−3/k3.

11. (a) Find the velocity of reaction for an enzyme with three active sites.

(b) Under what conditions does the velocity reduce to a Hill function with exponent three?
Identify all parameters.

(c) What is the relationship between rate constants when the three sites are independent?
What is the velocity when the three sites are independent?

12. The Goldbeter–Koshland function (1.92) is defined using the solution of the quadratic
equation with a negative square root. Why?

13. Suppose that a substrate can be broken down by two different enzymes with different
kinetics. (This happens, for example, in the case of cAMP or cGMP, which can be hydrolyzed
by two different forms of phosphodiesterase—see Chapter 19).

(a) Write the reaction scheme and differential equations, and nondimensionalize, to get
the system of equations

dσ
dt

= −σ + α1(µ1 + σ )x + α2(µ2 + σ )y, (1.166)

ϵ1
dx
dt

= 1
λ1
σ (1− x)− x, (1.167)

ϵ2
dy
dt

= 1
λ2
σ (1− y)− y. (1.168)

where x and y are the nondimensional concentrations of the two complexes. Identify
all parameters.

(b) Apply the quasi-steady-state approximation to find the equation governing the dy-
namics of substrate σ . Under what conditions is the quasi-steady-state approximation
valid?

(c) Solve the differential equation governing σ .

(d) For this system of equations, show that the solution can never leave the positive octant
σ , x, y ≥ 0. By showing that σ+ϵ1x+ϵ2y is decreasing everywhere in the positive octant,
show that the solution approaches the origin for large time.

14. For some enzyme reactions (for example, the hydrolysis of cAMP by phosphodiesterase in
vertebrate retinal cones) the enzyme is present in large quantities, so that e0/s0 is not a small
number. Fortunately, there is an alternate derivation of the Michaelis–Menten rate equation
that does not require that ϵ = e0

s0
be small. Instead, if one or both of k−1 and k2 are much

larger than k1e0, then the formation of complex c is a rapid exponential process, and can be
taken to be in quasi-steady state. Make this argument systematic by introducing appropriate
nondimensional variables and then find the resulting quasi-steady-state dynamics. (Segel,
1988; Frenzen and Maini, 1988; Segel and Slemrod, 1989; Sneyd and Tranchina, 1989).
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15. ATP is known to inhibit its own dephosphorylation. One possible way for this to occur is if
ATP binds with the enzyme, holding it in an inactive state, via

S1 + E
k4−→←−

k−4

S1E.

Add this reaction to the Sel’kov model of glycolysis and derive the equations governing
glycolysis of the form (1.107)–(1.108). Explain from the model why this additional reaction
is inhibitory.

16. In the case of noncompetitive inhibition, the inhibitor combines with the enzyme-substrate
complex to give an inactive enzyme-substrate-inhibitor complex which cannot undergo
further reaction, but the inhibitor does not combine directly with free enzyme or affect its
reaction with substrate. Use the quasi-steady-state approximation to show that the velocity
of this reaction is

V = Vmax
s

Km + s + i
Ki

s
. (1.169)

Identify all parameters. Compare this velocity with the velocity for other types of inhibition
discussed in the text.

17. The following reaction scheme is a simplified version of the Goldbeter–Lefever reaction
scheme for glycolytic oscillations:

R0

k1−→←−
k−1

T0,

S1 + Rj

k2−→←−
k−2

Cj
k−→Rj+ S2, j= 0, 1, 2,

S2 + R0

2k3−→←−
k−3

R1,

S2 + R1

k3−→←−
2k−3

R2.

Show that, under appropriate assumptions about the ratios k1/k−1 and k−2+k3
k2

the equa-
tions describing this reaction are of the form (1.107)–(1.108) with f (σ1, σ2) given by
(1.125).

18. Use the law of mass action and the quasi-steady-state assumption for the enzymatic reac-
tions to derive a system of equations of the form (1.107)–(1.108) for the Goldbeter–Lefever
model of glycolytic oscillations. Verify (1.124).

19. When much of the ATP is depleted in a cell, a considerable amount of cAMP is formed as
a product of ATP degradation. This cAMP activates an enzyme phosphorylase that splits
glycogen, releasing glucose that is rapidly metabolized, replenishing the ATP supply.

Devise a model of this control loop and determine conditions under which the
production of ATP is oscillatory.

20. (a) Nondimensionalize (1.26)–(1.29) in a way appropriate for the equilibrium approxima-
tion (rather than the quasi-steady-state approximation of Section 1.4.2). Hint: Recall
that for the equilibrium approximation, the assumption is that k1e0 and k−1 are large
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compared to k2. You should end up with equations that look something like

ϵ
dσ
dτ

= αx− βασ (1− x), (1.170)

ϵ
dx
dτ

= βσ (1− x)− x− ϵx, (1.171)

where ϵ = k2/k−1, α = e0/s0 and β = s0/K1.

(b) Find the behavior, to lowest order in ϵ for this system. (Notice that the slow variable
is σ + αx.)

(c) To lowest order in ϵ, what is the differential equation for σ on this time scale?

(d) Rescale time to find equations valid for small times.

(e) Show that, to lowest order in ϵ, σ + αx = constant for small times.

(f) Without calculating the exact solution, sketch the solution in the phase plane, showing
the initial fast movement to the slow manifold, and then the movement along the slow
manifold.


