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Organization of Biological
Networks 19

Overview: In which statistical mechanics is used to study
gene regulation

The human mind

cannot go on forever

accumulating facts

which remain

unconnected and

without any mutual

bearing and bound

together by no law.

Alfred Russel Wallace

Specific genes are used only when and where they are needed. For
example, we have made much of the classic example of the lac operon,
which governs the enzymes responsible for lactose digestion. Similar
control is exercised over genes in other bacteria, archaea, and eukary-
otes. The tools worked out throughout the book leave us poised to
consider important quantitative questions about gene regulation such
as: how much is a given gene expressed, where in the cell (or the
organism) is that gene expressed, and at what time during the cell
cycle (or life history) of the organism? The key tools we will use to
study these questions are statistical mechanics and rate equations.
The statistical mechanical approach will use the probability of pro-
moter occupancy as the key quantity of interest, whereas the rate
equation approach will examine the concentrations of protein prod-
ucts over time. These same techniques will also be used to examine
signaling with special emphasis on the “decisions” cells make about
where to go.

19.1 Chemical and Informational Organization
in the Cell

Many Chemical Reactions in the Cell are Linked in Complex Networks

The reality of the chemical reactions that take place in the cell are a far
cry from the relatively sterile and simple kinetic processes described
in Chapter 15. In the discussion given there, we showed how to write
the time evolution of the concentrations of a set of reactants and prod-
ucts. That theoretical machinery provides an appealing and useful
picture for characterizing many of the beautiful in vitro experiments
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that have powered solution biochemistry. However, biochemistry in
living cells has reactants and products linked in a complex set of lin-
eages of biblical proportions where A begets B, which begets C, which
in turn begets D, and so on, with the added nonanthropomorphic
complication that Z might just beget A again. Indeed, the fact that
Z can act back on A reflects the presence of feedback, which makes
the dynamics even richer. Two of the most important classes of reac-
tion that are central to the functioning of cells are those associated
with gene regulation and signaling. Indeed, one of the features that
most completely distinguishes the chemistry of a cell from that of
solution biochemistry is the way in which the reactants are tuned by
up- and down-regulation. Similarly, the reactions of the cell are also
stimulated by external cues in the form of signaling cascades. In this
chapter, we consider regulation and signaling by using a variety of
tools developed throughout the book.

Genetic Networks Describe the Linkages Between Different Genes and
Their Products

One of the most intriguing reasons why the chemistry of the cell can-
not be viewed as a bag of reactants and products is the fact that this
chemistry is under the strict control of the genetic machinery of the
cell. In particular, if left to its own devices, some particular chemical
pathway in the cell might just travel a path to eventual equilibrium.
On the other hand, because of both external and internal cues, the
machinery of the cell can receive orders via signaling pathways that
lead, in turn, to the expression of some gene that results in a new
reactant in the original chemical pathway that sends it off in some
new direction.

The description of the informational pathways that dictate the
cellular concentration profiles in both space and time of the vari-
ous chemical reactants of interest is founded upon a higher level
of abstraction. In particular, there are networks of genes that are
linked together in sometimes horrifyingly complex arrays such as that
shown in Figure 19.1. This network is an example of a particularly
well-characterized genetic network that participates in the embryonic
development of sea urchins. One important take-home message con-
cerning this network is that it is a typical network and should leave
the reader with a sense of the implied chemical complexity of these
systems. In general, genetic networks like that shown in Figure 19.1
make no reference either to the passage of time or to the quantitative
distributions of the molecules that mediate these networks. Rather,
these networks are an abstraction that shows how genes (and their
products) are linked to each other in both space and time. On the
other hand, it is important to bear in mind that beneath the surface
of these wiring diagrams are actual concentrations of the molecular
players of these informational pathways.

Developmental Decisions Are Made by Regulating Genes

Often, genetic networks serve as the basis of the developmental deci-
sions that send a cell or collections of cells down some developmental
path. One of the intriguing features of multicellular organisms is that
despite the overwhelming cellular diversity, generally, each cell car-
ries the same genetic baggage. However, in general, cells only express
a certain fraction of all the available genes. This differentiation is the
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Figure 19.1: Genetic network
associated with control of the
developmental pathway of the sea
urchin embryo. (A) Schematic
of stages in the embryonic
development of the sea urchin. (B)
Genetic network associated with sea
urchin development. (Adapted from S.
Ben-Tabou de-Leon and E. H.
Davidson, Annu. Rev. Biophys. Biomol.
Struct. 36:191, 2007.)

basis of the development of embryos and the basis of the different
structures found in multicellular organisms. The key point is that not
all genes are being expressed all the time.

One of the most famous examples of a “developmental decision” is
the lambda switch described in Chapter 4 and shown in Figure 4.10
(p. 152). After infecting an E. coli bacterium, lambda phage follows
one of two developmental pathways. One pathway (the lytic pathway)
results in the assembly of new phages and the lysis of the host cell.
The second pathway, the lysogenic pathway, involves incorporation of
the lambda genome into that of the host cell. Lysogeny can be reversed
by damaging the cell with UV light, which triggers lytic replication.

Another compelling example of the role of developmental decisions
is that of embryonic development in fruit flies. One of the most cele-
brated examples is that of the body plan along the long axis of the fly
embryo, which is dictated by the distribution of certain proteins along
the embryo. Figure 19.2 gives an example of the gradients in four
key regulatory proteins that determine the anterior–posterior organi-
zation. These proteins determine the pattern of gene expression along
the embryo, from which the Eve 2 stripe is the most well-understood
example. These ideas were already introduced in Section 2.3.3 (p. 78).

Part of the hard-won wisdom of molecular biology is the recogni-
tion that there are many stages in the pathway between DNA and
functional protein that can serve as regulatory points. Some of these
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Figure 19.2: Regulatory proteins in
the Drosophila embryo. The
anterior–posterior (A–P) patterning of
the fruit fly is dictated by genes that are
controlled by spatially varying
concentrations of transcription factors.
(A) Schematic of the main transcription
factors involved in the regulation of
stripe 2 of expression of the
even-skipped gene (eve). (B) Regulatory
region of the stripe 2 of the
even-skipped gene where the binding
sites for each transcription factor have
been identified. The binding site color
on the DNA corresponds to the
transcription factor color in (A).
(C) Spatial profile of the morphogen
gradients measured using
immunofluorescence. The purple
shaded region corresponds to the
striped region shown in (D).
(D) Resulting pattern of expression of
the regulatory region shown in (B).
(B, Adapted from S. Small et al., EMBO J.
11:4047, 1992.; C, adapted from E.
Myasnikova et al., Bioinformatics 17:3,
2001; D, adapted from S. Small et al.,
Dev. Biol. 175:314, 1996.)
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different regulatory mechanisms are shown in Figure 6.7 (p. 245). For
the purposes of the present discussion, we will focus on one of the
most common regulatory mechanisms, namely, transcriptional con-
trol, where the key decision that is made is whether or not to produce
mRNA.

Gene Expression Is Measured Quantitatively in Terms of How Much,
When, and Where

One of our main arguments is that gene expression is a subject that
has become increasingly quantitative. In particular, it is now common
to measure how much a given gene is expressed, when it is expressed,
and where it is expressed. To carry out such measurements, there are
a number of useful tools.
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Experiments Behind the Facts: Measuring Gene Expression
Quantitative measurement of gene expression can be made

at many stages between the decision to start transcription and
the emergence of a functional protein product. As noted earlier,
such measurements have provided a quantitative window on
how much a given gene is expressed, where it is expressed
spatially, and when.

One important way to characterize the activity of a gene
is by virtue of its protein products. In particular, if the gene
product has enzyme activity, that activity can be assayed as a
reporter of the extent to which the gene has been expressed
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Figure 19.3: Measurement of gene expression. (A) Measurement of gene expression as a result of enzymatic activity. The
promoter of interest drives the expression of an enzyme that can cleave a molecule that in the cleaved state is colored. The
resulting rate of increase in light absorption is related to the amount of enzyme present in the cells. (B) The promoter of interest
drives the expression of a fluorescent protein such as GFP. The amount of fluorescence per cell reports the extent of expression of
the gene of interest.

as shown in Figure 19.3(A). Recall that β-galactosidase is the
enzymatic product of the lac operon, as shown in Figure 4.13
(p. 155), and that the action of this enzyme is to clip lactose
molecules. One of the impressive legacies of years of work
on this system is a battery of substrates that respond differ-
ently to the enzymatic cleavage. One such substrate (ONPG)
turns yellow upon cleavage, and measuring the rate at which
a solution becomes yellow optically can provide a window
on gene expression since it is proportional to the amount of
enzyme (over some region of concentrations). By measuring
the absorbance at the appropriate wavelengths, one obtains a
picture of the amount of active enzyme. Such measurements
are typically done on populations of cells. They also require
lysing the cells, which means that only end-point assays can be
performed with this technique. On the other hand, the sensi-
tivity of this method is superb—to the point where the activity
of less than one β-galactosidase molecule per cell can easily
be measured. To carry out this kind of assay usually requires
routine cloning in which sequences encoding the enzyme are
inserted into the genome under the control of the transcription
factors of interest.

From a molecular biology perspective, this same strategy
of inserting a reporter into the gene of interest can be fol-
lowed, but with the difference that the “reporter” molecule is a
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Figure 19.4: Measurement of mRNA concentration. (A) A DNA microarray uses a collection of different molecules on the surface
of a slide, each of which has a sequence complementary to the mRNA (or reverse-transcribed ssDNA) associated with the gene of
interest. By measuring how much hybridization there is between the sample and the molecules on the surface, one can count the
mRNAs. (B) Quantitative PCR uses a template molecule that is produced from the mRNA using reverse transcription. The amount
of template determines how many cycles of PCR it will take to reach a critical threshold of amplified DNA using fluorescence as a
readout.

fluorescent molecule such as GFP rather than an enzyme. This
case is shown in Figure 19.3(B). Relative fluorescence levels
of reporters such as GFP are easy to characterize. As shown
in Figure 3.3 (p. 93), GFP can be used to track the level of
gene expression as a function of time in single living cells.
This reporter has its disadvantages, as such fluorescent pro-
teins are subject to photobleaching. Additionally, as we will see
in the Computational Exploration on extracting levels of gene
expression, the natural constituents of cells have an intrinsic
fluorescence, which results in a cellular autofluorescence back-
ground that can potentially contaminate the readout from the
GFP reporter.

A second scheme for characterizing the extent to which
a given gene is expressed is by measuring how much mRNA
from the gene of interest is present in the cell. One of the tools
of choice for such measurements is the DNA microarray. DNA
microarrays are built by labeling a surface with an array of
different DNA molecules, each patch of which has small, single-
stranded DNA (ssDNA) molecules with the same sequence, as
shown in Figure 19.4. These sequences are chosen to be com-
plementary to an entire battery of sequences corresponding to
the genes of interest in the experiment. Cells are then broken
up and their RNA (or DNA copies made from the RNA) is allowed
to flow across the array and hybridize with the molecules on
the surface. The various molecules extracted from the cell have
been fluorescently labeled, so by looking at the fluorescence
intensity at each point on the array, it is possible to read off
how much RNA was present.

Another scheme for characterizing the amount of RNA is
to use quantitative PCR. Once again, the cell is lysed and the
mRNA molecules are turned into DNA using a reverse tran-
scription reaction. Then these molecules are used as templates

806 Chapter 19 ORGANIZATION OF BIOLOGICAL NETWORKS



“chap19.tex” — page 807[#9] 5/10/2012 12:31

in a PCR, and it is seen how many cycles of PCR are needed
before the quantity of DNA in the reaction exceeds some
threshold. This cycle value is a direct reflection of the num-
ber of starting molecules, since starting with lots of template
DNA will result in many more molecules at low cycle numbers
than will starting with very little material. With quantitative
PCR, one can detect mRNA copy numbers as low as 10.

Finally, with the advent of new sequencing technologies
that make it possible to generate millions of sequence reads
at a reasonable price, it has become commonplace to just
sequence the complete mRNA content of cells. By doing so,
one can simply count the number of mRNA molecules within
the cell corresponding to the various genes of interest, result-
ing in genome-wide information in one experiment. As with the
previous methods, this approach requires the conversion of all
cellular mRNA into DNA in order to be sequenced.

As will be described in the remainder of this chapter,
a useful surrogate for the actual question of the extent to
which a given gene is expressed is to ask whether or not
the promoter for the gene of interest is occupied. There are
many in vitro and in vivo methods for finding out whether
or not the promoter is bound to polymerase. Chromatin
immunoprecipitation and DNA footprinting are two methods
that are sensitive to promoter occupancy. For DNA footprint-
ing, the idea is that the part of DNA where the transcrip-
tional apparatus is bound will react differently when the
system is exposed to agents such as restriction enzymes.
The most common procedure is to try to digest the DNA
using a restriction enzyme. It will not be able to access
the DNA over which RNA polymerase is situated, leaving
a “footprint” of a longer piece of DNA that can be easily
detected. For chromatin immunoprecipitation, DNA is cova-
lently crosslinked to bound proteins using reactive chem-
icals, and then the DNA is sheared into small fragments.
Antibodies specific to polymerase are used to isolate the
molecules of polymerase with their associated DNA frag-
ments. Then, the chemical crosslinks are reversed, and the
DNA fragments associated with polymerase are sequenced.
This same technique can be modified to identify the specific
DNA sequences that are associated with any other specific
DNA-binding protein of interest, such as a repressor pro-
tein. These different methods can also be cleverly combined
with the new sequencing technologies in order to perform
such assays at the genome-wide scale, as we will see further
below.

19.2 Genetic Networks: Doing the Right Thing
at the Right Time

In “thermodynamic” models of gene expression, attention is focused
on the probability that the promoter is occupied by RNA polymerase.
In Section 6.1.2 (p. 244), we showed how the “bare” problem of poly-
merase molecules interacting with DNA could be solved using simple
ideas from statistical mechanics. However, the shortcoming of that
approach is that it ignores the existence of molecular gatekeepers
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that exercise strict control over the occupancy of promoters. We
begin our dissection of gene expression with a consideration of these
gatekeepers, which are known as transcription factors.

Promoter Occupancy Is Dictated by the Presence of Regulatory
Proteins Called Transcription Factors

In Figure 6.8 (p. 246) we showed a cartoon of some gene of inter-
est and the promoter and DNA upstream from it. As a first cut at
the problem of promoter occupancy, we examined the probability
of RNA polymerase binding as a competition between this promoter
and nonspecific sites, both of which can be occupied by polymerase
molecules. We now expand that discussion to account for the pres-
ence of a host of important accessory proteins that can either enhance
(activate) or reduce (repress) the probability of promoter occupancy.

As before, we focus primarily on bacteria. What this means con-
cretely is that we will treat RNA polymerase as a single molecule and
ask the precise mathematical (but biologically oversimplified) ques-
tion of whether or not the promoter is occupied by such an RNA
polymerase molecule. In the eukaryotic case, this question is less eas-
ily posed, since the basal transcription apparatus consists of many
parts, all of which need to be present simultaneously in order to start
transcription.

19.2.1 The Molecular Implementation of Regulation: Promoters,
Activators, and Repressors

Repressor Molecules Are the Proteins That Implement Negative
Control

One of the key control mechanisms of genetic networks is negative
regulation of transcription. What this means is that the decision to
express the gene of interest is made very early on in the set of pro-
cesses leading from DNA to protein, namely, at the point where RNA
is synthesized. If there is little or no mRNA that codes for a given
protein, then clearly the ribosomes are in no position to produce
the corresponding protein. The molecular implementation of nega-
tive control is through protein molecules known as repressors, such
as the Lac repressor introduced in Figures 4.13 (on p. 155) and 8.19
(on p. 334). In the case of bacteria, repressors can often be viewed as
carrying out a blocking action in the sense that through DNA–protein
interactions, they occupy the DNA in a region (called the operator)
that overlaps the region where RNA polymerase binds (the promoter).
The action of such repressor molecules is illustrated schematically in
Figure 19.5. Note that the activity of repressors can, in turn, be reg-
ulated by small molecules, or inducers, that can bind and generate a
conformational (or allosteric) change that alters the binding probabil-
ity of the transcription factor for the DNA. Later in this chapter, we
give a statistical mechanical interpretation of such cartoons.

It is important to recall that the point of cartoons like that in
Figure 19.5 is to convey a conceptual picture and not a detailed
molecular rendering of the explicit action of the various molecular
participants. On the other hand, the fact that such cartoons can be
constructed in the first place is often the result of having digested the
significance of hard-won structural determinations from X-ray crys-
tallography. Indeed, sometimes, not only the structures of the bare
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Figure 19.5: The process of
repression. Cartoon representation
showing the action of repressor
molecules in forbidding RNA
polymerase from binding to its
promoter, or alternatively, if bound,
from initiating transcription.

repressors are known, but even the structures of these repressors
when complexed with DNA. In fact, there are a variety of structural
implementations of repression, some famed examples of which are
shown in Figure 19.6.

Activators Are the Proteins That Implement Positive Control

A second key mechanism for altering the extent to which a given
gene is expressed is known as positive regulation of transcription,
or, more provocatively, regulated recruitment. Here too, the idea is
that the overall process of protein synthesis of a given gene product
is regulated very early on where an accessory molecule enhances the
probability of promoter occupancy by RNA polymerase. This mecha-
nism is built around the idea of proteins other than RNA polymerase
that bind to DNA and increase the probability that the RNA polymerase
itself will bind the promoter. Just as repressors interfere with the
ability of RNA polymerase to bind to its promoter, activators bind in
the vicinity of the promoter and have adhesive interactions with RNA
polymerase itself that enhance the likelihood of RNA polymerase bind-
ing. The key point is that the RNA polymerase molecule interacts not
only with the DNA to which it is bound, but also through “glue-like”
interactions with the activator molecule. A cartoon representation of
the process of regulated recruitment (that is, activation) is shown in
Figure 19.7.

Figure 19.6: Examples of repressor
molecules interacting with DNA. From
top to bottom, the repressors are TetR
(pdb 1QPI), IdeR (pdb 1U8R), FadR (pdb
1HW2), and PurR (pdb 1PNR). The point
of the figure is to give an impression of
the relative sizes of repressors and their
target regions on DNA and to illustrate
how these transcription factors deform
the DNA double helix in the vicinity of
their binding site. These drawings are
renditions of actual structures from
X-ray crystallography. (Courtesy of D.
Goodsell.)

As with the study of repressors, structural biology has permitted a
range of atomic-level insights into the mechanisms of transcriptional
activation. Figure 19.8 provides a gallery of some key activators,
reveals their sizes relative to the DNA molecule, and illustrates the
way in which they distort and occlude the DNA when bound.

Genes Can Be Regulated During Processes Other Than Transcription

Our discussion will focus primarily on transcriptional regulation. On
the other hand, as shown in Figure 6.7 (p. 245), there are many points
along the route connecting DNA to its protein products where gene
expression can be controlled. Two of the most obvious and impor-
tant ways in which the concentration of active protein is controlled
are through the post-translational modifications phosphorylation and
protein degradation. In addition, in recent years, a whole host of regu-
latory RNAs have been discovered that have greatly enriched the study
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of regulatory biology. For the moment, we focus on the way in which
pbound (the probability that the promoter is occupied by RNA poly-
merase) can be altered through the action of transcription factors such
as repressors and activators.

adhesive
interactionactivator

RNA
polymerase

Figure 19.7: The process of activation.
Schematic of the way in which activator
molecules can recruit the transcription
apparatus. Though both the activator
and RNA polymerase have their own
private interaction energies with the
DNA, the enhancement in their
occupancies is mediated by the
adhesive interaction between them.

Figure 19.8: Structures of activator
molecules. From top to bottom, the
activators are CAP (pdb 1CGP), p53
tumor suppressor (pdb 3KMD), zinc
finger DNA-binding domain (pdb 2GLI),
and leucine zipper DNA-binding domain
(pdb 1AN2). (Courtesy of D. Goodsell.)

19.2.2 The Mathematics of Recruitment and Rejection

Recruitment of Proteins Reflects Cooperativity Between Different
DNA-Binding Proteins

One of the key general ideas that pervade the description of transcrip-
tional control (and beyond) is the idea of molecular recruitment. In the
anthropomorphic terms suggested by the word “recruitment,” the idea
is that a given molecule that is bound on DNA summons some second
molecule to the DNA, where it can then perform its task. For exam-
ple, we think of RNA polymerase being summoned by some activator
molecule such as a transcription factor (and vice versa) and exempli-
fied by the CAP protein in the case of the lac operon. Though this
colorful language is suggestive and conjures up a useful physical pic-
ture, from the perspective of the rules of statistical mechanics, this
is nothing more than the well-worn idea of cooperativity cloaked in
different verbal clothing.

Activators are proteins that regulate transcription by binding to a
specific site on the DNA so as to recruit an RNA polymerase onto a
nearby promoter site. It has been suggested that weak, nonspecific
binding of the activator protein and the RNA polymerase can greatly
enhance the probability of the polymerase binding to DNA, even for
the very low concentrations of activator proteins typical of the cellular
environment. To assess the feasibility of this strategy, we compute the
probability of the polymerase being bound in the presence of an acti-
vator protein using a simple model that is depicted in cartoon form
in Figure 19.9. The basic point of this cartoon is to show the differ-
ent allowed states of polymerase and activator molecules and to use
this enumeration of states to compute the probability that the pro-
moter will be occupied. Indeed, this is the same “states-and-weights”
mentality used throughout the book.

The first step in our analysis of this problem is to write the total
partition function. Note that the partition function is obtained by
summing over all of the eventualities associated with the activators
and polymerase molecules being distributed on the DNA (both non-
specific sites and the promoter). As shown in Figure 19.9, there
are four classes of outcomes, namely, both the activator site and
promoter unoccupied, just the promoter occupied by polymerase,
just the activator binding site occupied by activator, and, finally,
both of the specific sites occupied. This is represented mathemati-
cally as

Ztot(P, A; NNS) = Z(P, A; NNS)

empty promoter

+ Z(P − 1, A; NNS)e−βε
S
pd

RNAP

+ Z(P, A− 1; NNS)e
−βεSad

activator

+ Z(P − 1, A− 1; NNS)e−β(εSad+εSpd+εpa)

RNAP + activator

. (19.1)
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Figure 19.9: Schematic
representation of the simple statistical
mechanical model of recruitment. The
states-and-weights diagram shows the
different binding scenarios in the
vicinity of the promoter of interest
and the corresponding renormalized
statistical weights obtained using
statistical mechanics. We make the
simplifying assumption that the
nonspecific binding energy is
constant. The large circular DNA is a
cartoon representation of the bacterial
genome.

Note that, notationally, the meaning of Z(P, A; NNS) is that it is
the partition function for P polymerase molecules and A activator
molecules to be bound on the NNS nonspecific sites and is given
by

Z(P, A; NNS) = NNS!
P !A!(NNS − P − A)!

number of arrangements

× e−βPεNS
pde−βAεNS

ad

weight of each state

. (19.2)

We have also introduced the notation εpa to account for the “glue”
interaction between the polymerase and activator. Like in Section 6.1.2
(p. 244) for the case of RNA polymerase, we introduce εS

ad and εNS
ad to

characterize the binding energy of activator with its specific and non-
specific DNA targets, respectively. Our expression involves a number
of terms of the general form

NNS!
P !A!(NNS − P − A)!

× e−βPεNS
pde−βAεNS

ad . (19.3)

As we did earlier, we invoke a simplifying strategy that depends
upon the fact that NNS ≫ A + P and hence there will be almost zero
chance of RNA polymerase and the activator finding each other on
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the same nonspecific site on the DNA. This permits the approximation
NNS!/(NNS − A− P)!≈(NNS)A+P introduced in Section 6.1.2 (see p. 244).

To compute the probability of promoter occupancy, we construct the
ratio of all of those outcomes that are favorable (that is, polymerase
bound to the promoter) to the total set of outcomes (Ztot(P, A; NNS)),
namely,

pbound(P, A; NNS)

= Z(P − 1, A; NNS)e−βε
S
pd + Z(P − 1, A− 1; NNS)e

−β(εSad+εSpd+εpa)

Ztot(P, A; NNS)
. (19.4)

We now propose to simplify this result by dividing both numerator
and denominator by the numerator, resulting in

pbound(P, A; NNS) = 1
1 + [NNS/PFreg(A)]eβ#εpd

, (19.5)

where we introduce the regulation factor Freg(A), which is given by

Freg(A) = 1 + (A/NNS)e−β#εade−βεap

1 + (A/NNS)e−β#εad
, (19.6)

and where we have defined #εpd = εS
pd − ε

NS
pd and #εad = εS

ad − ε
NS
ad . The

details of the derivation are left to the problems at the end of the
chapter. Note that in the limit that the adhesive interaction between
polymerase and activator goes to zero, the regulation factor itself goes
to unity. Further, note that for negative values of this adhesive interac-
tion (that is, activator and polymerase like to be near each other), the
regulation factor is greater than 1, which is translated into an effective
increase in the number of polymerase molecules. The probability of
RNA polymerase binding as a function of the number of activators is
plotted in Figure 19.10.
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Figure 19.10: Illustration of the
recruitment concept. This plot shows
the probability of binding when the
number of polymerase molecules is
P = 500 and the binding parameters are
#εpd = −5.3 kBT and
#εad = −13.12 kBT . The three curves
correspond to different choices of the
adhesive interaction energy between
polymerase and the activator.

The Regulation Factor Dictates How the Bare RNA Polymerase Binding
Probability Is Altered by Transcription Factors

One of the intriguing claims that we will make is that a simple change
in the effective number of RNA polymerase molecules (P → Peff) will
suffice to capture the action of regulatory chaperones such as acti-
vators and repressors. This interpretation of the meaning of the
regulation factor is shown in Figure 19.11. As a result of the presence
of activators, it is as though the number of RNA polymerase molecules
has been changed from P to FregP. For the case of activators, the regu-
lation factor is greater than 1 and leads to an effective increase in the
number of polymerase molecules. By way of contrast, we will show
below that when repressors are present, they result in a regulation
factor that is less than 1 and a concomitant decrease in the effective
number of polymerase molecules.

In order for our calculations to really carry weight, we need to
examine what they have to say about experiments. One of the pri-
mary measurables in in vivo experiments on regulation is the relative
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(A)

(B)

Freg = 2

Figure 19.11: Regulation factor and
the effective number of polymerase
molecules. The presence of activators
is equivalent to a problem with just
polymerase molecules but a larger
number of them. (A) The “bare”
problem with activators and
polymerase present. (B) The “effective”
problem in which the presence of
activators is treated as a change in the
number of polymerase molecules.

expression for cases in which the transcription factor of interest is
present or not. This qualitative notion is made quantitative by intro-
ducing the idea of the fold-change in activity, defined in the activation
setting as

fold-change = pbound(A ̸= 0)

pbound(A = 0)
= 1 + (NNS/P)eβ#εpd

1 + [NNS/PFreg(A)]eβ#εpd
. (19.7)

What this expression reveals is how much more expression there is
in the presence of activators relative to the “basal” state in which there
is no activation.

As before, an inherent assumption in this analysis is the idea that
the relative change in what is measured (for example, protein prod-
uct, mRNA concentration, or promoter occupancy) is equal to the
relative change in pbound. Figure 19.12 illustrates the fold-change in
gene expression for the problem of simple activation with a choice
of parameters dictated by in vitro experiments for a value of #εad in
conjunction with an educated guess for εap that results in typical fold-
changes in activity reported in vivo of about 50. Note that a weak
promoter satisfies the condition (NNS/P)eβ#εpd ≫ 1, which implies that
the fold-change in activity can be rewritten as

fold-change≈Freg(A). (19.8)

Here we have also assumed that (NNS/PFreg)eβ#εpd ≫ 1, which means
that the promoter is not too strong even in the regulated case. The
conclusion is that in the case of a weak promoter the actual details of
the promoter, such as its binding energy, factor out of the problem.
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Figure 19.12: Fold-change due to
activators. Fold-change in gene
expression as a function of the number
of activators for different activator–RNA
polymerase interaction energies using
P = 500, #εpd = −5.3 kBT , and
#εad = −13.12 kBT based on in vitro
measurements.

Activator Bypass Experiments Show That Activators Work by Recruit-
ment

The simple picture of regulated recruitment introduced here is based
in part upon a series of classic experiments known as activator
bypass experiments. The key idea of such experiments is shown in
Figure 19.13. These experiments involve a mix-and-match approach
where the DNA-binding domain from one protein is fused with the
activator domain of a second protein. A second version of this
experiment is based upon direct tethering of the activator and the
polymerase. After making the activator bypass constructs, it was
found that the gene of interest was still activated. Our ambition here
is to consider these experiments more quantitatively and to note
that, if viewed from a mathematical perspective, these two classes of
experiments lead to different quantitative outcomes that can be used
to further test the full range of validity of the notion of regulated
recruitment.
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Figure 19.13: Schematic of activator
bypass experiments. (A) Activator
bypass type 1 in which activation is
mediated by proteins with designer
DNA-binding regions. (B) Activator
bypass type 2 in which the activator is
tethered directly to polymerase.

(A)

(B)

We have already worked out the regulation factor that is associated
with activator bypass type 1 experiments. The only change relative
to Equation 19.6 is that, by using different proteins, quantities such
as #εad and εpa will have different numerical values, which means
that the actual level of activation can be different in this experiment
relative to its “wild-type” value. On the other hand, the entire func-
tional form for the regulation factor is different in the case of activator
bypass type 2. In this case, there are only two states we really need
to consider, namely, polymerase with and without tethered activa-
tor bound at the promoter with weights (P/NNS)e−β(#εpd+#εad) and 1,
respectively. This implies that the probability that polymerase will be
bound is

pbound(P; NNS) = 1
1 + (NNS/P)eβ#εadeβ#εpd

. (19.9)

This implies, in turn, that the regulation factor takes the particularly
simple form

Freg = e−β#εad, (19.10)

which amounts to the statement that the effective binding energy of
polymerase is shifted and nothing more.

Repressor Molecules Reduce the Probability Polymerase Will Bind to
the Promoter

The same logic that was introduced above to consider the case of pure
activation (that is, recruitment) can be brought to bear on the problem
of repression. Once again, we are faced with considering all of the
ways of distributing the repressor and RNA polymerase molecules and
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it is convenient to introduce the partition function associated with the
binding of these molecules to nonspecific sites as

Z(P, R : NNS) = NNS!
P !R!(NNS − P − R)!

e−βPεNS
pde−βRεNS

rd , (19.11)

which is formally identical to Equation 19.2, but where we have
introduced the notation εNS

rd to describe the nonspecific binding of
repressor to DNA (εS

rd will be reserved for the specific binding energy
of repressor to its operator). In order to write the total partition func-
tion for all the allowed states, we now need to sum over the states in
which the promoter is occupied either by a repressor molecule or by
an RNA polymerase molecule. The set of allowed states in this simple
model as well as their associated weights are shown in Figure 19.14.
Note that in considering this particular model, we do not enter into
structural fine points such as whether or not the RNA polymerase can
be on its promoter at the same time as the repressor is bound to its
operator—the model is intended to be the simplest treatment of the
statistical mechanics of the competition between repressors and RNA
polymerase.

The total partition function is given by

Ztot(P, R; NNS) = Z(P, R; NNS)

empty promoter

+ Z(P − 1, R; NNS)e
−βεSpd

RNAP on promoter

+ Z(P, R− 1; NNS)e−βε
S
rd

repressor on promoter

. (19.12)

R
NNS

STATE RENORMALIZED WEIGHT

1

e– D pd

e–b e

b e

D rd

P
NNS

repressor-
binding site

promoter

RNA
polymerase repressor

Depd

Derd
Figure 19.14: States and weights for
the case of simple repression. The
states of promoter occupancy are
empty promoter, RNA polymerase on
the promoter, and repressor on the
promoter.
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This result now provides us with the tools with which to evaluate the
probability that the promoter will be occupied by RNA polymerase.
This probability is given by the ratio of the favorable outcomes to all
of the outcomes. In mathematical terms, that is

pbound(P, R; NNS)

= Z(P − 1, R; NNS)e−βε
S
pd

Z(P, R; NNS) + Z(P − 1, R; NNS)e−βε
S
pd + Z(P, R− 1; NNS)e−βε

S
rd

.

(19.13)

As argued above, this result can be rewritten in compact form
using the regulation factor by dividing top and bottom by Z(P − 1,

R; NNS)e−βε
S
pd and by invoking the approximation

NNS!
P!R!(NNS − P − R)!

≈
NP

NS
P!

NR
NS

R!
, (19.14)

which amounts to the physical statement that there are so few poly-
merase and repressor molecules in comparison with the number of
available sites, NNS, that each of these molecules can more or less
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Figure 19.15: Dilution experiment and the measurement of fold-change in repression. (A) Diagram of the circuit. In the absence
of the inducer aTc, the repressor TetR shuts down production of the transcription factor cI fused to YFP. This transcription factor, in
turn, regulates the expression of the reporter CFP. (B) Schematic of the time course of an experiment. Adding aTc for a short
period of time leads to the production of cI-YFP. Upon removal of aTc, no new cI-YFP is produced. As a result, in each new
generation, there will be decreasing numbers of cI-YFP per cell, resulting in an ever-higher rate of expression of the downstream
CFP gene. This dilution also permits the calibration of YFP fluorescence into absolute numbers of cI-YFP as discussed in the
text. (C) Representative snapshots from the time course of an experiment. (D) Fold change (1/repression) as a
function of cI repressor concentration measured using the dilution method. (Adapted from N. Rosenfeld et al. Science 307:
1962, 2005.)
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fully explore those NNS sites. The resulting probability is

pbound(P, R; NNS) = 1

1 + (NNS/P)eβ(εSpd−ε
NS
pd)[1 + (R/NNS]e−β(εS

rd−ε
NS
rd ))

.

(19.15)

This result can be couched in regulation factor language with the
observation that the regulation factor itself is given by

Freg(R) =
(

1 + R
NNS

e−β#εrd
)−1

, (19.16)

with #εrd = εSrd − ε
NS
rd . Note that the regulation factor in the case of

repression satisfies the inequality Freg < 1, which can be interpreted
as a reduction in the effective number of RNA polymerase molecules.
We explore this in more detail in Section 19.2.5 when discussing the
particular case of the lac operon, though Figure 19.15 gives an exam-
ple of an extremely elegant measurement of the effect of repression
using the beautiful dilution method introduced in the Computational
Exploration on p. 46.
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Computational Exploration: Extracting Level of Gene
Expression from Microscopy Images One way to deter-
mine the level of gene expression is to use microscopy images
of cells expressing some fluorescent reporter. In this Computa-
tional Exploration, the reader is invited to use Matlab to extract
the fluorescence intensities from a collection of cells and to use
them to determine the fold-change in simple repression.

The logical progression associated with this analysis is
introduced schematically in Figure 19.16. Note that we have
images of the cells in two different channels. In particular, for
each field of view, we have both a phase contrast image and
a fluorescence image. Like with the example where we deter-
mined the cell cycle time of E. coli (p. 100), the first step is to
find the cells in an automated fashion using some segmenta-
tion scheme. Additionally, we need to choose which one of the
two images we want to do the segmentation with. Detecting
cells using the fluorescence image is certainly appealing due
to the absence of any other fluorescent objects. However, it is
clear that for dimmer cells the segmentation might not work as
well. As a result, we would risk biasing our segmentation based
on the level of expression of the cells, the quantity we are actu-
ally interested in measuring! Instead, we choose to segment the
phase contrast image, which should, in principle, not be sub-
ject to bias resulting from the level of fluorescence within each
cell.

Following the procedure outlined in the example on the cell
division time in E. coli (p. 100), once we have performed the
thresholding, we will be left with a mask image with discrete
regions that we identify as cells denoted by the different col-
ors in Figure 19.16(C). These ideas are illustrated in the Matlab
code associated with this exploration. Once the segmentation
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Figure 19.16: Schematic of the image
segmentation algorithm to quantify
levels of gene expression in bacteria.
Two images of bacteria expressing a
fluorescent protein are obtained, (A)
one in phase contrast and (B) one in
fluorescence. The phase contrast image
is an imaging scheme that makes it
possible to see the bacteria as dark
objects. (C) These objects are
automatically detected and segmented
using computer software that assigns
an identity to each segmented
bacterium (represented by the different
colors). (D) The mask generated by this
procedure is applied to the fluorescence
image in order to generate an overlay
and integrate the fluorescence within
the mask of each segmented cell. (E) By
repeating this for multiple images and
many cells, the distribution of
fluorescence per cell can be computed.
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process is complete, we can then obtain the fluorescence inten-
sity in each of our cells. To do so, we use the segmented image
from the previous step to find the individual cells and then,
within each such cell, we ask for the fluorescence intensity of
all of the pixels and sum them up. The result is a distribution
of fluorescence per cell as shown in Figure 19.16(E). However,
there is an extra subtlety that has to be taken into account
when obtaining such fluorescence distributions. In particular,
because of the intrinsic fluorescence of the cells themselves,
there is a spurious contribution to the total fluorescence that
we measure, Ftotal, which is given by

Ftotal = Freporter + Fcell, (19.17)

where Freporter is the signal stemming from the fluorescent
reporter while Fcell is the autofluorescence of the cell. As a
result, we need to be able to subtract the cells’ average aut-
ofluorescence if we want to report only on Freporter. This can
be easily done by following the steps outlined in Figure 19.16
and described above, but now for a strain of bacteria that lacks
any fluorescent reporter. As a result, we will be able to mea-
sure the mean contribution of the cell autofluorescence to the
total fluroescence, ⟨Fcell⟩, which can then be subtracted from
the fluorescence values in the presence of the reporter.

With the fluorescence intensities in hand, we are now
prepared to compute the fold-change itself so that we can
examine the accord between the model of simple repression
presented in Equation 19.16 and the data itself. The logic of
this part of the analysis is presented in Figure 19.17. Here
the idea is to use our mean fluorescence intensities, cor-
rected for the fluorescence background, for both the regulated
and unregulated promoters and then to construct the ratio of
these means.

Examples of Matlab code that could be used to perform this
Computational Exploration, as well as images of E. coli suitable
for this analysis, can be found on the book’s website.
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Figure 19.17: Converting image intensities to fold-change. The fold-change in gene expression is defined as the ratio of the
levels of gene expression coming from a strain bearing the transcription factor of interest over a strain with a deletion of such
transcription factor. For each one of these two strains, the procedure described in Figure 19.16 can be performed, leading to a
distribution of fluorescence for each strain. Additionally, the cell autofluorescence is subtracted from each sample by analyzing a
strain bearing no fluorescent protein. The means of each distribution can be divided in order to calculate the fold-change in gene
expression.

19.2.3 Transcriptional Regulation by the Numbers: Binding
Energies and Equilibrium Constants

We have heard it said that “physics isn’t worth a damn unless you put
in some numbers!” The abstract expressions obtained so far are much
more interesting when viewed through the prism of particular mea-
surements. Binding energies quantify the affinity of RNA polymerase
or transcription factors for their DNA targets. In particular, RNA poly-
merase and transcription factors perform molecular recognition as a
result of a rank ordering of their preferences for different sequences
of nucleotides. Indeed, the sequence associated with a given pro-
moter distinguishes it from some random sequence to which RNA
polymerase would bind with a nonspecific binding energy εNS

pd. Specific
binding energies can also be tuned. For example, even though there
might be one very strong consensus promoter, that binding strength
can be reduced by introducing mismatches in the sequence. A strong
promoter, with a pbound close to 1, will have a strong level of expres-
sion. On the other hand, by weakening a given promoter, cells can
broaden their dynamic range by introducing a codependency on a bat-
tery of transcription factors that effectively tune the range of binding
affinities and permit the regulation of promoter occupancy.

Equilibrium Constants Can Be Used To Determine Regulation Factors

In order to compute the regulation factors for the various regulatory
scenarios under consideration in this chapter, we need to make esti-
mates for the energy associated with binding protein X to the DNA,
both specifically and nonspecifically; protein X can be a repressor
or an activator. Binding energies are determined indirectly in exper-
iments that measure the equilibrium constant for binding X to DNA
(D). In particular, we consider the reaction

X + D ! XD (19.18)
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with an equilibrium binding constant

K(bind)
X = [XD]

[X][D]
. (19.19)

Here, [· · · ] denotes concentrations of the various species taking part
in the reaction.

When a single X binds to DNA, there is an overall change in the free
energy, #fXD. The more negative this quantity is, the more likely X
will be bound to DNA. Similarly, a larger K(bind)

X implies that the bound
state is more likely. More precisely, the probability that a particular
binding site on the DNA is occupied is equal to the ratio of the number
of occupied sites to the total number of sites, as was first introduced
in Section 6.4.1 (p. 270). In terms of concentrations, this can be written

pbound = [XD]
[D] + [XD]

=
K(bind)

X [X]

1 + K(bind)
X [X]

, (19.20)

where the final expression follows from Equation 19.19. On the other
hand, given that there are [X]Vcell copies of protein X in the cell (Vcell
is the volume of the cell), the probability of a DNA-binding site being
occupied is

pbound = [X]Vcelle−β#fXD

1 + [X]Vcelle−β#fXD
. (19.21)

Comparison of the two expressions for pbound allows us to relate the
microscopic and macroscopic views of binding through the relation

K(bind)
X
Vcell

= e−β#fXD. (19.22)

Using this relation, we can compute the binding free energies for RNA
polymerase and the various transcription factors in E. coli, which pro-
vides an alternative description of the same underlying processes.
Presently, we use these ideas to tackle the lac operon, which features
both positive and negative regulation.

19.2.4 A Simple Statistical Mechanical Model of Positive
and Negative Regulation

Real regulatory architectures in cells often involve both repression
and activation simultaneously. In this case, we consider the five dis-
tinct outcomes shown in Figure 19.18 and captured through the total
partition function

Ztot(P, A, R; NNS)

= Z(P, A, R; NNS)

empty promoter

+ Z(P − 1, A, R; NNS)e−βε
S
pd

RNAP

+ Z(P, A− 1, R; NNS)e
−βεSad

activator

+ Z(P − 1, A− 1, R; NNS)e−β(εSad+εSpd+εpa)

RNAP + activator

+ Z(P, A, R− 1; NNS)e
−βεSrd

repressor

+ Z(P, A− 1, R− 1; NNS)e−β(εSad+εSrd)

activator + repressor

.

(19.23)
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Figure 19.18: Schematic
representation of the simple statistical
mechanical model of recruitment and
repression. States and weights for the
case in which activation and simple
repression act simultaneously.

Note that the cartoon shows a schematic representation of the dif-
ferent ways that the region in the vicinity of the promoter can be
occupied and what the statistical weights are of each such state
of occupancy. We can compute the probability of RNA polymerase
binding by considering the ratio of favorable outcomes to the total
partition function, resulting in

pbound(P, A, R; NNS)

= Z(P − 1, A, R; NNS)e−βε
S
pd + Z(P − 1, A− 1, R; NNS)e−β(εS

ad+εSpd+εpa)

Ztot(P, A, R; NNS)
.

(19.24)

As before, perhaps the simplest way to interpret this result is with
reference to the regulation factor, resulting in

pbound(P, A, R; NNS) = 1

1 + [NNS/PFreg(A, R)]eβ(εSpd−ε
NS
pd)

, (19.25)
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where the regulation factor itself is now a function of both the number
of activators, A, and the number of repressors, R. In particular, the
regulation factor is given by

Freg(A, R)

= 1 + (A/NNS)e−β(#εad+εap)

1 + (A/NNS)e−β#εad + (R/NNS)e−β#εrd + (A/NNS)(R/NNS)e−β(#εad+#εpd)
.

(19.26)
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Figure 19.19: Combined regulation by
repressor and activator. (A) The
fold-change in gene expression as a
function of the number of transcription
factors shows their combinatorial
action. The parameters used are
#εad = −10 kBT , εap = −3.9 kBT and
#εrd = −16.9 kBT . (B) Activity of the lac
operon measured in Miller units (MU)
per hour as a function of the
concentration of IPTG and cAMP, which
regulate the binding of Lac repressor
and CRP to the DNA, respectively. (B,
adapted from T. Kuhlman et al., Proc.
Natl. Acad. Sci. USA 104:6043, 2007.)

The variation in fold-change in gene expression due to this regula-
tory architecture in the weak promoter approximation is shown in
Figure 19.19(A). The objective of this figure is to illustrate the com-
binatorial control that can be reached when different transcription
factors act in unison. Perhaps nowhere is this interplay of negative
and positive regulation better known than in our old friend, the lac
operon. In fact, Figure 19.19(B) reveals this interplay between activa-
tion and repression in the particular context of the lac operon. Here,
instead of varying the intracellular number of transcription factors,
the simpler approach of measuring the activity of the lac promoter as
a function of the two inducers that control the binding of repressor
and activator to DNA (IPTG and cAMP, respectively) is taken.

19.2.5 The lac Operon

Both repression and activation are key parts of the equipment of bac-
teria. Perhaps the most famous example of these effects is provided
by the lac operon and is shown in Figure 4.15 (p. 158). Indeed, the
lac operon has served as one of the central workhorses of the entire
book, and the present section is the denouement of that discussion. In
this case, the activator is the catabolite activator protein (CAP), also
known as cyclic AMP receptor protein (CRP). In order to be able to
recruit RNA polymerase, CAP has to be bound to cyclic AMP (cAMP),
a molecule whose concentration goes up when the amount of glucose
decreases. The repressor, known as Lac repressor, decreases the level
of transcription unless it is bound to allolactose, which is a byproduct
of lactose metabolism.

The lac Operon Has Features of Both Negative and Positive Regula-
tion

Recall that the lac operon oversees the management of the enzymes
that are responsible for lactose uptake and digestion. In particular,
when E. coli cells find themselves simultaneously deprived of glucose
and supplied with lactose, the genes of the lac operon are turned on
so as to take metabolic advantage of the lactose. We have already
described the way in which the Lac repressor forbids transcription
of the genes associated with lactose digestion by binding on its oper-
ator. However, our earlier discussion was a bit too blithe, since we
said nothing of what happens in the case where glucose and lactose
are simultaneously available. If we were to adopt the picture of neg-
ative control described above, then our expectation would be that in
this case there should be substantive transcription of the genes of the
lac operon. However, there is a second element of positive control that
completes the story. In particular, in the absence of glucose, the activa-
tor CAP binds to a site near the promoter (the RNA polymerase-binding
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P = 1000

A = 1000

R = 10

Figure 19.20: Census of the relevant
molecular actors in the lac operon.
The figure shows a rough estimate of
the number of polymerase molecules,
activators, and repressors associated
with the lac operon.

site) as shown in Figure 4.15 (p. 158) and “recruits” RNA polymerase to
the promoter. The census shown in Figure 19.20 gives a rough impres-
sion of the number of copies of some of the key molecules associated
with the lac operon and illustrates the striking fact that some of the
transcription factors exist with as few as 10 copies.

The geometry of the regulatory landscape for the lac operon is
shown in Figure 19.21. Our discussion of Figure 4.15 (p. 158) was
oversimplified in the sense that we ignored the presence of auxiliary
binding sites for the Lac repressor that are revealed in Figure 19.21.
In particular, there are two other binding sites for the Lac repressor.
Specifically, there is a binding site known as O2 located 401 bp down-
stream from O1 and a second such site known as O3 situated 92 bp
upstream. Part of our discussion will center on the subtle ways in
which repression takes place in this system. Recall that the repressor
itself is a tetramer with two “reading heads” that can each bind to a
different operator, looping out the intervening DNA.

401 bp92 bp
CAP

O3 O1 O2

promoter

Figure 19.21: Position of the three lac
operators and the CAP-binding site
relative to the promoter. O1 is the main
operator, while O2 and O3 are auxiliary
binding sites for Lac repressor and are
associated with DNA looping.

One of the most important roles for models like those described
here is in providing a conceptual framework for thinking about both
in vivo and in vitro data and in suggesting new experiments. A par-
ticularly compelling class of in vivo experiments using the lac operon
measured the repression as a function of the strength and placement
of the operator sites that are the targets of Lac repressor. In particular,
E. coli cells were created that had only one operator for Lac repressor
as well as mutants with different spacings between operators (a topic
we return to below). The first set of experiments we consider are those
in which only one operator was present for Lac repressor binding as
shown in Figure 19.22. In these experiments, the repression was mea-
sured for cases in which the promoter was repressed by each of the
operators O1, O2, and O3 individually. From the standpoint of the
models considered here, all that is different from one experiment to
the next is the binding energy of repressor for the DNA.

Recall that for a single repressor, the regulation factor is given by
Equation 19.16. What is measured in the experiment is the ratio of
the level of gene expression in the absence of repressor to that in
the presence of repressor. For the purposes of our model, we replace

O1 lacZ

lacZ

lacZ

O2

O3

repression

50

200

21

1.3

900

4700

320

16

number of
repressors

Figure 19.22: Repression in the lac
operon. The DNA constructs used in
these experiments deleted the
auxiliary binding sites for repressor
and tuned the strength of the main
repressor-binding site. Repression, the
inverse of the fold-change in gene
expression, was measured in each
construct for two different
concentrations of Lac repressor.
(Adapted from S. Oehler et al., EMBO
J. 13:3348, 1994.)
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this definition based upon a measure of protein content (that is, the
product of the gene) with a definition based upon examining the prob-
ability that the promoter is occupied by RNA polymerase. The implicit
assumption here is that the protein content is linearly related to the
probability of promoter occupancy. More precisely, we define repres-
sion as the ratio of the probability of binding of RNA polymerase to
the relevant promoter in the absence of repressor to the probability
of such binding in the presence of repressor, namely

repression = pbound(R = 0)

pbound(R ̸= 0)
. (19.27)

Concretely, this result depends on the number of repressors, R, and
their energy of binding to DNA. If we substitute for pbound using
Equation 19.15, we find that the repression can be written as

repression(R) = 1 + (P/NNS)e−β#εpd + (R/NNS)e−β#εrd

1 + (P/NNS)e−β#εpd
. (19.28)

For the case of a weak promoter, this implies in turn that the
repression level can be written as

repression(R) = [fold-change(R)]−1 ≃ [Freg(R)]−1 = 1 + R
NNS

e−β#εrd .

(19.29)

One of the interesting opportunities afforded by this expression is the
possibility of a direct confrontation with experimental data such as is
shown in Figure 19.22.

number of
Lac repressor molecules

re
p
re

ss
io

n

104

103

102

101

100

100 101 102 103 104

O1

O2

O3

Figure 19.23: Repression model for
the lac operon. Each curve shows how
repression varies as a function of the
number of repressor molecules in the
cell for constructs with a single main
binding site as shown in Figure 19.22.
Different curves correspond to different
main binding sites (operators) for the
Lac repressor. (Data from S. Oehler et
al., EMBO J. 13:3348, 1994.)

In particular, the data of Figure 19.22 permit us to determine the
only unknown in our expression for the repression, namely, the
energy parameter #εrd. Since the data reflect three different choices
of binding strength, we find three different binding energies (#εrd =
−16.9,−14.4, and −11.2 kBT for O1, O2, and O3, respectively). With
these energies in hand, we can predict the outcome of repression mea-
surements in which the number of repressors is tuned to other values
as shown in Figure 19.23. Note that once the binding-energy differ-
ence has been estimated using one data point, it leads to a prediction
for the behavior of the system for different numbers of repressor
molecules in the cell and will serve as the basis for our analysis of
the two-operator case as well.

The Free Energy of DNA Looping Affects the Repression of the lac
Operon

Our discussion of the lac operon from the statistical mechanical per-
spective has thus far ignored one of the more intriguing features of
this system, namely, the presence of DNA looping. The behavior of
the lac operon has been examined in great detail both in vitro and in
vivo. One beautiful set of experiments that is particularly enlighten-
ing with reference to the class of models we have described thus far
in the chapter examines the repression of the lac operon as a function
of the spacing between the DNA-binding sites (the operators) for Lac
repressor.

The data on repression as a function of interoperator spacing were
introduced in Figure 1.11 (p. 19) as an example of the sophisticated
quantitative data that exist on biological systems in general, and gene
expression in particular. These beautiful experiments and others like
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O1 lacZOid spacer
DNA

CAP

operator distance Figure 19.24: Construct used to
measure repression in the presence of
looping. The binding site for the
activator CRP (shown as CAP in the
diagram) was deleted, as was the
third repressor-binding site. (Adapted
from J. Müller et al., J. Mol. Biol.
257:21, 1996.)them show a systematic trend in the promoter activity of the genes

in question as a function of the distance between the binding sites
for the repressor under consideration. One particularly telling feature
of such data is the periodicity that results from the twist degrees of
freedom and that reflects the need for particular faces of the DNA to
be aligned in order to form a loop.

Figure 19.24 shows the DNA construct that was used to examine
the in vivo consequences of DNA looping. In this construct, both the
binding site for CRP and the operator O2 were deleted, while the pro-
moter was replaced with a stronger promoter. The deletion of the
CRP-binding site is intended to remove the question of activation from
the problem. Note also that this construct permits the insertion of
DNA sequences of arbitrary length between O1 and Oid, where Oid
has replaced O3. Oid is a much stronger operator than O3, of approx-
imately the same strength as O1. Finally, the deletion of O2 insures
that looping will only occur between the two remaining operators.

In order to confront data like those shown in Figure 1.11 (p. 19), we
need to expand our discussion of activators and repressors to include
the effect of looping itself. In Figure 19.25, we show a minimal model
of the states available to the system when RNA polymerase and Lac
repressor are competing for the same region in the vicinity of the
promoter. Note that this model permits different repressor molecules
to occupy the two operators simultaneously, or a single molecule to
occupy both sites and to loop the intervening DNA. We ignore the
possibility of activator-binding since the activator-binding site was
eliminated as shown in Figure 19.24. Note that this does not unequiv-
ocally rule out the possibility of nonspecific CAP binding, which might
affect the results as well.

In order to proceed in quantitative terms, as usual, we need to write
down the partition function that corresponds to assigning statistical
weights to all of the allowed states depicted in Figure 19.25. Using
exactly the same logic as in previous sections, the partition function
can be written as

Ztot(P, R; NNS) = Z(P, R; NNS)

P(0), O(0)
main and O(0)

aux

+ Z(P − 1, R; NNS)e−βε
S
pd

P(1), O(0)
main and O(0)

aux

+ Z(P − 1, R− 1; NNS)e−βε
S
pde−βε

S
rda

P(1), O(0)
main and O(1)

aux

+ Z(P, R− 1; NNS)e
−βεSrdm

P(0), O(1)
main and O(0)

aux

+ Z(P, R− 1; NNS)e
−βεSrda

P(0), O(0)
main and O(1)

aux

+ Z(P, R− 2; NNS)e
−βεSrdme−βε

S
rda

P(0), O(1)
main and O(1)

aux

+ Z(P, R− 1; NNS)e
−βεSrdme−βε

S
rdae−βFloop

repressor/loop

, (19.30)
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Figure 19.25: Looping states and
weights in the lac operon. Each state
corresponds to a different state of
occupancy of the promoter and
operators in the operon.
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operator

main
operator

promoter
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e– (D pd + D rda)P
NNS

R
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e– D rdaR
NNS

R
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R–1
NNS

e– (D rdm + D rda)

R
NNS

e–b

b

b

(De

e

e

b e

b e

b e

e

e

erdm + D rda + DFloop)

e– D rdmR
NNS

1

where εrda is the binding energy of the repressor for the auxiliary oper-
ator and εrdm is the binding energy of the repressor for the main
operator. Our notation has clearly become more cumbersome and
deserves explanation. First, we introduce P(0), O(0)

main, and O(0)
aux to indi-

cate that the occupancies of the promoter and main and auxiliary
operators are zero, respectively. Next, the notation O(1)

main indicates
that the main operator is occupied. The term with P(0), O(1)

main, and O(1)
aux

indicates the states for which there are distinct repressor molecules
bound to the two operators and the final term accounts for the
looped state.

One of the terms in the expression includes the looping free energy
in the form

Z(P, R− 1; NNS)e−βε
S
rdme−βε

S
rdae−βFloop , (19.31)

and the factor e−βFloop deserves further comment. Recall that Z(P,
R− 1; NNS) is itself already a sum over all of the possible ways of
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S 
loops

= + + + + ...+
Figure 19.26: Summing over DNA
loops. The sum

∑
loops instructs us to

sum over all conformations of the
DNA loop as indicated schematically
here.

distributing the P RNA polymerase molecules and the R− 1 repres-
sor molecules over the NNS nonspecific binding sites on the DNA, with
one of the repressors bound to both operators and looping the inter-
vening DNA. However, for each and every one of these configurations,
we have to sum over all of the possible geometries of the loop itself.
That is, this contribution to the partition function is really of the form

Zlooped(P, R− 1; NNS) =
∑

loops

Z(P, R− 1; NNS)e−βε
S
rdme−βε

S
rdae−βεloop ,

(19.32)

where εloop is the energy of a given loop configuration and
∑

loops
instructs us to sum over all of the possible loop configurations as
schematized in Figure 19.26. Since most of the factors are indepen-
dent of the looping geometry, we can rewrite this as

Zlooped(P, R− 1; NNS) = Z(P, R− 1; NNS)e−βε
S
rdme−βε

S
rda

∑

loops

e−βεloop ,

(19.33)

where we have pulled all terms out of the sum that do not depend
upon the particular choice of looped state. One way to proceed at
this point is to appeal to ideas about elasticity to determine εloop and
use the random walk as the basis for effecting the sum. On the other
hand, a simpler scheme is to replace the sum by e−βFloop and to treat
Floop as a phenomenological parameter as we have already done with
the various binding energies.

With the partition function in hand, we can compute the probabil-
ity of RNA polymerase binding by considering the ratio of favorable
outcomes to the total partition function, resulting in

pbound(P, R; NNS) = P
NNS

e−β#εpd

(
1 + R

NNS
e−β#εrda

)

×
[
1 + P

NNS
e−β#εpd

(
1 + R

NNS
e−β#εrda

)

+ R
NNS

(
e−β#εrdm + e−β#εrda

)

+ R(R− 1)

(NNS)2
e−β(#εrdm+#εrda)

+ R
NNS

e−β(#εrdm+#εrda+#Floop)

]−1
, (19.34)

where we have defined #Floop = Floop + εNS
rd . From this expression, we

can obtain the regulation factor

Freg(R) =
(

1 + R
NNS

e−β#εrda

)[
1 + R

NNS

(
e−β#εrdm + e−β#εrda

)

+ R(R− 1)

(NNS)2
e−β(#εrdm+#εrda) + R

NNS
e−β(#εrdm+#εrda+#Floop)

]−1
.

(19.35)
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To make contact with the results of Müller et al. (1996), we now need
to write an expression for the repression as a function of the interop-
erator spacing. Recall that the repression is given by Equation 19.27
and takes the form

repression(Nbp) = (Freg)−1

=
[
1 + R

NNS
(e−β#εrdm + e−β#εrda)

+ R(R− 1)

(NNS)2
e−β(#εrdm+#εrda)

+ R
NNS

e−β(#εrdm+#εrda+#Floop)

]

×
(

1 + R
NNS

e−β#εrda

)−1
, (19.36)

where we have written repression(Nbp) as a function of the number
of base pairs in the loop (Nbp) to signal that the looping free energy
(and hence the repression) will depend upon the distance between the
two operators. We have invoked the approximation that the promoter
is weak (that is, (NNS/PFreg)eβ#εpd ≫ 1). In order to examine the signif-
icance of our results on looping, we consider the extent to which the
model can be used to interpret existing data and to suggest new exper-
iments. Notice that we already know all the parameters in the weights
from the previous experiment, with the exception of #Floop. We argue
that for a given loop size, #Floop is a parameter that should be indiffer-
ent to which combination of operators is used in these two-operator
experiments and, as a result, once #Floop is determined, the model is
predictive. The results of a simple fit to the looping free energy are
shown in Figure 19.27. To obtain these curves, any single data point
is used to obtain the looping free energy itself and then the resulting
curves are entirely predictive.
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Figure 19.27: Repression and looping. A single fit to #Floop giving 9.1 kBT permits the investigation of multiple configurations
of the different operators. (Data from S. Oehler et al., EMBO J. 13:3348, 1994.)

828 Chapter 19 ORGANIZATION OF BIOLOGICAL NETWORKS



“chap19.tex” — page 829[#31] 5/10/2012 12:31

Inducers Tune the Level of Regulatory Response

Who regulates the regulators? So far, our story has been built around
a set of transcription factors that are themselves above the law. But,
in fact, we know that the action of these transcription factors is itself
controlled by signaling processes and it is to this subject that we now
turn, once again using the lac operon as the defining case study to
set ideas. The famed Lac repressor is itself controlled by molecules
known as inducers, with one of the most important examples being
the synthetic inducer IPTG. IPTG binds to Lac repressor, thus reducing
its affinity for DNA. In the natural context, the binding of an inducer
(allolactose) to Lac repressor provides the feedback that eliminates
repression and permits the synthesis of the enzyme that performs the
chemical cleavage of lactose.

One of the ways in which the reduction in binding affinity of Lac
repressor for DNA has been illustrated is through in vitro binding
experiments like those schematized in Figure 19.28. This figure shows
the in vitro occupancy of an operator by Lac repressor as a function
of inducer (IPTG) concentration. However, when performing an anal-
ogous titration in vivo for the wild-type lac operon, a much sharper
response for the level of gene expression as a function of the IPTG
concentration is observed. The “sharpness” of the output signal (gene
expression for the in vivo measurements or normalized binding prob-
ability for the in vitro measurements) can be quantified using the
thermodynamically inspired Hill function introduced in Section 6.4.3
(p. 273) and given in this case by

normalized gene expression =

(
[IPTG]

Kd

)n

1 +
(

[IPTG]
Kd

)n . (19.37)

Here, [IPTG] is the concentration of IPTG and Kd is an effective disso-
ciation constant. This effective dissociation constant not only reflects
the interaction of IPTG with Lac repressor, it also accounts for the
change in affinity of Lac repressor to its operator DNA upon binding
to the inducer, for the concentration of Lac repressors, and, in the in
vivo scenario, also for any active pumping of IPTG into the cell. n is
the Hill coefficient, a measure of the slope or sensitivity of the output
signal with respect to the input concentration of IPTG.

As suggested above, modeling induction of the lac operon requires
taking into account the passive and active transport by Lac permease
(LacY) of IPTG into the cell as well as the binding and DNA looping
of Lac repressor described in the previous sections. All these effects
conspire to give an in vivo Hill coefficient that is significantly different
than the in vitro counterpart. In Figure 19.28, it is shown how by cre-
ating different strains of bacteria bearing a deletion of Lac permease
and lacking the auxiliary Lac repressor-binding sites, the in vivo and
in vitro sensitivities can be reconciled.

19.2.6 Other Regulatory Architectures

The lac operon is one of the classic case studies in modern biol-
ogy. Indeed, one of our arguments is that it is precisely the well-
characterized biological examples that serve as fertile proving ground
for physical biology approaches. However, there is much more to reg-
ulatory biology than the lac operon! One of the key questions that
remains in light of successes with the thermodynamic approach is
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Figure 19.28: Sensitivity of induction in the lac operon. (A) The sensitivity can be characterized by measuring the in vitro
occupancy of an operator as a function of inducer concentration for the simple construct containing only one Lac
repressor-binding site. On the other hand, the in vivo level of gene expression and its resulting sensitivity can be characterized for
the different lac operon mutants shown, where Lac permease (which pumps in inducer) or an auxiliary binding site for repressor
on DNA were deleted or where the intracellular concentration of repressor, [R], is different from its wild-type (WT) value. (B) The
resulting shape of the in vitro operator occupancy or in vivo level of gene expression are shown as a function of inducer
concentration for the series of different mutants shown in (A), where the different curves correspond to the experimental
conditions, with the gray box corresponding to the black line. As different elements of the system were deleted, the sensitivity of
the induction neared that of the purified in vitro system. This sensitivity can be quantified by fitting to a thermodynamically
inspired functional form such as the Hill function shown in Equation 19.37. Each curve has been normalized to its corresponding
maximum in gene expression (in vivo data) or maximum in binding probability (in vitro data). (Data adapted from S. Oehler et al.,
Nucleic Acids Res. 34:606, 2006 and T. Kuhlman et al., Proc. Natl. Acad. Sci. USA 104:6043, 2007.)

the extent to which the same ideas can be used for other bacterial
promoters, and, better yet, in the context of eukaryotic examples.

The Fold-Change for Different Regulatory Motifs Depends Upon
Experimentally Accessible Control Parameters

So far, we have shown the cases of simple repression, simple activa-
tion, and DNA looping. In each of these cases, our experimental point
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of contact has been the fold-change, which tells us how expression
changes in the presence of various regulatory motifs. Figure 19.29
summarizes how the thermodynamic models worked out so far in
this chapter can be used to predict the input–output response of
these regulatory architectures. Conceptually, what we are really after
is descriptions of these networks in which we can identify the var-
ious regulatory “knobs” such as those shown in Figure 19.30, and
tune these knobs both theoretically and in the context of quantitative
experiments.
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Figure 19.29: Thermodynamic
models for diverse regulatory
architectures. The thermodynamic
models result in a predicted
fold-change as a function of
parameters such as operator binding
strengths and transcription factor
copy numbers. The resulting
fold-change function serves as a
governing equation dictating the
regulatory output. The lowercase
variables (a, h, r, etc.) correspond to
x = (X/NNS)e−β#εxd , where X is the
intracellular number of the particular
transcription factor, #εxd its
interaction energy with the DNA, and
NNS = 5× 106. (A) In simple
activation, an activator recruits RNA
polymerase to the promoter by
interacting with it (#εad = −13.8 kBT ,
εap = 3.9 kBT ). (B) A helper molecule
can recruit an activator to the
promoter, which in turn can recruit
RNA polymerase. (C) In simple
repression, a repressor binds to a site
overlapping the promoter, which
results in the exclusion of RNA
polymerase from that site. (D) Some
repressors can also bind to multiple
sites simultaneously, which results in
an increase of the level of repression.
The looping probability will depend
on physical characteristics of the loop,
such as its length
(#εrmd = −16.7 kBT ,
#εrad = −18.4 kBT , and
#Floop = A/L + B ln L− CL− E, with
A = 140.6 kBT × bp, B = 2.52 kBT ,
C = 1.4× 10−3 kBT/bp and
E = 19.9 kBT ). We assume that one
molecule per cell corresponds to
1 nM. (Adapted from L. Bintu et al.,
Curr. Opin. Genet. Dev. 15:125, 2005.)
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Figure 19.30: Dialing-in transcriptional output. Many parameters can be used to quantitatively tune the level of gene
expression, including the number of copies of genes and the transcription factors that control them, as well as the binding
strengths of a suite of different proteins that interact with the DNA during gene expression.

Quantitative Analysis of Gene Expression in Eukaryotes Can Also Be
Analyzed Using Thermodynamic Models

Our simplified diagrams throughout the book have made it look as
though the transcription apparatus is a single light-blue object (the
polymerase) that binds to its promoter. However, even in bacteria,
the transcription process is much more complicated since the basal
transcription apparatus is a complex of multiple factors. In the case
of eukaryotic organisms, a huge number of molecular species con-
spire together to drive transcription. As such, at first cut, one barely
dares to use such streamlined “effective” models for which so much
of the complexity is blatantly ignored. Nevertheless, the same ther-
modynamic description applied so far has been used to think about
questions such as nucleosome occupancy and how it interferes with
transcription and for a host of different eukaryotic regulatory archi-
tectures. In this brief discussion, we attempt to whet the reader’s
appetite by gossiping about several especially renowned eukaryotic
examples.

As we will discuss thoroughly in Section 21.3.3 (p. 988), nucleo-
somes are found to be reliably positioned on eukaryotic genomes. In
particular, they can be found in regulatory regions, with the resulting
occlusion of transcription factor-binding sites as described in detail
in Section 10.4.3 (p. 409). One of the systems where the interplay
between nucleosomal occupancy and level of gene expression has
been explored quantitatively is the PHO5 promoter in yeast. As
shown in Figure 19.31(A), the PHO5 promoter is activated by PHO4,
which binds to two sites, one within a nucleosome and the other not.
Additionally, there is a TATA binding box at nucleosome −1. This is
the binding site for the TATA box binding protein (TBP), which is criti-
cal for activation of the gene. Following a logic analogous to that put
forth in order to dissect the lac operon, one can mutate the regulatory
region to move binding sites into nucleosomes or outside of them and
change their affinities. Figure 19.31(B) shows that the positioning of
these binding sites with respect to those of the nucleosomes matters.
In particular, when comparing architectures with sites of identical
affinity, but different occlusion by nucleosomes, the features of the
input–output function change appreciably. Moreover, Figure 19.31(C)
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Figure 19.31: Role of nucleosomes in transcriptional regulation. (A) A PHO5 promoter expressing CFP is regulated by PHO4-YFP,
with two target binding sites, UASp1 and UASp2. This promoter has a TATA box, which is bound by the TBP activator. The position
of nucleosomes in this regulatory region has been mapped such that mutants can be generated where the various promoter
features are occluded or not by nucleosomes. (B) Two architectures having the same binding sites but different occlusion
geometries by nucleosomes show markedly different input–output functions. (C) Several variants for the PHO5 promoter result in
input–output functions with drastically different induction thresholds and maximum levels of expression. (D) The maximum level
of expression shows a strong correlation with the occupancy of nucleosome −1, which occludes the TATA box. (Adapted from Kim
and O’Shea, Nat. Struct. Mol. Biol. 15:1192, 2008.)

shows how subtle changes in the regulatory region can lead to drastic
changes in both the threshold and maximum level of expression of the
input–output function.

Perhaps the role of nucleosome occupancy is most prominently
revealed by Figure 19.31(D). In this case, the maximum level of gene
expression shows a strong correlation with the occupancy of nucleo-
some −1 for each of the different regulatory architectures shown in
Figure 19.31(A). Nucleosome −1 overlaps the TATA box, suggesting
that one of the roles of PHO4 is to ultimately modulate the occu-
pancy of −1 through the interaction with nucleosome remodeling
complexes. This modulation determines, in turn, the absolute level
of gene expression of the promoter. It is clear that thermodynamic
models can be used to describe the many layers of regulation present
in this type of problem. In particular, in Section 10.4.3 (p. 409), we
have already shown how thermodynamic thinking can describe the
probability of protein accessibility to a binding site that is buried
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inside a nucleosome. Further, in Section 21.3.3 (p. 988), we will show
how statistical mechanics can lead to simple models that predict the
probability landscape of nucleosome occupancy along the genome.

A further challenge in deciphering eukaryotic transcriptional reg-
ulation centers on how transcription varies in both space and time
during development in multicellular organisms. Perhaps the most well
understood such organism is the fruit fly Drosophila melanogaster. As
shown in Figure 19.2, during the initial stages of development, the fly
embryo expresses a battery of transcription factors in a cascade that
defines sharper and sharper domains of expression. One of the tran-
scriptional architectures that has been studied in most detail is related
to the activation of the transcription factor Hunchback by the tran-
scription factor Bicoid. As shown in Figures 19.2 and 19.32(A), Bicoid
is expressed in an exponential profile along the anterior–posterior
axis of the developing embryo. Activation by Bicoid is realized by
binding to six sites of different strengths that lie upstream from the
Hunchback promoter, as seen in Figure 19.32. The resulting pattern
of Hunchback expression shown in Figure 19.32(C) presents a domain
with a boundary at about 50% of the embryo length. The exquisite
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Figure 19.32: Systematic analysis of gene expression in Drosophila. (A) The Bicoid transcription factor is expressed in an
exponential profile from the anterior to the posterior end of the fly embryo. (B) Bicoid acts as an activator of the Hunchback
transcription factor by binding to six binding sites of different strengths located upstream from the Hunchback promoter. (C) The
resulting pattern of Bicoid-dependent Hunchback expression domain presents a sharp boundary at about 50% of the embryo
length. (D) By creating constructs with different numbers and affinities of binding sites, the boundary of the expression domain
can be shifted systematically. (E) Hunchback domain boundary position for several regulatory architectures. (D, E, adapted from
W. Driever et al., Nature 340:363, 1989.)
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genetic control available in fruit flies permits us to query patterns of
gene expression for regulatory architectures that have been mutated
systematically in much the same fashion as the experiments we have
described in the context of the lac operon and using the same per-
turbative philosophy by tuning knobs as shown in Figure 19.30.
Figure 19.32(D) shows how different regulatory architectures driv-
ing a reporter gene can shift the position of the expression domain.
In particular, fewer binding sites corresponds to a shift towards
the anterior position, where Bicoid concentrations are higher. This
kind of approach was followed systematically for several regulatory
architectures, resulting in data like that shown in Figure 19.32(E).

In principle, we can use the same tools presented earlier in the
chapter in order to understand the regulatory outcome of these exper-
iments. Given a strength of the array of binding sites there will be a
range of Bicoid concentrations over which there will be Hunchback
activation. By reducing the number of binding sites or making them
weaker, the size of this concentration range is reduced, resulting in
a shift of the expression domain. The application of such thermody-
namic ideas is spelled out in more detail in our discussion in the next
chapter in Section 20.2.3. The work to be described there describes
the state of the art in terms of experimental measurements of the
dynamics of gene expression in embryonic development in flies and
shows how simple thermodynamic models can be used as a basis for
discussing these results, though these problems are hugely complex,
and simple models like these are akin to highly distorted maps.

19.3 Regulatory Dynamics

19.3.1 The Dynamics of RNA Polymerase and the Promoter

Until now, our treatment of gene regulation has centered on the time-
independent output of different regulatory motifs. On the other hand,
as is clear from watching the development of any embryo, many of
the most beautiful and important questions in regulation center on
the orchestration of regulatory decisions over time. Another example
that puts questions of the time dependence of gene expression front
and center is the study of cells during the cell cycle. As was shown in
Chapter 3, entire batteries of genes are expressed at different times
during the cell cycle (see Figure 3.23 on p. 119 for a concrete example
in the cell cycle of C. crescentus). Two of the key dynamical motifs
that recur in organisms ranging from bacteria to humans are switches
and oscillators. In the case of switches, depending upon some envi-
ronmental cue, for example, a cell can change the regulatory state
associated with particular genes from “off” to “on.” Even richer behav-
ior is exhibited by regulatory circuits that give rise to oscillations. So
that we can see how switches and oscillators are constructed, we now
take up the question of time-dependent gene expression.

The Concentrations of Both RNA and Protein Can Be Described Using
Rate Equations

Our conceptual starting point for examining the dynamics of gene
expression is the rate equation paradigm introduced in Chapter 15.
In particular, we proceed by writing rate equations for the time evo-
lution of the concentrations of various molecular participants in the
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regulatory problem of interest. The simplest scenario is to consider
a dynamical description that refers only to the time development
of the concentrations of the relevant proteins. On the other hand,
sometimes it is convenient to characterize the time evolution of the
mRNA transcripts as well. In either case, our strategy will be to
consider some particular regulatory architecture in which different
elements are linked and to write down a dynamical description of their
concentrations.

One of the reasons we are forced to go beyond the thermodynamic
models favored so far throughout the chapter is the advent of a
new generation of experiments aimed at probing regulation. Recent
advances on a number of different fronts have now made it possible
to query the regulatory response of individual cells. Such experiments
make it possible to watch the time evolution of both the mRNAs in
individual cells and the proteins they code for.

Examples of the outcome of this recent generation of experiments
for the mRNA content of cells are shown in Figure 19.33. One of the
immediate insights coming from experiments like those leading to Fig-
ure 19.33(B) is that mRNA production is often “bursty.” By watching
individual cells over time, it becomes evident that there are periods
of transcriptional silence occasionally punctuated by bursts of mRNA
production. As shown in Figure 19.33(C), these experiments can be
used to ask how noisy the gene expression process is, and the calcu-
lations in the remainder of the section will confront these questions

Figure 19.33: Time-dependent
dynamics of transcriptional networks.
(A) A burst of mRNA production. (B)
Time history of the number of mRNA
molecules in a given E. coli cell,
revealing periods of no production
punctuated by bursts of production
with the size of the burst indicated by
the numbers in the white boxes. (C)
Noise in E. coli gene expression
(measured by the variance) as a
function of the mean level of gene
expression. (D) Distribution of mRNA in
yeast for the MDN1 gene. (E)
Distribution of mRNA in yeast for the
PDR5 gene. The distributions in (D) and
(E) are fitted to various models
considered in the section. (B, C,
adapted from I. Golding et al., Cell
123:1025, 2005; D, E adapted from
D. Zenklusen et al., Nat. Struct. Mol.
Biol. 15:1263, 2008.)
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head on. This noisiness is also revealed by evaluating the entire mRNA
distribution over many cells as shown in Figures 19.33(D) and (E).

Before embarking on an analysis of the dynamics of particular
regulatory architectures, we return to one of the most elementary
questions that can be asked about regulatory dynamics. In particular,
our use of statistical mechanics in the previous sections was pred-
icated on the idea that the average amount of transcription from a
gene of interest is proportional to the equilibrium occupancy of the
promoter by RNA polymerase. This equilibrium assumption is jus-
tified when the binding of polymerase to the promoter occurs on a
much faster time scale than the time it takes the polymerase to initi-
ate transcription from the bound state. In that case, the polymerase is
in rapid pre-equilibrium with the DNA and the amount of transcription
is proportional to the fraction of time the polymerase is bound. This is
very similar to the arguments put forward in Section 15.2.6 (p. 591),
where we examined the conditions under which a chemical reaction
can be treated as an equilibrium problem. Interestingly enough, this
is not a necessary condition for the equilibrium assumption to hold,
as we discuss in the estimate that follows.

E
S

T
IM

A
T

E
 

Estimate: Dynamics of Transcription by the Numbers
The production of mRNA from a typical gene in E. coli occurs
at a rate of about 10 per minute, while the average lifetime of
an mRNA like that for the lac operon is a little more than 1
minute (for the distribution of mRNA lifetimes in E. coli, see
Figure 3.14, p. 110). In steady state, the number of mRNAs
created in the cell over any time interval must, on average,
balance the number degraded. Since the mRNA molecules are
created at 10 per minute, the same number of molecules must
be degraded every minute, and we conclude that, on average,
there will be 10 mRNA molecules per cell.

If we consider the process of transcription in some detail,
it follows a number of biochemical steps. The key steps are
RNA polymerase binding to the promoter regulating the gene
of interest to form a closed complex with DNA; formation of
an open complex in which the two strands of DNA are pulled
apart allowing the RNA polymerase to read one of them; and
promoter escape, when RNA polymerase begins transcribing
the gene. These three steps can be represented by the reaction
scheme

P + D
k+!
k−

PDc
kopen−→ PDo

kescape−→ elongation, (19.38)

where the escape into elongation leaves the promoter in the
unbound state, ready to accept a new polymerase. Here, P
is free RNA polymerase and D is unbound promoter. PDc is
the closed complex, while PDo is the open complex whose
formation is essentially irreversible.

For the binding and unbinding of polymerase to be in rapid
pre-equilibrium, the condition k± ≫ kopen needs to be satis-
fied. If RNA polymerase has time to bind and unbind from
the promoter multiple times before open complex formation,
then we can think of the first step as effectively an equilib-
rium step characterized by an equilibrium constant KP = k+/k−.
Indeed, the binding of RNA polymerase to the lacUV5 promoter
in vitro is so fast that the rates k± are not even measured
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in typical experiments. Instead, an equilibrium constant of
KP ≈200 µM−1 is measured, while kopen ≈0.1 s−1. This indi-
cates that the rapid pre-equilibrium condition for polymerase
binding to this promoter is met.

Once the RNA polymerase has initiated transcription, it
elongates at a typical rate of about 50 nucleotides per sec-
ond, which means that a typical gene of about 1000 nucleotides
will be transcribed in about 20 seconds. Given that the aver-
age rate of production of mRNA is 10 per minute, this implies
that there are about three RNA polymerases per gene at any
given time. These numbers are typical for the production of
messenger RNAs in E. coli, while ribosomal RNA, which is not
translated and is one of the key components of ribosomes, is
produced at rates of about 1 mRNA per second, almost an order
of magnitude faster.

In the case of a regulated promoter such as lacUV5, we
should also consider the rates at which transcription factors
such as the Lac repressor come on and off the regulatory DNA.
The diffusion-limited binding rate of Lac repressor to the oper-
ator DNA is about 0.003 s−1 nM−1, which corresponds to an
on rate of 0.03 s−1, assuming 10 repressor molecules in the
cell and using our rule of thumb that one molecule in E. coli
corresponds to a concentration of 1 nM. The dissociation rate
from operator DNA varies with the strength of the operator.

For Lac repressor, this rate can range from 2 s−1 for O3
all the way to 0.002 s−1 for Oid. It is interesting to note that
these rates are comparable and even slow when compared
with the rate of transcription initiation, suggesting that the
equilibrium assumption for this promoter might not be valid.
However, similar reasoning for the chemical rate equations
that are obtained by adding simple repression to the reaction
scheme shown in Equation 19.38 leads to the conclusion that
equilibrium reasoning is valid in this case as well.

19.3.2 Dynamics of mRNA Distributions

To write the dynamics for the simplest picture of mRNA production,
we begin by elucidating the elementary processes that our promoter
of interest can undergo in a time step #t. The dynamics of such
a promoter is represented in Figure 19.34, where we see that the

Figure 19.34: Trajectories and
weights for the case of an unregulated
promoter. (A) Schematic of the
processes that can occur for the
unregulated promoter, namely, mRNA
production with rate k and mRNA decay
with rate γ . (B) The individual processes
that can occur in a time step of length
#t and their corresponding statistical
weights.
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mRNA count reflects a competition between the synthesis of new
mRNAs with a rate k and their degradation with a rate constant γ .
We are interested in determining the dynamics of the probability
distribution p(m, t) that tells us the probability of having m mRNA
molecules at time t. Using the same “trajectories and weights” strat-
egy adopted earlier and shown in Figure 19.34, we can write the time
evolution as

dp(m, t)
dt

= −kp(m, t)

m→m+1

+ kp(m− 1, t)

m−1→m

− γmp(m, t)

m→m−1

+ γ (m + 1)p(m + 1, t)

m+1→m

.

(19.39)

The first two terms correspond to the production of new mRNA
molecules. Note that one of the terms occurs with a minus sign since
the production of another mRNA molecule when we already have m
of them leaves the system in a new state with m + 1 molecules. The
last two terms correspond to the situation in which we have m mRNA
molecules decaying into m− 1 molecules and m + 1 molecules decay-
ing to m molecules, respectively. Care must be taken in the m = 0 case
as the master equation for that state lacks the second term in Equa-
tion 19.39, given that the states with a negative number of mRNAs are
unphysical. As we will see below, one way to implement this condition
is by imposing the condition that p(m < 0, t) = 0.

With this dynamical equation in hand, there are a number of differ-
ent strategies that can be adopted in order to learn what it implies.
One idea is to establish dynamical equations for the moments of the
distribution in anticipation of the more challenging situations that
arise when we consider a regulated promoter. In those cases, ana-
lytic progress aimed at determining the full distribution p(m, t) is
very difficult, while the use of the moments such as ⟨m⟩ and ⟨m2⟩ is
both theoretically tractable and experimentally accessible. In general,
we note that the jth moment is given by ⟨mj⟩ =

∑∞
m=0 mjp(m, t). The

low-order moments have an intuitive meaning, with the first moment
providing the mean and the second moment some measure of the
width of the distribution. A second strategy for characterizing our
distribution that is also illuminating is to seek the steady-state prop-
erties of the distribution. We turn to both of these strategies in the
pages that follow.

As our first exercise, we calculate the mean of the distribution p(m, t)
corresponding to the first moment of the distribution. To obtain
the time evolution of the first moment, we multiply both sides of
Equation 19.39 by m and sum over all possible values of m. This
results in

∞∑

m=0

m
dp(m, t)

dt
=
∞∑

m=0

m[−kp(m, t) + kp(m− 1, t)

− γmp(m, t) + γ (m + 1)p(m + 1, t)]. (19.40)

Since the derivative is a linear operation, we can rewrite the left-hand
side of this equation as

∞∑

m=0

m
dp(m, t)

dt
= d

dt

∞∑

m=0

mp(m, t) = d⟨m(t)⟩
dt

, (19.41)
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which permits us to now rewrite Equation 19.40 as

d⟨m(t)⟩
dt

= −k⟨m(t)⟩+ k
∞∑

m=0

mp(m− 1, t)− γ ⟨m2(t)⟩

+ γ

∞∑

m=0

m(m + 1)p(m + 1, t), (19.42)

where we have invoked the definition of ⟨mj⟩.
To make further progress, we need to come to terms with the two

sums that are left in Equation 19.42. For the first of these sums,
we introduce a new variable m′ = m− 1 such that the sum can be
rewritten as

∞∑

m=0

mp(m− 1, t) =
∞∑

m′=−1

(m′ + 1)p(m′, t). (19.43)

As mentioned above, because it is unphysical to have a negative num-
ber of mRNA molecules, we impose p(−1) = 0, which allows us to
start the summation over m′ from 0 rather than from −1. As a result,
we have
∞∑

m′=−1

(m′ + 1)p(m′, t) =
∞∑

m′=0

(m′ + 1)p(m′, t)

=
∞∑

m′=0

m′p(m′, t) +
∞∑

m′=0

p(m′, t) = ⟨m1(t)⟩+ ⟨m0(t)⟩.

(19.44)

Finally, we enforce the fact that the distribution is normalized to 1 at
all time points, which means that ⟨m0(t)⟩ =

∑∞
m=0 p(m, t) = 1. Using a

similar strategy, we can now examine the second sum by introducing
a variable m′ = m + 1, resulting in

∞∑

m=0

m(m + 1)p(m + 1, t) =
∞∑

m′=1

(m′ − 1)m′p(m′, t)

=
∞∑

m′=0

(m′ − 1)m′p(m′, t), (19.45)

where we have used the fact that (m′ − 1)m′p(m′, t) = 0 for m′ = 0 in
order to set the starting point of the sum to zero. As a result, we can
rewrite the sum as

∞∑

m′=0

(m′ − 1)m′p(m′, t) =
∞∑

m′=0

m′2p(m′, t)−m′p(m′, t) = ⟨m(t)2⟩ − ⟨m(t)⟩.

(19.46)

We are now ready to put this all together and rewrite Equa-
tion 19.42 as

d⟨m(t)⟩
dt

= −k⟨m(t)⟩+ k⟨m(t)⟩+ k− γ ⟨m2(t)⟩+ γ ⟨m(t)2⟩ − γ ⟨m(t)⟩,
(19.47)

which results in

d⟨m(t)⟩
dt

= k− γ ⟨m(t)⟩. (19.48)
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This important result gives the rate of change of the mean number of
mRNAs in a very simple form. One especially important outcome of
this analysis is the insight that the steady-state mean level of mRNA
expression is given by ⟨m⟩ = k/γ .

Unregulated Promoters Can Be Described By a Poisson Distribution

One key question about these mRNA distributions is the functional
form they adopt in steady state. In particular, what is the form of p(m)

after all the initial transients have decayed away? In the case of the
simple promoter considered here, we make the educated guess that
the distribution is of the Poisson form

p(m) = λme−λ

m!
, (19.49)

where λ is the mean of the distribution. To evaluate this mean, we
resort to the definition

⟨m⟩ =
∞∑

m=0

m
λme−λ

m!
= e−λ

∞∑

m=0

m
λm

m!
. (19.50)

As we have done throughout the book, this can be evaluated by
exploiting the trick of differentiating with respect to a parameter using

mλm = λ
dλm

dλ
. (19.51)

In the context of Equation 19.50, this implies

⟨m⟩ = e−λλ
d
dλ

∞∑

m=0

λm

m!
= e−λλ

deλ

dλ
= λ. (19.52)

We can now use these insights to directly substitute the trial solution
into Equation 19.39 for the steady-state case, resulting in

0 = −k
λme−λ

m!
+ k

λm−1e−λ

(m− 1)!
− γm

λme−λ

m!
+ γ (m + 1)

λm+1e−λ

(m + 1)!
. (19.53)

This can be simplified to the form

0 = 1
m!

(λγ − k) + 1
(m− 1)!

(
λ−1k− γ

)
. (19.54)

We see that if we now use the fact that λ = k/γ , the terms in both sets
of parentheses are identically zero, confirming that the Poisson dis-
tribution is the appropriate steady-state distribution for this simplest
dynamical model of transcription. Another interesting feature of this
distribution is that its mean equals its variance.

As mentioned earlier, the study of noise in regulatory networks has
become one of the central concerns of regulatory biology in recent
years. One measure of this noise is provided by the so-called Fano
factor, defined as

Fano factor = ⟨m
2⟩ − ⟨m⟩2

⟨m⟩
. (19.55)

Note that the Fano factor measures the relative size of the variance
in mRNA number with respect to its mean. Poisson distributions like
that considered above have the very special property that the Fano
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factor is equal to 1. One of the questions about the distributions like
those shown in Figure 19.33 is whether they exhibit the Poisson form.
To make further theoretical progress with this question in the context
of this simplest of models of transcription, we need to compute the
second moment.

We turn to the same trick as before by multiplying both sides of
Equation 19.39 by m2 and summing over all possible values of m.
This results in

∞∑

m=0

m2 dp(m, t)
dt

=
∞∑

m=0

m2[−kp(m, t) + kp(m− 1, t)

− γmp(m, t) + γ (m + 1)p(m + 1, t)] (19.56)

which, using the same logic as before, can immediately be re-
written as

d⟨m2(t)⟩
dt

= −k⟨m2(t)⟩+ k
∞∑

m=0

m2p(m− 1, t)− γ ⟨m3(t)⟩

+ γ

∞∑

m=0

m2(m + 1)p(m + 1, t). (19.57)

Once again, we have to treat the remaining summations in Equa-
tion 19.57. For the first of these sums, we make the change of variable
m′ = m− 1, resulting in

∞∑

m=0

m2p(m− 1, t) =
∞∑

m′=−1

(m′ + 1)2p(m′, t) =
∞∑

m′=0

(m′ + 1)2p(m′, t),

(19.58)

where we have changed the starting m′ of the sum. We now expand
the binomial, resulting in

∞∑

m′=0

(m′ + 1)2p(m′, t) =
∞∑

m′=0

(
m′2 + 2m′ + 1

)
p(m′, t)

= ⟨m2(t)⟩+ 2⟨m(t)⟩+ 1. (19.59)

For the second sum, we make an analogous change of variable of the
form m′ = m + 1, resulting in

∞∑

m=0

m2(m + 1)p(m + 1, t) =
∞∑

m′=1

(m′ − 1)2m′p(m′, t)

=
∞∑

m′=0

(m′ − 1)2m′p(m′, t). (19.60)

Once again, we have changed the lower limit of the sum since includ-
ing the term m′ = 0 does not change anything. We can now expand the
binomial, resulting in

∞∑

m′=0

(m′ − 1)2m′p(m′, t) =
∞∑

m′=0

(
m′2 − 2m′ + 1

)
m′p(m′, t)

= ⟨m3(t)⟩ − 2⟨m2(t)⟩+ ⟨m(t)⟩. (19.61)
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We can now return to Equation 19.57 by substituting the outcome of
our sums, resulting in

d⟨m2(t)⟩
dt

= 2k⟨m(t)⟩+ k− 2γ ⟨m2(t)⟩+ γ ⟨m(t)⟩. (19.62)

In steady state, this becomes

0 = (2k + γ )⟨m⟩+ k− 2γ ⟨m2⟩. (19.63)

If we now exploit the result of our calculation for the first moment,
namely, ⟨m⟩ = k/γ , this simplifies to

⟨m2⟩ = ⟨m⟩2 + ⟨m⟩. (19.64)

As a result, we now see that the variance σ2, the quantity that
measures the spread of the data around its mean, is given by

σ2 = ⟨m2⟩ − ⟨m⟩2 = ⟨m⟩. (19.65)

We see that in this case, our distribution has the special property
that the variance is equal to the mean, implying that the Fano fac-
tor is equal to 1. This is a very important result because both the
variance and the mean can be measured experimentally. As seen in Fig-
ure 19.33(C), the resulting variance as a function of the mean for the
bacterial promoter measured in that experiment yields a Fano factor
closer to 4 shown by the red line, with the blue signifying the Poisson
prediction. This suggests that our simple model is wrong, or at least
incomplete. In the next section, we try to find a way of resolving this
discrepancy.

19.3.3 Dynamics of Regulated Promoters

How can we respond to data like that shown in Figure 19.33 and 19.35?
As seen in Figure 19.35, the number of mRNA molecules in a cell as a
function of time is not a smoothly increasing function. Rather, the
production of mRNA is bursty. One of the insights emerging from
our analysis of the thermodynamic models that could account for
this burstiness is the fact that there are all sorts of regulatory inter-
ventions that can perturb the presumed steady production of mRNA
envisaged in the model considered above.

This lesson is driven home simply by the case of simple repression,
which we have considered throughout the chapter. The idea illustrated
in Figure 19.36 is that the kind of time history shown in Figure 19.35
might result from the promoter switching back and forth between
transcriptionally inactive (that is, repressor-bound) and active (that
is, polymerase-bound) states.

The thermodynamic models showed us that promoters can exist
in many different states: repressed, empty, occupied by RNA poly-
merase, activated, etc. The one-state model we explored in the
previous section corresponds to the simplest situation in which RNA
polymerase is always present at the promoter. When transcription
starts and that polymerase molecule leaves the promoter, another RNA
polymerase will take its place instantaneously. However, this clearly
ignores the many regulatory interventions that are possible as a result
of the vast array of transcription factors that are present in a cell.
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Figure 19.35: Temporal history of
mRNA production in E. coli. (A)
Intensity of spots coming from labeled
mRNA molecules as a function of time.
Vertical white lines correspond to the
cell division process. (B) Microscopy
images of cells at various time points
in the transcriptional history of the
cells. Note that the mRNA molecules in
this experiment tend to aggregate. As
a result, when counting mRNA
molecules, we must consider not only
the number of puncta, but also their
intensity. (Adapted from I. Golding
et al., Cell 123:1025, 2005.)
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The Two-State Promoter Has a Fano Factor Greater Than One

To increase the realism of our treatment of the kinetics of our pro-
moters, we now include the presence of these transcription factors,
which we interpret as conferring different states of promoter activity
between which the system can switch back and forth. As a first model,
we consider simple repression in which the promoter can switch back
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Figure 19.36: Trajectories and weights for the case of simple repression. (A) In an increment of time #t, the system can suffer
several different fates, including switching between the active and inactive states, degradation of an individual mRNA molecule,
and production of a mRNA molecule while in the active state. (B) The individual trajectories available to the system in time #t and
their corresponding weights.
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and forth between an inactive state (labeled “I") and an active state
(labeled “A”). We can describe the kinetics of the promoter using the
reactions

I
k+
!
k−

A
k
⇀ mRNA

γ
⇀ ∅. (19.66)

In the context of this new kinetic model, we now need to keep track
of two variables, namely, the state of the promoter (that is, I or A) and
the current number of mRNA molecules, m. To do so, we define two
different probability distributions corresponding to the two promoter
states. pI(m, t) describes the probability of having the promoter in the
inactive state with m mRNA molecules, whereas pA(m, t) describes the
probability of finding the promoter in the active state with m mRNA
molecules.

As before, our goal is to write equations that describe the time evo-
lution of these probabilities. Intuitively, we see that if we are thinking
about how pI(m, t) changes over time, there are only a few different
processes that can transpire: (i) the promoter can switch from inac-
tive to active, (ii) the promoter can switch from active to inactive, and
(iii) an mRNA molecule can decay. This is expressed by the master
equation

dpI(m, t)
dt

= −k+pI(m, t)

I→A

+ k−pA(m, t)

A→I

− γmpI(m, t)

m→m−1

+ γ (m + 1)pI(m + 1, t)

m+1→m

.

(19.67)

The equation describing the time evolution of pA(m, t) needs to
account for the fact that mRNA molecules can be produced when the
promoter is in this state. In this case, we have

dpA(m, t)
dt

= k+pI(m, t)

I→A

−k−pA(m, t)

A→I

−kpA(m, t)

m→m+1

(19.68)

+ kpA(m− 1, t)

m−1→m

− γmpA(m, t)

m→m−1

+ γ (m + 1)pA(m + 1, t)

m+1→m

.

Our goal is to see what light this model sheds on the Fano factor. To
answer this question, we need to evaluate the first two moments of
the distribution, namely, ⟨m1⟩ and ⟨m2⟩. It is very convenient to define
the partial moments ⟨mj

1⟩ =
∑∞

m=0 mjpI and ⟨mj
A⟩ =

∑∞
m=0 mjpA for the

inactive and active states, respectively. These partial moments are a
mathematical convenience that will allow us to calculate the actual
moments of the distribution. In particular, by summing the partial
moments of a given order, we have the full moments of the mRNA
distribution, namely,

⟨mj
I ⟩+ ⟨m

j
A⟩ = ⟨m

j⟩. (19.69)

Solving for the moments with the equations discussed above
requires long and cumbersome algebra. As a result, we now resort
to a more general matrix scheme that generalizes to any promoter
architecture. For this particular case, we begin by defining the vector

p(m, t) = (pA(m, t), pI(m, t)) . (19.70)

In addition, we define three matrices K, R, and Γ. The matrix K
describes the transitions between the active and inactive states of the
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promoter and is given by

K =
(
−k− k+

k− −k+

)
. (19.71)

The matrix R describes the production of mRNA,

R =
(

k 0
0 0

)
. (19.72)

Finally, the matrix Γ describes the decay of mRNA and is given by

Γ =
(
γ 0
0 γ

)
. (19.73)

Using this notation, the master equations for our two-state promoter
can be written as

dp
dt

= Kp(m, t)−Rp(m, t) + Rp(m− 1, t)

−mΓp(m, t) + (m + 1)Γp(m + 1, t). (19.74)

This can be simplified to the form

dp
dt

=
(
K−R−mΓ

)
p(m, t) + Rp(m− 1, t) + (m + 1)Γp(m + 1, t).

(19.75)

With these definitions in hand, we can now write matrix equations
for the different partial moments. The details are left as an exercise
and are discussed in the problems at the end of the chapter, but the
general strategy is the same as before: multiply the governing equa-
tions by mi and then sum over all m. Using this strategy, we find that
the time evolution of the zeroth moment is given by

d⟨m0⟩
dt

= K⟨m0(m, t)⟩. (19.76)

For the first moment, similar manipulations result in

d⟨m1⟩
dt

=
(
K− Γ

)
⟨m1(m, t)⟩+ R⟨m0(m, t)⟩. (19.77)

The equation for the time evolution of the second moment then takes
the form

d⟨m2⟩
dt

= (K− 2Γ)⟨m2(m, t)⟩+
(
2R + Γ

)
⟨m1(m, t)⟩+ R⟨m0(m, t)⟩.

(19.78)

We interest ourselves in the results for these various moments in
steady state. This corresponds to setting the left-hand sides of our
dynamical equations to zero and results in the collection of equations

1 = u · ⟨m0⟩, (19.79)

0 = K⟨m0⟩, (19.80)

0 =
(
K− Γ

)
⟨m1⟩+ R⟨m0⟩ (19.81)

0 =
(
K− 2Γ

)
⟨m2⟩+

(
2R + Γ

)
⟨m1⟩+ R⟨m0⟩. (19.82)

These equations involve the definition u = (1, 1) as a vector that sums
over the components of ⟨mj⟩. In particular, we have used u in order to
force the normalization of ⟨m0⟩.
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The idea of the analysis at this point is to bootstrap by succes-
sively determining higher-order moments in terms of those we have
already determined. If we begin with Equations 19.79 and 19.80, we
can determine the partial moments of zeroth order as

⟨m0
A⟩ =

k+

k− + k+ ,

⟨m0
I ⟩ =

k−

k− + k+ . (19.83)

These can be rewritten in terms of the equilibrium constant for the
inactive-to-active transition as

⟨m0
A⟩ =

K
1 + K

,

⟨m0
I ⟩ =

1
1 + K

, (19.84)

where we have defined K = k+/k−. In fact, what these two partial
moments tell us is the probability of finding the system in either the
inactive or active states.

With the zeroth moment in hand, we can now turn to Equation 19.81
to determine the first moment. We can rewrite this equation as

−
(
K− Γ

)−1 R⟨m0⟩ = ⟨m1⟩. (19.85)

After some algebra, this leads in turn to

⟨m1
A⟩ =

k
γ

k+ + γ

k+ + k− + γ
⟨m0

A⟩,

⟨m1
I ⟩ =

k
γ

k−

k+ + k− + γ
⟨m0

A⟩. (19.86)

This result tells us that the mean level of mRNA is given by

⟨m1⟩ = ⟨m1
A⟩+ ⟨m

1
I ⟩ =

k
γ
⟨m0

A⟩. (19.87)

As expected, the mean level of expression is given by the probability
of finding the promoter in the active state times a factor (k/γ ) that
tells us about the balance of the production and decay of mRNA.

To continue to the point where we can determine the Fano factor, we
now need the second moment of the distribution. As a prelude, it is
convenient to rewrite Equation 19.82 as

−
(
K− 2Γ

)−1
[(

2R + Γ
)
⟨m1⟩+ R⟨m0⟩

]
= ⟨m2⟩. (19.88)

From this equation, we obtain two rather complicated expressions
for ⟨m2

A⟩ and ⟨m2
I ⟩. However, when we add them together, which is

equivalent to evaluating u · ⟨m2⟩, we find

⟨m2⟩ = 1
2γ

(
k⟨m0

A⟩+ 2k⟨m1
A⟩+ γ ⟨m1⟩

)
. (19.89)

Finally, if we use the result from Equation 19.87, this can be
rewritten as

⟨m2⟩ = ⟨m1⟩+ k
γ
⟨m1

A⟩. (19.90)
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Equation 19.90 can be further simplified by appealing to Equa-
tion 19.86. The result is given by

⟨m2⟩ = ⟨m1⟩
(

1 + ⟨m1⟩ 1
⟨m0

A⟩
k+ + γ

k+ + k− + γ

)

. (19.91)

We are now in a position to compute the Fano factor itself, which is
given by

σ2

⟨m1⟩
= ⟨m

2⟩ − ⟨m1⟩2

⟨m1⟩
= 1 + ⟨m1⟩

(
1
⟨m0

A⟩
k+ + γ

k+ + k− + γ
− 1

)

. (19.92)

This can be further simplified by using our result for ⟨m0
A⟩. Making the

relevant substitution, we find

σ2

⟨m1⟩
= 1 + ⟨m1⟩k

−

k+
γ

k+ + k− + γ
. (19.93)

This expression depends only upon the mean level of expression, the
switching rates between the on and off states, and the rate of degra-
dation of mRNA. Interestingly, the second term gives us the deviation
from a pure Poissonian promoter. To develop intuition for this result,
we note that γ /(k+ + k− + γ ) is always smaller than one.

To actually compare the results of this analysis with the data
revealed in Figure 19.33(C), we have to determine the parameters that
appear in our expression for the Fano factor. For the experiments
shown in the figure, measurements have shown that these rates are
given as follows. First, the mRNA degradation rate is γ = 0.014 min−1.
This degradation rate corresponds to a lifetime of 70 minutes, which
is clearly at odds with the average lifetime of mRNA molecules in E.
coli as shown in Figure 3.14 (p. 110). The reason for this discrepancy
is that the experiments performed in Figure 19.33(C) were done using
an array of fluorescently tagged mRNA-binding proteins leading to the
number of mRNA molecules per cell as a function of time as shown in
Figure 19.35. However, the presence of these binding proteins, though
useful to detect the production of mRNA molecules, makes the mRNA
molecule very stable, such that the only “degradation” is due to dilu-
tion upon cell division. Hence, the lifetime of 70 minutes, corresponds
to the length of the cell cycle in those experimental conditions. For
the case in which the promoter was fully induced (saturating con-
centration of arabinose), the observed mean number of mRNAs is
given by ⟨m1⟩ = 10. In this case, the rates of switching between the
on and off states were measured and are given by k+ = 0.03 min−1

and k− = 0.2 min−1. If we use these rates, we find that the Fano factor
can be evaluated as

σ2

⟨m1⟩
= 1 + 10× 0.2 min−1

0.03 min−1
0.014 min−1

0.03 min−1 + 0.2 min−1 + 0.014 min−1

≈1 + 3.6 = 4.6. (19.94)

This result is in reasonable accord with the observations reported in
Figure 19.33(C). Of course, there are many effects that were not con-
sidered in our model. For example, one potential shortcoming of this
model is related to the fact that we think about the effects of dilu-
tion due to cell division as an exponential process. In reality, this is
a discrete process that occurs only at the small time interval corre-
sponding to the separation of the mother cell into the two daughter
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cells. The reader is invited to explore the consequences of considering
this refined decay mechanism by performing a numerical simulation
using the Gillespie algorithm, which we describe in the Computational
Exploration below.

Different Regulatory Architectures Have Different Fano Factors

Our use of the master equation approach advocated in this section
has focused exclusively on unregulated promoters and the simple
repression motif. However, just as with the thermodynamic models,
different choices of regulatory architecture lead to different noise pro-
files (and Fano factors). Figure 19.37 shows the results of the same
kind of analysis we have performed in this section to other regulatory
architectures.
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Computational Exploration: The Gillespie Algorithm and
Stochastic Models of Gene Regulation Earlier in this sec-
tion, we solved the simple case of an unregulated promoter
using a master equation approach. By taking into account the
different trajectories available to the system and their cor-
responding weights as shown in Figure 19.34, we were able
to calculate both the evolution of the mean mRNA level and
the higher moments of the mRNA distribution. Though such
master equations are conceptually simple, they can quickly
become intractable from an analytic perspective. An alterna-
tive approach is to directly integrate the equations numerically.
Such a strategy was presented in the computational exploration
in Section 3.1.3 (p. 99), where we showed how we can numeri-
cally integrate the logistic equation. As discussed there, when
performing such numerical integrations, it is key to choose a
time step #t such that this time scale is shorter than all of the
intrinsic time scales characterizing the system.

The stochastic nature of chemical reactions is typically
revealed in cases where the number of molecular species is
small such that random fluctuations are non-negligible. In
cases like this, many integration steps #t can go by without any
reaction actually occurring. This has the annoying side effect
that much of the computational time is spent effectively doing
nothing “interesting.” To put this in specific terms, we consider
the simple reaction shown in Figure 19.38(A), where a species
A can be converted to a species B and vice versa. For example,
if we have only one molecule of species A and no molecules
of species B, much time can go by without the reaction A → B
occurring.

One of the strengths of the Gillespie algorithm for solving
stochastic differential equations lies in its economy of com-
putation. Instead of following the trajectory of a system by
integrating with a #t that is constant, it provides a strategy
to adapt the #t at each time step of the integration by ran-
domly determining the time to the next possible reaction from
a probability distribution, thus avoiding unwanted time steps
in which no reaction occurs. The idea behind this algorithm is
to construct a particular realization of the stochastic dynamics
of the system. The concept is explored schematically for our
simple reaction in Figure 19.38(A). To figure out what happens
during each step in the simulation, we draw random numbers
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Figure 19.37: Stochastic models of transcriptional regulation for several regulatory architectures. The Fano factor is shown as a
function of the fold-change in gene expression for (A) simple repression, (B) simple activation, and (C) repression by DNA looping.
The kinetic models assumed for each architecture are shown on the left and their corresponding predictions are shown on the
right. For all three figures, we use r = 0.33 mRNA s−1 and γ = 0.011 s−1. The specific parameters for each figure are (B) r1 = r
and r2/r1 = 11 and (C) c = 1, kloop = [J]k0

R, with [J] = (ln M)e−β#Floop the same as given in Figure 19.29 and

k0
R = 2.7× 10−3 s−1 nM−1, koff

R (Oid) = 1/(7 min), koff
R (O1) = 1/(2.4 min) and koff

R (O3) = 1/(0.47 s). The fold-change in mean gene

expression is obtained by varying kon
R and kon

A and is given by (A)
(
1 + kon

R /koff
R

)−1
, (B)

[(
kon

A /koff
A

)
r1/r2 + 1

]
/
(
kon

A /koff
A + 1

)
, and

(C)
[
ckoff

R (koff
R + kon

R )
]
/
[
kloopkon

R + c(koff
R + kon

R )2
]
. The connection between fold-change in mean gene expression and Fano factor

is explored in the problems at the end of the chapter. (Adapted from A. Sanchez et al., PLoS Comput. Biol. 7:e1001100, 2011.)

from specific distributions that are detailed below. One of the
key insights of this algorithm is that we need to draw a ran-
dom number twice per step in the reaction. First, we need to
draw a random number in order to determine how much time
#t we need to wait until the next reaction takes place. The sec-
ond drawing of a random number is analogous to a coin flip.
We flip a coin (which is unfair) in order to determine which
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Figure 19.38: Concept of the Gillespie algorithm. (A) Schematic of the Gillespie algorithm for a simple chemical reaction. Here,
two random decisions are made. The first step corresponds to drawing a random number from the exponential distribution
given by Equation 19.101 in order to determine the time to the next reaction. The second step corresponds to a coin flip that
determines which one of the reactions will occur. The bias of the flip is based on the magnitude of the rates corresponding to each
possible reaction. (B) Example of a trajectory for the reaction shown in (A).

one of all the possible reactions actually occurred. An example
of a realization of the approach for the reaction shown in Fig-
ure 19.38(A) is presented in Figure 19.38(B). Here we see how
drawing a random number at each step leads to different values
for the time interval until the next reaction, #t, and for which
reaction occurred at that time point (either species A to B or
species B to A).

How can these ideas be applied to regulatory dynamics? In
the unregulated promoter case shown in Figure 19.34(A), we
have two possible reactions. First, an mRNA can be produced
with a probability k per unit time. Second, an mRNA can decay
with a probability γ per unit time and per mRNA molecule. Let’s
denote the mRNA production reaction as “1” and the mRNA
decay reaction as “2” such that their generic rates per unit time
will be ki. This means that k1 = k and k2 = m(t)γ , where m(t) is
the number of mRNA molecules at time t. For a time step #t, we
want to determine P(i,#t) dt, the probability of reaction i taking
place in the time interval (#t,#t + dt). We construct this prob-
ability distribution by first noting that we need to impose that
no reaction has already occurred between time points t and
t +#t. The probability of no reaction before #t is written as
P0(#t), and hence the probability of the ith reaction occurring
between #t and #t + dt is given by

P(i,#t) dt = P0(#t)ki dt, (19.95)

where the term ki dt corresponds to the probability of reaction
i occurring in a time step dt. But what is P0(#t) (that is, what
is the probability of no reaction occurring up until the time
point #t)? In order to calculate this, we write an expression
for P0(#t + dt), the probability of no reaction occurring until
the time point #t + dt. This is just the probability that no reac-
tions took place in time #t multiplied by the probability that
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no reactions take place in time dt, namely,

P0(#t + dt) = P0(#t)

(

1−
∑

i

ki dt

)

, (19.96)

where the index i sums over all possible reactions. If we Taylor-
expand P0(#t + dt) around #t, we get

P0(#t + dt)≈P0(#t) + dP0(#t)
d#t

dt. (19.97)

Comparing the terms in Equations 19.96 and 19.97 leads to the
differential equation

dP0(#t)
d#t

= −P0(#t)
∑

i

ki. (19.98)

This equation can be solved to yield

P0(#t) = e−
∑

i ki#t = e−k0#t, (19.99)

where we have used the initial condition P0(#t = 0) = 1, stating
that at the beginning of our interval no reaction could have
occurred yet. We have also defined k0 =

∑
i ki. As a result, we

find

P(i,#t) dt = e−k0#tki dt. (19.100)

In order to make progress, we notice again that the proba-
bility distribution shown in Equation 19.100 can be thought of
as the product of two probabilities. First, we determine what is
the probability of any reaction occurring between time points
#t and #t + dt. In order to do this, we sum the distribution
P(i,#t) dt over all possible reactions i,

P(#t) dt =
∑

i

P(i,#t) dt = e−k0#tk0 dt. (19.101)

In Figure 19.38(A), we show this distribution schematically as
Step 1 of our algorithm. Here, we see that our algorithm picks
the time to the next reaction in a random manner. In partic-
ular, the time #t needs to be picked from the exponential
distribution shown in Equation 19.101. To that end, we use
a random number x that is uniformly distributed in the inter-
val (0, 1), which is the output of a random number generator
in Matlab. From this number, we compute the time interval
#t = (1/k0) ln(1/x). We can easily convince ourselves that #t
obtained this way is drawn from the exponential distribution
shown in Equation 19.101. Namely, if Q (x) = 1 is the probability
distribution for the variable x, then the probability distribution
for #t satisfies the equation

P(#t) dt = Q (x) dx (19.102)

which simply states that the probability of finding x in the
interval (x, x + dx) is the same as the probability of finding #t
in the interval that (x, x + dx) is mapped to by the function
#t(x) = (1/k0) ln(1/x). (Note that this relationship is very gen-
eral and very useful when switching from one random variable
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Figure 19.39: Numerical simulation of
stochastic effects in the central dogma.
(A) Various mRNA trajectories for the
unregulated promoter shown in
Figure 19.34 using mRNA = 0 as a
starting condition. The deterministic
solution for the mean number of mRNA
molecules per unit time is included for
comparison. For these simulations, the
time step to the next reaction, #t, was
obtained from the distribution shown in
Equation 19.101. (B) mRNA trajectories
calculated using the average time step
stemming from the exponential
distribution shown in Equation 19.101.
(C) Steady-state mRNA distribution
obtained by the Gillespie algorithm and
comparison with the exact solution
given by a Poisson distribution. An
mRNA transcription rate of 20 min−1

and a decay rate of 0.67 min−1

molecule−1 were used.

to another.) Substituting Q (x) = 1 and x = e−k0#t into Equa-
tion 19.102, and noting that the probability distribution is
necessarily positive, leads to P(#t) = k0e−k0#t, as required.

Now that we know when the next reaction will occur, we can
ask which one of all the possible reactions will take place. We
calculate this probability by integrating Equation 19.100 over
time,

P(i) =
∫+∞

0
P(i,#t) dt = ki

k0
. (19.103)

An alternative way to obtain this result is by going back to the
definition of ki as a probability per unit time that reaction i will
occur. Given a time interval #t, the probability of reaction i
taking place is then proportional to ki#t such that

P(i) = ki#t∑
j kj#t

= ki

k0
. (19.104)

We see that the probability of reaction i taking place is just
given by the the relation between its rate, ki, and the sum of
the rates of all possible transitions in the system, k0. This is
shown schematically as Step 2 in Figure 19.38(A). The bias of
our dishonest coin flip is then given by the magnitude of the
rates corresponding to the different reactions. An example of
how this bias is calculated from a random number picked in
the interval [0,1] is shown in the figure.

We are now ready to implement this stochastic algorithm in
order to solve for the dynamics of the unregulated promoter
from Figure 19.34. For each iteration of the algorithm, we carry
out the following steps:

1. Given the current number of mRNA molecules m(t), cal-
culate k1 = k, which does not change as a function of
mRNA number, and k2 = γm(t), which does depend on
time through m(t).

2. Calculate a random number x uniformly distributed
between 0 and 1 (this is the output of a random number
generator). From it, compute the time interval to the next
reaction, #t = (1/k0) ln(1/x), where k0 = k1 + k2. Advance
the clock by the time interval #t.

3. Calculate a random number between 0 and 1. If the num-
ber is between 0 and k1/k0, then increase the mRNA
number by one. If the number is between k1/k0 and 1,
then decrease the mRNA number by one. Notice that we
invoke a number in the interval [0, 1] in an unbiased
way. However, we split this interval into [0, k1/k0] and
[k1/k0, 1]. The result is that the coin flip is biased based
on the values of the different rates.

4. Repeat.

In Figures 19.39(A) and (B), we show the results of the
stochastic simulation for an initial condition in which no mRNA
molecules are present in the system. In Figure 19.39(A), the
time step to the next reaction, #t, was drawn from the expo-
nential distribution shown in Equation 19.101. In contrast,
in Figure 19.39(B), the average time step stemming from that
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distribution was used to carry out the simulations. This is the
suggested implementation of the Gillespie algorithm in this
Computational Exploration. The reader is invited to explore
the statistics of time-stepping for both approaches in the prob-
lems at the end of the chapter. Finally, notice how running the
algorithm several times leads to different trajectories and how
they all compare with the deterministic solution for the mean
number of mRNAs given by

⟨m(t)⟩ =
(
1− e−γ t) k

γ
. (19.105)

In the context of the discussion regarding Figure 19.34,
we noticed that in steady state the probability distribution
of mRNA molecules can be described by a Poisson distribu-
tion with mean k/γ . This can be verified using the Gillespie
algorithm as shown in Figure 19.39(B). Here we have run a
simulation at steady-state by setting the initial value of the sim-
ulation to the deterministic steady state value, m(t = 0) = k/γ .
From the resulting distribution, we determine the number of
mRNA molecules as a function of time and generate the cor-
responding histogram. It is seen that the simulation is in
excellent quantitative agreement with the Poisson distribution.
This simple example gives a sense of how the simulations can
be used as an alternative to the analytic treatment of these sys-
tems. The reader is invited to generate graphs like those shown
in the figure for him- or herself.

19.3.4 Dynamics of Protein Translation

In the same way that the process of transcription is subject to vari-
ability, so are the other steps of the central dogma. For example, even
though there might be a well-defined mean number of proteins aris-
ing from the translation of a single mRNA, the translation process is
subject to variability. To see how this plays out, we start by consider-
ing a single mRNA in a cell of interest and compute the probability of
n translation events taking place in the lifetime of this mRNA. Later,
using this result, we will compute the steady-state protein distribu-
tion from a simple model of stochastic transcription and translation,
thereby taking into account both key processes of the central dogma.
In the simple kinetic model to be exploited here, over each inter-
val of time #t, two different processes can occur, namely, (i) the
mRNA can be translated into a protein and (ii) the mRNA can decay.
In Figure 19.40, we show these trajectories with their corresponding
weights.

We do the bookkeeping on the mRNA state using the variable m,
which keeps track of the number of mRNA molecules. This variable
can adopt the values 1 or 0. Initially, we will have one mRNA, such

Figure 19.40: Trajectories and
weights for translation of a single
mRNA molecule. During each interval
of time #t, the mRNA can either be
transcribed or decay.

TRAJECTORY mRNA STATE PROTEIN STATE WEIGHT

+
mRNA protein

1 1 n n + 1 rpDt

1 n n Dtg
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that m = 1. However, for long enough times, we know that m = 0, as
the mRNA will eventually decay. The finite lifetime of mRNA molecules
can be appreciated at the genome-wide level in both E. coli and yeast
as shown in Figure 3.14 (p. 110). We also keep track of the number
of proteins through the variable n. Our goal is to calculate the proba-
bility distribution p(n, m; t) dt, namely the probability that during the
time interval (t, t + dt), the number of mRNAs is m and the number of
proteins is n. The master equation describing the time evolution of
the state with one mRNA molecule is given by

∂p(n, m = 1; t)
∂t

= −γ p(n, m = 1; t) + rp [p(n− 1, m = 1; t)− p(n, m = 1; t)] .

(19.106)

Like in the master equation for mRNA production from an unregu-
lated promoter given in Equation 19.39, we need to be mindful of
the m = 0 and n = 0 cases. For example, since n < 0 is unphysical,
in the case where there are no proteins, n = 0, we need to drop the
term in square brackets in Equation 19.106. This can be implemented
by imposing p(n < 0, m; t) = 0. The state with zero mRNA molecules
evolves according to the prescription

∂p(n, m = 0; t)
∂t

= γ p(n, m = 1; t). (19.107)

Solving these coupled differential equations is not straightforward.
However, we are concerned with the function P(n) defined as the prob-
ability that over the lifetime of the mRNA molecule, n proteins will
have been produced. As we will see, the equation for this quantity
is more tractable. The probability that the number of proteins syn-
thesized during the lifetime of the mRNA is equal to n is given by
p(n, m = 0, t) at very long times, much longer than the decay time 1/γ .
In other words, P(n) = p(n, m = 0, t) in the limit t→∞. We can compute
this quantity from Equation 19.107 by integrating both sides from 0 to
∞ and noting that the number of proteins at t = 0 is zero (we start the
clock when the mRNA is synthesized and no proteins have yet been
produced). This results in

P(n) = γ

∫+∞

0
p(n, m = 1; t) dt. (19.108)

To make further progress with this, we must compute p(n, m = 1; t)
itself. To that end, we integrate both sides of Equation 19.106,
resulting in
∫+∞

0

∂p(n, m = 1; t)
∂t

dt = −
∫+∞

0
γ p(n, m = 1; t) dt (19.109)

+
∫+∞

0
rp [p(n− 1, m = 1; t)− p(n, m = 1; t)] dt.

Using the definition of P(n) given above, we can write this as

p(n, m = 1; t→ +∞)− p(n, 1; t = 0) = −P(n) +
rp

γ
[P(n− 1)− P(n)] .

(19.110)

This can be further simplified because we know that if we wait long
enough, the mRNA will have decayed. As a result, we have p(n, m = 1;
t→ +∞) = 0. Further, we can use the initial condition that at time
zero there is a single mRNA molecule and no corresponding protein
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resulting in the condition p(n, m = 1; t = 0) = δn0. We are left with the
equation

−δn0 = −P(n)

(
rp

γ
+ 1

)
+

rp

γ
P(n− 1). (19.111)

To solve this equation, we make the ansatz that P(n) = Aλn. We start
with the n = 0 case,

−1 = −P(0)

(
rp

γ
+ 1

)
, (19.112)

which results in A = γ /(rp + γ ). This can now be used in turn for the
case when n > 0 for which we find λ = rp/(rp + γ ), resulting in the
distribution

P(n) = γ

rp + γ

(
rp

rp + γ

)n
. (19.113)

An interesting quantity to calculate is the mean number of proteins
produced per mRNA. This is also called the “burst size,” since the idea
is that translation and mRNA decay occur on a time scale much faster
than any protein decay. From the standpoint of proteins, the result of
having one mRNA is a burst of protein production over a small amount
of time. The mean can be shown to be

⟨n⟩ =
rp

γ
= b, (19.114)

where we have defined b as the burst size. Figure 19.41(B) shows the
results from an experiment in which the number of β-galactosidase
proteins produced per mRNA was measured in E. coli. The curve cor-
responds to a fit to the distribution calculated above with a mean burst
size of five proteins per mRNA, revealing quite reasonable agreement
with the distribution.
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Figure 19.41: Time-dependent
dynamics of protein production.
(A) Bursts in translation where a single
mRNA molecule can give rise to
multiple proteins before it decays.
(B) Distribution of burst sizes for the
production of β-galactosidase in E. coli
and fit to the probability distribution
calculated in Equation 19.113.
(B, adapted from Cai et al., Nature
440:358, 2006.)

In the calculation given above, we calculated the probability of
obtaining n proteins as the product of translation of a single mRNA
molecule. However, the total protein number within a cell is the result
of the translation of multiple mRNA molecules. How do we deter-
mine the protein distribution in this more complicated case? The most
straightforward approach is to write a master equation describing the
evolution of both the number of proteins and the number of mRNA
molecules within the cell. However, there are approximations that can
be made that will simplify that task. For example, we can assume that
the lifetime of an mRNA molecule is much shorter than the lifetime of
the resulting proteins, as is clearly true for the case of E. coli as shown
in Figures 3.14 and 3.15 (pp. 110 and 110). As a result, we will see no
significant accumulation of mRNA over the life of a protein. Instead,
every time an mRNA is transcribed, it will lead to a “burst” of protein
production. The trajectories and weights corresponding to this model
are shown in Figure 19.42. Note that we use our calculated P(n) to
account for the variability in protein production from a single mRNA.

Of course, one way to calculate the actual protein distribution is to
solve the master equation stemming from the model shown in Fig-
ure 19.42. We define Ptot(n, t) as the probability of having n proteins
at time t. This equation is then

∂Ptot(n, t)
∂t

= −nγpPtot(n, t) + (n + 1)γpPtot(n + 1, t) (19.115)

+
n∑

j=1

rP(j)Ptot(n− j, t)−
+∞∑

j=1

rP(j)p(n, t).
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+

Figure 19.42: Trajectories and
weights for a simple model of
transcriptional and translational
bursts. This model describes the
production of mRNA through
transcription and the subsequent
protein production through the
translation of mRNA in a burst before
the mRNA decays. The size of the
burst is given by nP(n). The main
assumption of this model is that the
lifetime of an mRNA molecule is much
shorter than the protein lifetime.

The last two terms in this equation are related to translation. In the
first of these terms we account for all the ways we can go from having
n− j proteins to having n proteins from the translation of a single
mRNA. This is the reason the probability P(j) shows up in this term.
The last term accounts for all the possible ways of leaving the state
with n proteins due to the translation of more proteins.

We will solve this equation by making an educated guess for the
distribution. We start by rewriting the distribution calculated in
Equation 19.113 in terms of the burst size b = rp/γ ,

P(n) = bn

(1 + b)n+1 . (19.116)

Now, let’s say we have two mRNA molecules. We also assume that
translation of one mRNA molecule occurs in a completely independent
fashion from the second mRNA molecule. Under these conditions, the
probability of producing N proteins from the translation of both such
mRNA molecules is given by the product of the probability that the
first molecule will produce n proteins and that the second will produce
N − n proteins, namely,

P2(N) =
N∑

n=0

P(n)P(N − n). (19.117)

Here we have simply used the fact that if one mRNA molecule pro-
duces n proteins, the other needs to produce N − n if we want to
have a total of N proteins translated. The operation carried out in
Equation 19.117 is defined as the convolution of two functions. In
particular, here we calculated the convolution of the function P(N)

with itself. In the Math Behind the Models at the end of this section,
we describe the properties of convolutions in detail.

For three mRNA molecules, we can separate the problem into one
and two mRNA molecules, namely,

P3(N) =
N∑

n=0

P(n)P2(N − n). (19.118)

However, we already have an expression for P2(N) in terms of P(N),
which leads us to

P3(N) =
N∑

n=0

P(n)

N−n∑

n′=0

P(n′)P(n− n′) =
N∑

n=0

N−n∑

n′=0

P(n)P(n′)P(N − n− n′).

(19.119)

What we have just shown is that if we want to calculate the probability
distribution for the total number of proteins produced by m mRNA
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molecules, then we need to calculate the convolution of the individual
probability distributions.

In order to make progress, we will assume that the number of pro-
teins is large enough such that all the sums in the previous equations
can be replaced by integrals. For example, for the case of two mRNA
molecules, we have

P2(N) =
∫N

0
P(n)P(N − n) dn. (19.120)

This is again a convolution of P(n) with itself just like in Equa-
tion 19.117, but now in integral form. Such integrals are much easier
to solve in either Fourier or Laplace space. A careful description of
Laplace transforms and how to use them in order to solve convolu-
tions is presented in the Math Behind the Models below. After some
algebra, we find the probability of having produced N proteins out of
m mRNA molecules as

Pm(n) =
(

b
1 + b

)n ( 1
1 + b

)m nm−1

*(m)
, (19.121)

where *(m) = (m− 1)! for m an integer. This distribution is called the
negative binomial distribution (in the limit of large n and b ≫ 1). Its
continuous version is the more popular gamma distribution and can
be obtained from Equation 19.121 by taking the limit of large n,

Pm(n)→ nm−1e−n/b

bm*(m)
. (19.122)

Does this negative binomial distribution solve the master equation
shown in Equation 19.115? In order to do that, we need to plug our
Pm(n) into the master equation. We leave it as a problem to show that
m, the mean number of mRNA molecules that a protein sees in its
lifetime, is given by m = rp/γ . If a protein is very long-lived, then γp
will be determined by the cell cycle, since decay will take place due
to dilution by division. In that case, we can interpret rp/γ as the num-
ber of mRNA molecules produced per cell cycle. Since each of these
molecules leads to a burst of protein production, the inverse of this
magnitude is often called the burst frequency. Together with the burst
size b = rp/γ the burst frequency fully determines the gamma distri-
bution from Equation 19.122. One interesting thing is that, assuming
that the proposed model in Figure 19.42 is correct, one can obtain
dynamical information about the transcription and translation pro-
cess from just looking at steady-state distributions. This concept is
shown in Figure 19.43, where we present a strategy to perform such
dynamical measurements leading to the values for the burst size and
burst frequency. These values are to be compared with those obtained
from fitting our gamma distribution to the experimental steady-state
protein distribution. As we can see, there is reasonable qualitative
agreement between the two techniques, suggesting that at least in an
effective way it is valid to think of protein bursts in gene regulation.

M
A

T
H

The Math Behind the Models: Laplace Transforms and Con-
volutions Like its cousin the Fourier transform, which we
have made use of repeatedly throughout the book, the Laplace
transform is a very useful tool in physics for solving linear
differential equations, such as those that appear in studies of
mechanical and electrical phenomena. The basic premise here,
like with other transforms, is to replace the sought function
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Figure 19.43: Protein bursting in
E. coli. (A) A membrane protein can be
fused to the fluorescent reporter YFP.
The translated protein is localized to
the membrane, where it can then be
quantified. (B) If the level of
expression is low, a snapshot of a
cell can be taken in order to count
proteins stuck to the membrane.
The fluorophores can then be
photobleached, making it possible
to count the number of proteins
produced in the next time step, which
leads to a protein production rate.
Using this method, the effective burst
frequency and burst size can be
measured. (C) An example of such a
measurement of expression dynamics
is shown. Here, each bar corresponds
to the number of proteins observed
on the membrane at that instant in
time previous to photobleaching them
in order to move to the next time
point as shown in (B). Bursts of
protein expression over several
division cycles can be discerned as
clusters of bars, which are associated
with translation events off a single
mRNA. From many such traces, the
mean number of proteins per burst
and the mean number of bursts per
cell cycle can be calculated. (D) By
fitting the steady-state distribution to
the discrete gamma distribution from
Equation 19.122, the burst frequency
and burst size can also be estimated,
yielding results comparable to the
direct dynamical measurements. Inset:
Representative field of view of the
cells used to obtain the protein
distribution. Note that the results
from (C) and (D) correspond to
different proteins and cannot be
compared directly in a quantitative
fashion. (B, C, adapted from J. Yu et
al., Science 311:1600, 2006; D,
adapted from Y. Taniguchi et al.,
Science 329:533, 2010.)

f (t) with its transform f̃ (s), thereby turning the differential
equation for f (t) into a much simpler algebraic equation for its
transform. The algebraic equation can then be solved for f̃ (s)

which in turn can be used to obtain the original f (t) by means
of an inverse transform.

The Laplace transform of the function f (t) is given by

f̃ (s) =
∫+∞

0
f (t)e−st dt. (19.123)

The inverse transform is a more complicated matter, as it
involves doing an integral of f (s) in the complex plane, where
s is assumed to be a complex number. In practice, one often
uses tables of transforms and inverse transforms to solve the
problem at hand.

The Laplace transform is particularly useful for solving con-
volution integrals, such as those that come up in the context
of mRNA translation dynamics. The convolution integral of
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functions f (t) and g(t) is given by

C(t) =
∫ t

0
f (t′)g(t − t′) dt′ (19.124)

and its Laplace transform is related to the Laplace transforms
of f (t) and g(t) by the simple relation

C̃(s) = f̃ (s)g̃(s). (19.125)

This can be demonstrated by taking the Laplace transform, as
defined by Equation 19.123, of both sides of Equation 19.124,
and then making a change of variables u = t′ and v = t − t′ in
the two-dimensional integral that appears on the right-hand
side. We leave the mathematical details as an exercise for the
interested reader.

In the main text, we have derived the distribution of the
number of proteins P(n) obtained by repeated translation of
a single mRNA molecule over its lifetime. In order to obtain
the equivalent distribution Pm(n) when there are m mRNA
molecules in the cell, we make use of the convolution integral.
For example, for the case m = 2, the sought distribution can be
obtained by writing the probability of obtaining n proteins as
the product of the probability of making n′ proteins by translat-
ing the first mRNA and the probability of getting n− n′ proteins
from the second mRNA molecule. The fact that we can write
the probability as a product assumes that translation events
from the two mRNAs are independent of each other. Summing
over all n′ between zero and n then takes into account all the
possible ways of ending up with n proteins from two mRNA
molecules. If we replace the sum with an integral, we obtain

P2(n) =
∫n

0
P(n′)P(n− n′) dn′, (19.126)

which is nothing but the convolution of P(n) with itself. We can
now repeat the same divide-and-conquer approach for m = 3,
and the distribution P3(n) will be given by the convolution inte-
gral of P2(n) and P(n). Further iterations will then yield the
sought distribution Pm(n) as the convolution integral of Pm−1(n)

and P(n).
The laborious procedure of calculating repeated convolu-

tion integrals is replaced by a simple multiplication using
Laplace transforms. Namely, it follows from Equation 19.125
that P̃2(s) = P̃(s)P̃(s), and repeated use of Equation 19.125 then
yields a simple formula for the Laplace transform of Pm(n),

P̃m(s) =
[
P̃(s)

]m
. (19.127)

Therefore, if we want to compute the probability of getting n
proteins out of m mRNA molecules, we simply need to calcu-
late the inverse Laplace transform of P̃m(s) obtained from this
equation.

So, let’s start then by calculating the Laplace transform of
P(n),

P̃(s) =
∫+∞

0

bn

(1 + b)n+1 e−sn dn. (19.128)
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We can write this as

P̃(s) = 1
1 + b

∫+∞

0

(
b

1 + b
e−s

)n

dn = 1
1 + b

(
b

1+b

)n
e−sn

ln
(

b
1+b

)
− s

∣∣∣∣∣∣∣

+∞

0

,

(19.129)

which leads to

P̃(s) = −
{
(1 + b)

[
ln
(

b
1 + b

)
− s

]}−1
. (19.130)

For m mRNA molecules, we need to calculate the inverse
Laplace transform of [P̃(s)]m. This inverse transform has an ana-
lytical form, but its calculation is cumbersome. We choose to
just quote the result,

Pm(n) =
(

b
1 + b

)n ( 1
1 + b

)m nm−1

*(m)
, (19.131)

where *(m) = (m− 1)! for m an integer. This distribution is
called the negative binomial distribution (in the limit of large
n and b ≫ 1).

19.3.5 Genetic Switches: Natural and Synthetic

Switches are an important part of the genetic repertoire of all organ-
isms. To explore the behavior of these switches more carefully, a
synthetic version of such a switch was constructed in E. coli that
had the convenient property that the gene product of the switch is
a fluorescent reporter protein such that flipping of the switch can be
read out by observing the fluorescent state of the cells. Data from this
synthetic switch are shown in Figure 19.44.

The switch described above was constructed by using two repres-
sor proteins whose transcription is mutually regulated as shown in
Figure 19.45. This simple design allows us to see one of the most
widespread regulatory features, namely, feedback. In particular, the
protein that is the output from the first gene serves as a repressor
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Figure 19.44: Data illustrating the
flipping of the genetic switch in E. coli
cells. (A) Average fluorescence of a
population of E. coli cells harboring the
genetic switch as a function of the
concentration of an inducer molecule
that flips the switch. In this case, IPTG
(a lactose analog) is the inducer, which
upon binding to Lac repressor produces
an allosteric change that reduces its
binding affinity. (B) Flow cytometry data
showing the single-cell fluorescence
distribution for different inducer
concentrations. The labels correspond
to points in the curve shown in (A).
Bistability is revealed through the fact
that there are two populations of cells
at the same inducer concentration.
(Adapted from T. S. Gardner et al.,
Nature 403:339, 2000.)
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Figure 19.45: Regulatory architecture
for a genetic switch. (A) There are two
promoters that are under the
transcriptional control of the gene
product of the partner promoter. (B)
States and weights for the two coupled
genes making a genetic switch. For the
case shown here, the Hill coefficient is
n = 2 because the repressors bind as
dimers. The more general case is
considered in the text.
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for the second gene. Conversely, the protein that is the output from
the second gene serves as a repressor of the first gene. The reader
is strongly urged to explore a genetic switch with an even simpler
architecture in the problems at the end of the chapter.

We denote the concentrations of the two protein species by c1 and
c2. We are interested in writing equations for dc1/dt and dc2/dt. We
consider two classes of processes that can alter the concentrations
of these proteins. First, the proteins can be degraded over time. The
change in concentration resulting from degradation can be written as
dc1/dt = −γ c1. Second, protein 2 can bind onto the promoter for pro-
tein 1 and repress its production and vice versa. To capture this effect,
we introduce a term of the form r(1− pbound), where r is the basal rate
of production and pbound is the probability that the repressor of inter-
est will be bound. When pbound = 1, there is no protein production and
when pbound = 0, the rate of protein production takes its basal rate.
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Recall from Chapter 6 that for binding described by a Hill function,
we have

pbound(c1) =
Kbcn

1
1 + Kbcn

1
, (19.132)

where Kb is the binding constant for the repressor. This implies in
turn that the protein production rate for protein 2 is

r(1− pbound) = r
1 + Kbcn

1
. (19.133)

A Hill function (see Section 6.4.3 on p. 273) rather than our statistical
mechanical treatment has been used to model pbound so that our treat-
ment is consonant with the original literature. The reader will have
the chance to explore the behavior of this circuit using pbound as it
has been considered throughout the book in the problems at the end
of the chapter. Notice that our treatment of the binding constant here
is slightly different than that favored in Section 6.4.3 and Figure 19.45,
also for the purposes of consistency with the original literature.

Using the conceptual framework introduced above, the chemical
rate equations for the genetic switch are

dc1

dt
= −γ c1 + r

1 + Kbcn
2

,

dc2

dt
= −γ c2 + r

1 + Kbcn
1

.
(19.134)

The first terms on the right-hand sides of both equations correspond
to protein degradation, and for simplicity we assume that the degra-
dation rate (characterized by the parameter γ ) of both proteins is the
same. For proteins that are stable over time scales longer than the cell
cycle (as is the case in the repressors used in this circuit), the dilu-
tion rate is determined by the cell doubling time and the subsequent
dilution of the protein between the two daughter cells. Therefore,
under these conditions, the effective protein degradation rate is the
same and is set by the cell division time. The second terms on the
right-hand sides of both equations characterize the rate of protein
production. As introduced above, the basal rate of production is cap-
tured in the parameter r. However, this rate is reduced when the
repressor is bound to the promoter of interest, as shown above. For
simplicity, we assume that the basal production rates and the bind-
ing constants that characterize the affinity of the repressors for their
binding site are the same for both genes. For a realistic circuit, these
assumptions are not necessarily true, but will suffice here to describe
the basic operation of the circuit. Another conceptual simplification
implicit in these rate equations is the idea that the binding of the
repressors is characterized by a Hill function with Hill coefficient n.

From a mathematical perspective, we wonder whether equations like
Equations 19.134 yield switch-like solutions. Our assertion is that
there are two regions in the space of parameters, one with a sin-
gle stable solution corresponding to equal concentrations of the two
species (decidedly not a switch) and another, more interesting regime,
where we find two stable solutions distinguished by having one of the
protein concentrations much larger than the other. For values of the
parameters where the stable solutions are of this variety, the genetic
network exhibits switch-like behavior.
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In order to simplify the mathematical analysis of the circuit we
resort to a dimensionless form for Equation 19.134. This is achieved
by measuring c1 and c2 in units of K−1/n

b and time in units of γ−1. This
reduces the circuit equations to

du
dt

= −u + α

1 + vn ,

dv
dt

= −v + α

1 + un ,
(19.135)

where the parameters α = rK1/n
b /γ and the Hill coefficient n are the only

remaining dimensionless parameters. We have introduced the nota-
tion u for the dimensionless concentration of c1 and v for the
dimensionless concentration of c2. At this point, our goal is to find the
steady-state solutions of Equation 19.135 and analyze their stability
for different values of α and the Hill coefficient.

To find the steady-state solutions to the rate equations, we set
the time derivatives to zero. Since the equations are symmetric with
respect to u and v, we immediately conclude that

u∗ = v∗ = α

1 + v∗n
(19.136)

is always a solution. Clearly, this result does not exhibit the properties
of a switch, since the concentrations of both proteins in this case are
the same. Are there other solutions that exhibit switching behavior?
The equations that determine the steady-state u∗ and v∗ are of the
form x = f (f (x)), where f (x) = α/(1 + xn). To see this, solve the first
equation for u and substitute that result into the second equation.
Since the function f is monotonically decreasing (that is, larger values
of x imply f (x) is smaller) the composition f ◦ f will be a monotonically
increasing function, like the function x itself. Therefore, there is the
possibility that the two curves x and f (f (x)) intersect at more than one
point, leading to multiple steady states. The detailed stability analysis
is performed in the Math Behind the Models below.

To make these considerations explicit, we consider the case when
the Hill coefficient n equals 2, which lends itself to analytic treatment.
The steady-state equation for the repressor concentration u∗ is

u∗ = α

1 +
(

α

1 + u∗2

)2 , (19.137)

and the same equation holds for v∗. A little bit of algebra transforms
the above equation to a much simpler form given by a product of two
polynomials

(u∗2 − αu∗ + 1)(u∗3 + u∗ − α) = 0. (19.138)

The steady-state solutions to the rate equations for the genetic
switch, Equations 19.135, are therefore zeroes of the two polynomials
appearing in the above equations.

The cubic polynomial has one real zero, which can be seen from
Figure 19.46(A), where we plot the polynomial for different values
of α. A mathematically rigorous way to show this is to note that
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Figure 19.46: Steady-state solutions
for protein concentrations in the
genetic switch. (A) The function
y = u3 + u− α plotted for various
values of α. The solution u∗

corresponds to the point at which the
curve crosses the u-axis. (B) The
function y = u2 − αu + 1 plotted for
various values of α. Depending upon
the choice of α, there can be 0, 1, or 2
crossings of the u-axis.

the first derivative of this polynomial, 3u∗2 + 1, is always positive,
which implies that the function is strictly increasing and can there-
fore intercept the u∗-axis at most once. The equilibrium state that
corresponds to the zero of the cubic polynomial has equal concentra-
tions of the two repressor species, since the equation u∗3 + u∗ − α = 0
can be rewritten as u∗ = α/(1 + u∗2), and the right-hand side of this
equation is v∗.

The quadratic polynomial in Equation 19.138 can have one, two, or
no zeroes, depending on the value of α, as observed in Figure 19.46(B).
For α < 2, there are no zeroes; for α > 2, the polynomial has two
zeroes; while for αc = 2, the critical value of α, it has one zero at
u∗ = 1. For the two-solution case, the two steady-state values of u∗

and v∗ correspond to the two different ways of assigning the two roots
to each of the dimensionless repressor concentrations. Namely, for a
given u∗, the corresponding value of v∗ can be calculated using v∗ =
α/(1 + u∗2). For these values of u∗ and v∗, the equality u∗ + v∗ = α is sat-
isfied, assuming u∗ is one of the zeroes of the quadratic polynomial in
Equation 19.138.

In light of the general analysis done above, we see that for α < 2 the
genetic switch exhibits only one stable equilibrium state with u∗ = v∗,
while for α > 2 it has two stable states and one unstable state. In the
latter case, the unstable state is the one in which the concentrations
of the two repressors are equal, while stable equilibrium states have
either repressor u or repressor v in excess.
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Figure 19.47: Graphical
representation of the dynamics of the
genetic switch. The phase portraits of
the genetic switch for (A) α = 1 and (B)
α = 3. Stable equilibria are represented
by filled circles, while the unfilled circle
corresponds to an unstable state.

The dynamical behavior of a system of rate equations like those
given in Equations 19.135 can be examined in a different way graphi-
cally using the idea of a phase portrait (the mathematics is explained
in the Tricks behind the Math at the end of the section). The idea
is that we can think of du/dt and dv/dt as the two components of
a velocity vector and we can plot the velocity field at every point
(u, v). The steady-state solutions will correspond to those points in
the phase portrait where the vectors are zero. The solutions repre-
sented by those points are stable if for any small excursion away from
that point, all the velocity vectors point towards the solution point. An
example of this idea for several choices of α is shown in Figure 19.47.
The phase portrait provides a convenient graphical representation of
the dynamics of the genetic switch. Namely, for a given initial con-
dition u0, v0, in order to see how the concentrations will evolve with
time, all one has to do is follow the flow depicted by the arrows in
the phase portrait. We therefore conclude that the stable steady states
of the rate equations are associated with positions in the u–v plane
where the phase flow converges from all directions, while diminishing
in size, while unsteady states have at least one direction along which
the flow is diverging.
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Figure 19.48: Graphical determination of the phase portraits for the genetic switch.
Qualitative features of the phase portrait shown in Figure 19.47 can be constructed
using the nullclines of the dynamical system described by Equations 19.135. The
direction of the phase flow is first determined for large and small values of the
dimensionless concentrations of the two repressors, and then the flow in the rest of
phase space is determined by continuity. In particular, the direction of the u- or
v- component of the flow can only change sign at the nullclines, which are the sets of
points along which the rate of change of either u or v vanishes. The intersection of
nullclines is a fixed point of the phase flow. (A) Nullclines and flow in phase space for
the genetic switch with parameter α = 1. The intersection of the two nullclines is a
stable fixed point, indicating an absence of switch-like behavior. (B) Nullclines and
phase flow in the case α = 3. In this case, the two nullclines intersect at three
positions, two of which are stable fixed points and one of which is unstable, as
indicated by the phase flow. The two stable fixed points correspond to the states that
the genetic switch can flip between.

In fact, the directions of all of the arrows shown in Figure 19.47
can be figured out by hand by using the nullclines as shown in
Figure 19.48. The most important fact about each nullcline is that
one of the two components of (du/dt, dv/dt) is zero on each of these
nullclines by definition. For example, for the blue curve shown in Fig-
ure 19.48(A), we see that the dv/dt = 0, as evidenced by the horizontal
arrows. The idea of a figure like this is that we can draw the arrows
on the nullclines themselves and then, largely by exploiting the con-
tinuity of the vector fields, can figure out what the arrows are doing
elsewhere.
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The Tricks Behind the Math: Phase Portraits and Vector
Fields As we have seen repeatedly in the book, there are
many circumstances in which the dynamics of some system of
interest involves coupled rate equations of the form

dx
dt

= f (x, y),

dy
dt

= g(x, y),
(19.139)

where, in general, f (x, y) and g(x, y) are nonlinear functions.
The idea of the phase portrait is to graphically depict the
“flows” implied by the rate equations. In particular, we imag-
ine a velocity vector field v(x, y) = (dx/dt, dy/dt), which depicts
which way the system will “move” in the next time step. For
a given initial condition (x0, y0), we can find the subsequent
dynamics of the system by following the arrows.
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One of the most classic examples of a dynamical sys-
tem of the form described above is Lotka–Volterra population
dynamics, in which a predator and a prey have their popula-
tions coupled. If we think of foxes (F) and hares (H), then the
dynamics can be written as

dF
dt

= FH − F , (19.140)

dH
dt

= −FH + H. (19.141)

Effectively, what these equations say is that hares make more
hares, and that the fox–hare interaction leads to an increase in
foxes and a decrease in hares. An example of the nullclines for
this system and the corresponding phase portrait are shown in
Figures 19.49(A) and (B). In addition, this figure reveals some
of the amusing observations on the dynamics of predator–prey
systems.

From the standpoint of stability analysis, the most inter-
esting points in a phase portrait are the fixed points. These
are the points at which the vector field satisfies the condition
v(x∗, y∗) = 0. In other words, if we choose (x∗, y∗) as an initial
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Figure 19.49: Lotka–Volterra model for predator–prey dynamics. (A) Nullclines are used to determine the directions of the flow.
(B) Phase portrait for the predator–prey system of differential equations. (C) Population of lynx and hares as a function of time
resulting from hunting records. (D) Alternative representation of the lynx and hare population over time, showing the oscillations.
(E) Microbial example of population dynamics. (C, D, adapted from T. J. Case, An Illustrated Guide to Theoretical Ecology. Oxford
University Press, 2000; E, adapted from G. F. Gause, The Struggle for Existence. Dover Publications, 2003).
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condition, the system will stay put. Stability is determined by
the directions of the arrows in the neighborhood of the fixed
point. If the arrows all point back towards that fixed point, the
point is said to be a stable fixed point. Otherwise, it is unstable.
This type of graphical analysis is a powerful qualitative tool for
examining the dynamics of nonlinear coupled equations.

M
A

T
H

The Math Behind the Models: Linear Stability Analysis for
the Genetic Switch One of the key questions we can ask
about the solutions found for the switch is the nature of their
stability. Of course, one way to characterize the stability is to
examine the phase portrait and to look at the directions of all
of the little arrows around the various fixed points. We take
an alternative approach here in which we search for steady-
state solutions of the genetic switch by analyzing the case of α
large and α small. First, assume α ≫ 1. We also assume that the
solutions to the steady-state equations, namely,

u∗ = α

1 + v∗n
,

v∗ = α

1 + u∗n
,

(19.142)

are such that u∗ ≪ 1. Then 1 + u∗n ≈1, and the steady-state
values for the two concentrations that follow from Equa-
tion 19.142, to lowest order in 1/α, are

u∗ = α1−n,

v∗ = α,
(19.143)

consistent with the assumptions we have made. Similarly, by
assuming that the solution to Equation 19.142 has the property
v∗ ≪ 1, from which 1 + v∗n ≈1 follows, we find a new solution

u∗ = α,

v∗ = α1−n,
(19.144)

for which the roles of u and v are exchanged. Assuming that
both u∗ and v∗ are large leads to u∗ = v∗ = α1/1+n, while the
assumption that both are small is inconsistent with Equa-
tion 19.142. We conclude that, in addition to the u∗ = v∗

case, there are two other steady-state protein concentrations.
Interestingly, the additional solutions are characterized by
very different values for u∗ and v∗ providing the necessary
ingredients for a genetic switch.

Next, we analyze the case α ≪ 1. Following the same analy-
sis as above, we do not find any additional solutions. Namely,
assuming u∗ ≪ 1, we compute from Equation 19.142 v∗ = α and
u∗ = α, since now 1 + αn ≈1. The same conclusions are reached
assuming v ≪ 1, while the assumptions u∗ ≫ 1 or v∗ ≫ 1 are not
consistent with Equation 19.142. We conclude that there is a
critical value of the parameter α, which will be of the order of 1
and dependent on the value of the Hill coefficient n, such that
for values of α below the critical value the steady-state solu-
tion is unique, while for larger values of α there will be three

868 Chapter 19 ORGANIZATION OF BIOLOGICAL NETWORKS



“chap19.tex” — page 869[#71] 5/10/2012 12:31

steady states. Now, we examine the stability of these solutions,
paying particular attention to the case when very different
values for u and v are obtained in the steady state.

One of the most important requirements in carrying out
an analysis like that given above is to assess the stability of
the solutions to a given problem. What this means is that
we perturb the system slightly from the steady state (that is,
u = u∗ + δu and v = v∗ + δv) and we ask if the perturbations
grow or shrink in time. If the perturbations grow in time, the
system is said to be unstable. If the perturbations shrink in
time, the system is said to be stable. A favorite example for
depicting this idea is to consider a particle on some potential-
energy landscape. If the particle is at the bottom of a well (that
is, the potential energy is locally of the form 1

2kx2), then a small
disturbance of the particle from its equilibrium position will
result in jiggling around the equilibrium point. Alternatively, if
the particle is balanced at the point x = 0 on a potential-energy
landscape of the form −1

2kx2, then any slight disturbance to
the particle will cause it to wander away from the equilibrium.
The idea of our stability analysis in this case is the same—we
ask whether a slight disturbance away from the steady-state
concentration will lead to solutions that grow or decay in time.

To assess the stability of the steady state, we analyze the
linear equations for the small deviations (δu, δv) of the repres-
sor concentrations away from their steady-state values. In
particular, in Equation 19.135, we substitute u = u∗ + δu(t) and
v = v∗ + δv(t) and then exploit the fact that δu(t) and δv(t) are
small and Taylor-expand the nonlinear Hill functions in powers
of δu and δv. The result of this analysis is

d
dt

(
δu
δv

)
= A

(
δu
δv

)
. (19.145)

The matrix A given by

A =
(
−1 f ′(v∗)

f ′(u∗) −1

)
(19.146)

results from linearizing the rate equations, Equation 19.135,
around the steady-state solution (u∗, v∗), and

f ′(x) = − nαxn−1

(1 + xn)2
. (19.147)

At this point, the stability of this linear set of equations is
queried by assuming solutions of the form δu(t) = δu0eλt and
δv(t) = δv0eλt . The essence of the analysis is to examine the sign
of the parameter λ. If λ < 0, the perturbations decay in time,
and if λ > 0, the perturbations grow in time. The behavior of λ
is revealed by examining the eigenvalues of the matrix A. The
eigenvalues of A are both real and are given by

λ1,2 = −1 ±
√

f ′(u∗)f ′(v∗). (19.148)

For the steady-state solution to be stable, both λ1 and λ2 need
to be negative. This will be the case if

f ′(u∗)f ′(v∗) < 1. (19.149)
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Given this condition for the stability of the solutions,
we can now revisit the different solutions found above and
explicitly examine their stability. First we consider the single
steady state, u∗ = v∗ = α, that we found for α ≪ 1. In this case,
using Equation 19.147, we find f ′(u∗)f ′(v∗) = n2α2n ≪ 1, and the
stability condition, Equation 19.149, is satisfied. Next, we con-
sider the three steady-state solutions found for α ≫ 1. For the
solution u∗ = v∗ = α1/(1+n), we find that f ′(u∗)f ′(v∗) = n2. Since
the Hill coefficient satisfies the condition n > 1, we conclude
that this solution is unstable. A small perturbation will drive it
to one of the other two solutions, which are stable. Namely, for
u∗ = α1−n and v∗ = α, we see that f ′(u∗)f ′(v∗) = n2α−n(n−1) ≪ 1,
and we conclude that the solution is stable. Since the third
solution is obtained by u∗ and v∗ switching roles, it too will be
stable.

The analysis above leads to the phase portrait shown in
Figure 19.47 in terms of the parameter α. For α less than some
critical value (which is of the order of 1), the rate equations
at long times lead to a unique steady state in which the con-
centrations of the two repressor proteins are equal. On the
other hand, for α larger than the critical value, at long times the
system will settle into one of two stable states, with the con-
centration of one repressor dominating over the other. Which
of the two steady states is reached depends on the initial con-
ditions. In this regime the rate equations, Equation 19.134,
describe a genetic switch.

19.3.6 Genetic Networks That Oscillate

In addition to switches, another dynamical element that is ubiquitous
in cell dynamics is an oscillator where one or more chemical species
in the cell vary in time in a periodic fashion. There are numerous ways
that an oscillator can be built up from a collection of interacting genes
and proteins, and here we examine a very simple example of a relax-
ational oscillator that makes use of two transcription factors, namely,
a repressor and an activator. The repressor binds as a dimer and
represses the production of the activator, while the activator increases
its own production and that of the repressor, also binding as a dimer
to the promoter DNA. The states and weights corresponding to this
architecture are shown in Figure 19.50.

To write the chemical rate equation for the repressor and activa-
tor proteins, we assume that they are produced at a constant rate
that depends on the particular state of the promoter, and that the
probability of finding the promoter in one of its possible states is
given by equilibrium considerations discussed earlier in this chapter.
Using the states-and-weights diagrams in Figure 19.50 to compute the
equilibrium probabilities for the different promoter states, we obtain
the following rate equations for the evolution of the concentration of
activator and repressor:

dcA

dt
= −γAcA + r0A

1

1 +
(
cA/Kd

)2 +
(
cR/Kd

)2 + rA

(
cA/Kd

)2

1 +
(
cA/Kd

)2 +
(
cR/Kd

)2 ,

(19.150)

dcR

dt
= −γRcR + r0R

1

1 +
(
cA/Kd

)2 + rR

(
cA/Kd

)2

1 +
(
cA/Kd

)2 , (19.151)
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Figure 19.50: States and weights for
the promoters that control the
expression of activator and repressor
proteins. (A) Regulation of the
activator gene. The gene product has
positive feedback and activates its
own expression. (B) Regulation of the
repressor gene. The presence of
activator stimulates production of
repressor.

where γR and γA are the degradation rates of the receptor and activator
proteins, r0R and r0A are their basal rates of production, while rR and
rA are the rates of production of these two protein species in the pres-
ence of activator bound to the promoter DNA. To simplify the analysis
of the rate equations, we make the assumption that the same equi-
librium dissociation constant Kd describes activator and repressor
binding to promoter DNA.

As in the case of the genetic switch, we begin the analysis of the rate
equations by writing them in dimensionless form. To that end, we use
1/γR as the unit of time and Kd as a unit of concentration. The rate
equations for the dimensionless activator and receptor concentration
are then given by

dc̃A

dt
= −γ̃Ac̃A +

r̃0A + r̃Ac̃2
A

1 + c̃2
A + c̃2

R

,

dc̃R

dt
= −c̃R +

r̃0R + r̃Rc̃2
A

1 + c̃2
A

.

(19.152)

Oscillations can arise when there is a separation of time scales
between the activator and repressor dynamics. To gain intuition about
this, we plot the nullclines for the activator and repressor shown in
Figure 19.51(A). The nullclines are the steady-state values of repressor
and activator for fixed amount of activator and repressor, respectively.
They are obtained by setting the time derivatives of the activator and
repressor concentration in Equation 19.152 to zero and solving for the
corresponding concentration of activator and repressor. This yields

c̃R =

√

−1− c̃2
A +

r̃0A + r̃Ac̃2
A

γ̃Ac̃A
(19.153)

and

c̃R =
r̃0R + r̃Rc̃2

A

1 + c̃2
A

(19.154)

for the two nullclines.
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Figure 19.51: Dynamics of a genetic
oscillator. (A) Nullclines for the
two-component genetic oscillator for
parameter values r̃0R = 1, r̃R = 100,
r̃0A = 100, r̃A = 5000, and γ̃A = 30. The
light arrow indicates the initial transient
and the dark arrows illustrate the limit
cycle. (B) Solutions to the rate equations
with initial conditions c̃A = 1 and
c̃R = 10 using the same parameters
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If the repressor dynamics is much slower than the activator dynam-
ics, then the activator dynamics will quickly reach its steady-state
value for a given repressor concentration. In other words, at any
instant in time, the amount of activator can be read off from its
nullcline given the current concentration of repressor. Keeping this
in mind, we can follow the progression of the dynamical system by
starting initially with a small amount of repressor and activator, as
shown in Figure 19.51(A). The activator concentration quickly reaches
its steady state, which for a small amount of repressor is a large con-
centration of activator. Note that the green points in Figure 19.51(A)
represent positions in phase space at equal time intervals, so a dense
interval of points indicates slow phase flow, while a sparse one cor-
responds to fast flow. Once a large concentration of activator is
obtained, this leads to a slow increase in the repressor concentration
and the phase trajectory follows the right portion of the activator null-
cline, as shown in Figure 19.51(A). When the repressor concentration
rises above a critical value for which the steady-state activator con-
centration is small, the activator concentration quickly drops to this
very small value, as indicated by the switch of the trajectory from the
right to the left side of the activator nullcline. In response to this sud-
den drop in activator concentration, repressor concentration drops as
well, but slowly, and the trajectory tracks the left side of the activator
nullcline. Eventually, the repressor concentration drops below a criti-
cal value and the activator concentration jumps to a large, steady-state
value (corresponding to the fast switch from the left to the right part
of the activator nullcline) and the cycle repeats. Precisely this kind of
progression, which is generally characteristic of relaxation oscillators,
is shown in Figure 19.51(B) where we plot the concentrations of both
activator and repressor over a few cycles.

19.4 Cellular Fast Response: Signaling

Gene regulatory networks are clearly of central importance to the
functioning of organisms of all types. Of course, there are many
aspects of biology where the dynamics of regulation is critical that do
not involve gene transcription as an ultimate outcome. This is partic-
ularly obvious for biological behaviors that simply occur too quickly
for transcription of new genes to have any useful impact. Rather, these
signaling networks involve batteries of proteins and their partner lig-
ands connected together such that their interactions affect the activity
of some enzyme. For example, a membrane-spanning receptor might
bind a ligand in the extracellular space. As a result of this binding

872 Chapter 19 ORGANIZATION OF BIOLOGICAL NETWORKS



“chap19.tex” — page 873[#75] 5/10/2012 12:31

event, there will be a concomitant structural change on the intracel-
lular domain of this same protein, activating a protein kinase enzyme
activity, which results in the phosphorylation of some other protein,
rendering it active. The goal of the remainder of this chapter is to
examine some examples of this kind of signaling and to construct
simple models of their behavior.

19.4.1 Bacterial Chemotaxis

One fascinating and fairly well-understood example of signal trans-
duction that we have mentioned briefly is the case of bacterial
chemotaxis. Bacteria import small nutrients such as sugars and amino
acids to use as building blocks, as we calculated in Chapter 3. A bac-
terial cell must take up a huge number (in excess of 109) of glucose
molecules to go through a cycle of cell division. Obviously, this can be
done more rapidly in areas of higher ambient glucose concentration.
It therefore behooves the bacterium to actively seek out regions of its
watery environment that contain the highest accessible concentration
of glucose. An elegant and extraordinarily efficient system has evolved
for this purpose. Several highlights of how we came to understand the
workings of this system are sketched in the Experiments Behind the
Facts below.

As we mentioned in Section 4.4.4 (p. 159), the motor used for swim-
ming by the class of bacteria including E. coli and Salmonella is a
rotary propellor that spins a long flagellum (each bacterial cell has
several flagella that all work in synchrony). The only known control
point the bacterium has for the rotor is to alter its direction of spin
to be either clockwise or counterclockwise. Counterclockwise rota-
tion of the flagella drives the bacterium forward in a nearly straight
“run,” while clockwise rotation causes the flagellar bundle to become
disorganized and the bacterium “tumbles,” randomly changing its
direction. The chemotactic signal transduction machinery regulates
this directional switching. If desirable nutrients are present at high
concentrations, the bacterium tends to keep moving in a straight line,
tumbling less frequently. If nutrient concentrations are low, the bac-
terium tends to tumble more frequently. E. coli is able to use the
patterns of directional switching generated by this signal transduc-
tion network to swim up gradients of desirable nutrients. Some of the
key elements of how this important and fascinating network works
were indicated schematically in Figure 4.16 (p. 160).

How can a binary switch be used to detect the direction of a gra-
dient? We can imagine at least two possibilities. First, the bacteria
might be able to compare the signal coming from receptors located at
the opposite poles of the cell, and switch in such a way as to swim
toward the end with the higher signal, that is, sensing the gradient in
space. Alternatively, the bacteria might be able to compare the signal
being received at a given moment in time with the strength of the sig-
nal it received in the recent past, that is, sensing the gradient in time.
As we will discuss below, the bacteria appear to use the time-based
mechanism. The reader will have a chance to explore and compare
these two possible schemes in the problems at the end of the chapter.

The cellular decision-making that attends chemotaxis is mediated by
a signal transduction network that has been extremely well character-
ized. Our comments will center on the particular features of the E. coli
chemotaxis network, which is an example of the two-component sig-
naling systems introduced in Section 7.2.3 (p. 292). The key elements
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in this system are (i) membrane-spanning receptors that interact with
the molecules in the environment (sugars, amino acids, etc.); (ii)
CheW and CheA, proteins that bind to the intracellular domain of the
receptor and change their activity depending on whether or not the
receptor has a ligand bound (CheA is a protein kinase that can cat-
alyze the attachment of phosphate groups to other target proteins,
and CheW modulates CheA activity); (iii) a messenger molecule known
as CheY that, when phosphorylated by CheA, can interact with the
flagellar rotary motor to induce it to switch to clockwise (tumbling)
rotation; (iv) CheZ, a phosphatase that can remove the phosphate
from CheY; and (v) a pair of enzymes known as CheR and CheB that
can respectively methylate and demethylate the receptors themselves,
effectively tuning their affinity for their binding partners.

E
X
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T
S

 

Experiments Behind the Facts: Measuring the Process of
Chemotaxis Quantitative measurement of the behavior of
bacteria engaged in chemotaxis has been performed in many
elegant ways. Here we highlight a few of the key experiments
that form the backdrop for our discussion. Video tracking
microscopy was introduced to make it possible to perform
single-cell analyses of bacteria engaged in their chemotactic
response as shown in Figures 19.52(A) and (B). The idea of
such experiments is easily stated, but the easy words mask
what was an experimental tour de force when first introduced.
Stated simply, the microscope stage is shifted constantly so
that the cell of interest always stays in focus in the center of
the field of view. A more recent version of the same experiment
elects to hold the bacterium in an optical trap, with the runs
and tumbles characterized by changes in the way the trapped
bacterium jiggles about as shown in Figures 19.52(D) and (E).

Using tracking microscopy, it was possible to ask precise
questions such as how fast are cells moving, how often do they
tumble and what is their angular reorientation after a tumbling
event? Figure 19.52 shows the outcome of such experiments.
The advent of fluorescent proteins made it possible to observe
cells engaged in these kinds of behaviors while simultaneously
measuring the quantities (and even dynamics) of the molecules
such as CheY-P that mediate the behavior. For example, in the
experiment shown in Figure 19.53, the amount of CheY-P was
monitored using fluorescence correlation spectroscopy (FCS)
as introduced in Section 13.1.2 (p. 511). At the same time, as
shown in the figure, by monitoring a fluorescent bead attached
to one of the flagella on the immobilized bacterium, the direc-
tion of rotation could be observed, resulting in the ability to
characterize the fraction of time (the so-called motor bias) the
motor spends rotating in the opposite direction.

Recent FRET measurements have provided the kind of sys-
tematic, quantitative dissection of the chemotactic response
that can really drive theoretical understanding forward. In the
experiments shown in Figure 19.54(A), CheY-P and CheZ were
each labeled with fluorescent molecules that serve as a FRET
pair. As a result, the level of FRET serves as a direct readout
of the amount of CheY-P as a function of the chemoattractant
concentration because when there is lots of phosphorylated
CheY, the interaction between CheY and CheZ is increased. As
shown in Figure 19.54(B), the time history after stimulation
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Figure 19.52: Chemotactic dynamics
as observed using tracking
microscopy and optical trapping.
(A) Measurement of the speed of a
bacterium as a function of time. The
individual tumble events are shown
by horizontal bars and are reflected
by a marked reduction in the speed
for a short interval. (B) Angular
distribution of tumbles. (C) Images of
tumbling bacteria illustrating the
spreading apart of the flagella during
the tumbling process. (D) Images of a
bacterium held in an optical trap at
various observation times. The
fluorescently labeled flagella look
different during the run and tumble
events. (E) x- and y-positions of the
bacterium as observed in the optical
trap as a function of time. (A,
B, adapted from H. C. Berg and D. A.
Brown, Nature 239:500, 1972;
C, adapted from L. Turner, W. S. Ryu,
and H. C. Berg, J. Bacteriol. 182:2793,
2000; D, E, adapted from T. L. Min
et al., Nat. Methods, 6:831, 2009.)

with a pulse of chemoattractant can be monitored directly
with these experiments. Figure 19.54(C) shows how the activ-
ity of the chemoreceptor depends upon the concentration of
chemoattractant for a number of different mutants that have
their ability to adapt altered.

Examination of the tumbling frequency after exposure to
a shift in concentration makes it possible to explore the ques-
tion of adaptation. In particular, the time scale and precision of
adaptation can be measured by watching cells after such a con-
centration jump and keeping track of their tumbling frequency.
The results of such experiments are shown in Figure 19.55,
where it is seen that the idea of “precise adaptation” is not a
misnomer. It is also interesting to see how the adaptation time
depends upon chemical details such as the concentration of
CheR, while the precision itself does not.

Even for the relatively simple network that governs bacterial chemo-
taxis, it is hard to avoid getting lost in the alphabet soup of names,
so we try to examine how the network works conceptually without
focusing on the names of the molecules. In addition, we will take a
hierarchical view, first explaining the overall functioning of the net-
work and then taking up the fancy bells and whistles that make it
work over such a wide range of concentrations, in the phenomenon
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Figure 19.53: Tumbling frequency and CheY-P concentration. (A) Schematic of the experimental setup used to simultaneously
quantify the amount of protein and the flagellar dynamics. (B) Measured correlation function as a function of time. This is related
in turn to the concentration of protein (CheY-P-GFP). (C) Motor bias as a function of concentration of CheY-P. (D) Switching
frequency and concentration of CheY-P. (Adapted from P. Cluzel, M. Surette, and S. Leibler, Science, 287:1652, 2000.)

known as adaptation. In simplest terms, the question of whether or
not the cell will tumble (and hence change direction) comes down to
the state of phosphorylation of the messenger molecule CheY. In order
to be responsive to changes in the environment, the phosphorylation
of CheY must be sensitive to whether or not there is a ligand bound to
the receptor. In the presence of desirable attractant molecules, such
as glucose or aspartate, the cell should repress tumbling, so we expect
that the ligand-bound receptor will tend to be in the “off” form, where
CheY is not phosphorylated, and the unbound receptor will tend to be
in the “on” form, where CheY is phosphorylated. (Although E. coli is
actually able to use the same chemotactic network to swim away from
noxious chemicals, here we will only consider the happier problem of
swimming toward delicious ones.) An idealization of these elements
is shown in Figure 19.56(A), where we have combined the transmem-
brane receptor, CheW, and CheA into a single unit, and for the moment
are ignoring the other components of the pathway.
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Figure 19.55: Tumbling frequency and
adaptation. (A) Precision of the
adaptation as measured by how
precisely the rotational frequency
returns to its original value. Rather than
tuning the chemoattractant
concentration in these experiments, the
level of expression of CheR is
controlled. (B) Tumbling frequency of
the cells before stimulation is shown
with blue data points and refers to the
vertical axis on the right. Average
adaptation time is shown by the red
circles with reference to the vertical
scale on the left. Both quantities are
plotted as a function of CheR
fold-expression. (Adapted from U. Alon,
M. G. Surette, N. Barkai, and S. Leibler,
Nature, 397:168, 1999.)
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Figure 19.56: Probability that a
receptor will be “on.” (A) The receptor
and its states of occupancy and activity.
The receptor can either have a bound
ligand or not. Similarly, the receptor can
either be “on” or “off,” where this state
of activity determines whether or not it
is able to phosphorylate the messenger
CheY. (B) The probability that the
receptor will be “on” is constructed as a
ratio of the “on” states, appropriately
weighted by their Boltzmann factors to
the sum over the statistical weights of
all states.
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The MWC Model Can Be Used to Describe Bacterial Chemotaxis

We can treat this complex process approximately by appealing to our
usual statistical mechanical formulation in which we imagine a rapid
preequilibrium of the state of activity of the receptor. In particular, the
quantity pon measures the ability of the receptor to produce phospho-
rylated CheY, resulting in a change in the motor’s direction of rotation.
As we have done throughout the book, the statistical mechanics of this
system can be examined by appealing to a states-and-weights diagram
like that shown in Figure 19.57. The probability that the receptor will
be active is obtained by constructing the ratio

pon =
[
,L

L!
e−βLεsole−βεon + ,L−1

(L− 1)!
e−β(L−1)εsole−βεone−βε

on
b

]/

[
,L

L!
e−βLεsol

(
e−βεoff + e−βεon

)

+ ,L−1

(L− 1)!
e−β(L−1)εsol

(
e−βεoffe−βε

off
b + e−βεone−βε

on
b
)
]

. (19.155)

This result can be simplified by multiplying through the top and
bottom of the equation by L!/,L, resulting in

pon = e−βεon[1 + (L/,)e−β#εon]
e−βεon[1 + (L/,)e−β#εon] + e−βεoff [1 + (L/,)e−β#εoff ]

. (19.156)

Here we have defined #εon as the difference in energy between a
single ligand bound to the “on” state of the receptor and the same
ligand in solution, and #εoff equivalently for ligand binding to the
receptor in the “off” state. Throughout the book, we have repeatedly
translated back and forth between the statistical mechanical language
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Figure 19.57: States and weights for
a simple model of bacterial
chemotaxis. The lower two states
correspond to the case when the
receptor is “on.” The prefactors in
front of the exponential terms
correspond to the number of ways of
rearranging the ligands in the lattice
model of the solution.

used above and the thermodynamical language using equilibrium con-
stants. By exploiting the relationship between energy differences and
biochemical dissociation constants derived in Section 6.4.1 (p. 270),
our expression for the probability that the receptor will be “on” can be
rewritten using the dissociation constants as

pon = 1

1 + e−β(εoff−εon)
1 + [L]/Koff

d
1 + [L]/Kon

d

. (19.157)

This formula suggests that the probability of the “on” state depends on
a few biologically important variables: the energy difference between
the “on” and “off” states of the receptor in the absence of ligand, the
affinities of the ligand for the “on” state and the “off” state of the
receptor, and the amount of ligand itself. For attractive substances,
binding of the ligand will tend to favor the “off” state (where CheY is
not phosphorylated), that is, Koff

d < Kon
d .

Let us consider the implications of this result. In the absence of
ligand (if [L] = 0), the equation simplifies to the familiar result for
a two-state system such as an ion channel with the active and inac-
tive states controlled by the relative values of εoff and εon. Since in
the absence of ligand the receptor is active for phosphorylation, we
know that εoff is larger than εon, thus favoring the “on” state. On the
other hand, we expect that with increasing ligand concentration, the
inactive state will predominate. This means within this model that
Koff

d < Kon
d .

In order to modulate its response over a wide range of ligand con-
centrations and conditions, E. coli is actually able to move around
in the parameter space of εon and εoff by performing regulated cova-
lent modifications of the receptor protein itself. This is the job
of the methylase CheR and the demethylase CheB, which add and
remove methyl groups on a series of glutamate residues present in
the intracellular domain of the membrane-spanning receptor protein.
The more highly methylated the receptor protein, the more likely it is
to be in the “on” state. These modifications permit two impressive con-
sequences. First, as mentioned above, E. coli can detect gradients of
chemoattractants by comparing the strength of the signal it currently
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senses with the strength of the signal it detected in the recent past.
Second, the bacterium is able to detect gradients in concentration over
many orders of magnitude of absolute concentrations, a phenomenon
known as adaptation. This corresponds to our own ability to whisper
to someone else even in a crowded and noisy room, or our ability to
see our surroundings either inside a darkened room or after stepping
out into the bright sunshine. For the bacteria, both adaptation and
time-sensing depend on the fact that the demethylase, CheB, is itself
regulated by phosphorylation by CheA, and therefore depends on lig-
and binding to the receptor. If CheB is phosphorylated (that is, if the
receptor is “on”), CheB will be more active as a demethylase, and will
tend to convert the receptor into an “off” state, damping the response.
Conversely, if CheB is dephosphorylated (that is, the receptor is “off”),
more methyl groups will accumulate, tending to switch the receptor
“on.” This sequence of events takes some time, a few seconds. At the
same time, ligand binding influences the activity state of the receptor.
Therefore, receptor occupancy by ligand reflects current conditions,
and the methylation state of the receptor reflects the conditions of a
few seconds ago. The cell is able to swim up concentration gradients
essentially by comparing these two signals.

Our calculations so far illustrate the key ideas, but they will not suf-
fice to capture the full complexity of chemotactic behavior as revealed
in Figure 19.54(C). In addition to the precise adaptation already dis-
cussed, the system exhibits a high degree of cooperativity. To account
for cooperativity, our previous results can be amended to the form

pon = 1

1 + e−nβ(εoff−εon)
(1 + [L]/Koff

d )n

(1 + [L]/Kon
d )n

. (19.158)

To see how this result emerges, Figure 19.58 resorts to our usual
states-and-weights procedure in which we imagine a cluster of N
receptors. The fate of the one is the fate of the many. Either all recep-
tors are inactive or all are active. As in the usual MWC mentality, the
relative energies of the inactive and active states are different and the
Kd for the binding of ligands depends upon which of the two states
the receptors are in. To see how the statistical weight of the active
state arises, note that the number of bound ligands can be anything
between 0 and N. The generic weight for the active state when it has
n ligands bound is of the form

wn = e−βεon
N !

(N − n)!n!
e−nβ(εon

b −εsol). (19.159)

However, we note that this is just the nth term in a binomial of order
N (except for the prefactor e−βεon), and hence, when we sum together
all such terms, we find the overall statistical weight for the active state
shown in the figure.

The inclusion of cooperativity sharpens the response of the system.
Previously, we have considered cases of cooperativity such as oxygen
binding to hemoglobin (Section 7.2.4, p. 298), where a single pro-
tein has multiple ligand-binding sites. In chemotaxis, the E. coli cell
clusters essentially all its membrane-spanning receptors together in
a single patch at one pole in a tight cluster as shown in Figure 13.23
(p. 537), such that binding of one ligand to one receptor can influ-
ence the conformational state of many other receptors, including
distinct receptors that are able to detect different substances. A fully
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Figure 19.58: MWC model of bacterial chemotaxis. (A) States and weights for the MWC model in which there are N receptors in a
cluster. (B) Probability that the receptors will be on as a function of the concentration of chemoattractant for different choices of
the number of receptors in a cluster. (C) Sensitivity of the chemotactic response. For (B) and (C) a value of Koff

d /Kon
d = 1/20 was

used.

detailed mathematical model that incorporates adaptation and cooper-
ativity in mixed receptor clusters along with the basic two-state model
derived above is able to reproduce many of the complex features of
chemotactic receptor response, as illustrated in Figure 19.54(D).

Precise Adaptation Can Be Described by a Simple Balance Between
Methylation and Demethylation

As already illustrated in Figure 19.55, bacteria that are exposed to a
uniform change in concentration will temporarily respond as though
they have been subjected to a gradient of chemoattractant. This
response is characterized by a change in tumbling frequency. How-
ever, as seen in the figure, after some transient response time, they
will faithfully return to their original tumbling frequency. An idea
for how this takes place is illustrated schematically in Figure 19.59,
where it is seen that the state of methylation of the receptor (here
we examine a minimal model with only one site of methylation) is
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Figure 19.59: Kinetic scheme for a toy
model of precise adaptation. The
concentration of unmethylated
receptors is given by X , the
concentration of active methylated
receptors by XA and the concentration
of inactive methylated receptors is
given by XI. R refers to the
concentration of CheR and B to the
concentration of CheB.

M

M

ligand
konc

koff

vRR

vBB
[X ] [XA]: active

[XI]: inactive

constantly tuned by the presence of CheR (methylation) and CheB
(demethylation).

One of the key qualitative features of the model is captured by the
topology of the various reactions and specifically by the fact that
the demethylation can only take place from the active state. Hence,
if the concentration of chemoattractant changes, it will temporarily
change the number of active chemoreceptors, and this means that
the balance between CheR and CheB will be perturbed, resulting in
a net change in the number of methylated receptors depending upon
whether the chemoattractant was decreased or increased. For exam-
ple, if the amount of chemoattractant goes up, this will increase the
number of inactive receptors. However, this will result in a concomi-
tant increase in active receptors over time since CheR will win out
over CheB in the coupled reactions they mediate.

The dynamics of this system of reactions is captured by three cou-
pled dynamical equations. By inspection of Figure 19.59 we can read
off these equations as follows. First, for the X concentration, we have

dX
dt

= vBB
XA

KA + XA
− vRR, (19.160)

where we assume that CheR is working at saturation (that is, there
is an excess of X such that all of the CheR molecules are engaged
in methlyation) and we have adopted the Michaelis–Menten form (see
Section 15.2.7, p. 596) for the reaction of CheB. For the active state,
we have

dXA

dt
= vRR− vBB

XA

KA + XA
− koncXA + koffXI, (19.161)

where we have included ligand binding and unbinding. Finally, for the
inactive state, in this model, the only way to enter or exit the state is
through ligand binding and unbinding, and this is captured through
the dynamical equation

dXI

dt
= koncXA − koffXI. (19.162)

As we have already seen, one of the most useful ways to examine
the dynamics of low-dimensional dynamical systems like this is by
appealing to the phase portrait. In this case, note that the equations
for XA and XI make no reference to the concentration X. As a result, we
can consider the dynamics of XA and XI independently of the dynamics
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Figure 19.60: Phase portrait for
simple model of precise adaptation.
The straight line is the nullcline on
which dXI/dt = 0 and the other curve
is the nullcline that shows the locus of
points in the XA−XI plane where
dXA/dt = 0.

of X, which means we can resort to a two-dimensional phase portrait
of the vector field (dXA/dt, dXI/dt) as shown in Figure 19.60. The two
nullclines, corresponding to dXI/dt = 0 and dXA/dt = 0, are shown on
the phase portrait and their point of intersection is the fixed point.

The position of this fixed point can be solved for explicitly, result-
ing in

X∗A = KAvRR
vBB − vRR

(19.163)

and

X∗I = konc
koff

X∗A = konc
koff

KAvRR
vBB − vRR

. (19.164)

In particular, by inspecting the functional form of X∗A, we see that
the concentration of the active form of the receptor does not depend
upon the overall concentration c. As a result, when the concentra-
tion suffers an overall shift, the fixed point will shift up and down,
but not to the left or right, illustrating that the fixed-point concentra-
tion of X∗A is invariant, corresponding to the precise adaptation seen
experimentally.

19.4.2 Biochemistry on a Leash

One of the most fundamental features of living organisms is move-
ment. As noted in our discussion of chemotaxis, cells make “decisions”
about where to go and these decisions in eukaryotes are implemented
in the form of polymerization of actin filaments. Examples of actin
polymerization organized in both space and time were shown in Fig-
ures 15.2 (p. 576) and 15.3 (p. 577). What chains of events link
the detection of some external cue and the formation of new actin
filaments in a motile cell? The advent of video microscopy in conjunc-
tion with a host of different classes of fluorescent markers has made
the study of cell motility one of the most exciting areas of current
research. As a particular case study that will allow us to flex several
sets of muscles that we have developed throughout the book, we con-
sider molecules that have the interesting feature that they include
a tethered ligand and receptor pair that compete with free ligands.
These tethering motifs are a common feature of signaling molecules.
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Figure 19.61: Tethering and effective concentration. (A) As a result of tethering, the ligand can only explore a limited region of
space. (B) The concentration of the tethered ligand can be estimated by considering a sphere with a radius given by the radius of
gyration of the tether. (C) To compute the effective concentration due to tethering, consider one ligand per volume given by a
sphere with a radius equal to that of the radius of gyration.

Tethering Increases the Local Concentration of a Ligand

One simple way to see the significance of tethering is illustrated in
Figure 19.61. The idea is that the tethered ligand is confined to a vol-
ume dictated by the length of the tether. In particular, if the tether
has a length L resulting in a radius of gyration RG, then the effective
concentration of the tethered ligand can be estimated as

effective concentration = 1
4
3πR3

G

. (19.165)

To develop an intuitive sense of the significance of this tethering,
this estimate can be used to roughly determine the concentration
at which the free ligands compete with the tethered ligand. In par-
ticular, for the case in which a tethered ligand competes with free
ligands for the attention of a tethered receptor, clearly at high enough
concentrations, the free ligands will dominate the binding.

Signaling Networks Help Cells Decide When and Where to Grow Their
Actin Filaments for Motility

The case of bacterial chemotaxis described above is but one of many
examples where the motility of cells is dictated by the presence of
environmental cues. In many cases, these environmental cues have
the effect of inducing actin polymerization, which leads to changes
in cell shape that are then coupled to motility. From the standpoint
of cell signaling, a small signaling molecule can relay information
to N-WASP, a protein that can interface with a complex of proteins
called the Arp2/3 complex to create new actin filaments. The way
in which this works is shown in Figure 19.62(A). In particular, the
presence of two ligands, Cdc42 and PIP2, activates N-WASP by bind-
ing to this protein in a way that then permits it to activate Arp2/3.
The presence of Cdc42 and PIP2 leads to the unbinding of GDB and B
domains from the C domain and Arp2/3, and N-WASP begins to stim-
ulate actin polymerization by recruiting (and perhaps appropriately
orienting) actin monomers to the proximity of the Arp2/3. With the
help of activated N-WASP, Arp2/3 promotes actin polymerization by
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providing heterogeneous nucleation sites. Here, our aim is to study
this process quantitatively.

Synthetic Signaling Networks Permit a Dissection of Signaling Path-
ways

As with the analysis of genetic networks, one exciting way in which
signaling pathways have been dissected is by rewiring such pathways
to form various synthetic signaling networks. Figure 19.62(B) shows
a synthetic activator of Arp2/3 in which a domain known as a PDZ
domain is attached to the output domain that activates Arp2/3. On
the other end of the construct is a peptide sequence that binds to
PDZ. This synthetic protein mimics N-WASP and can be activated by
soluble ligands that bind to the PDZ domain.

To analyze the function of this signaling process, we invoke statis-
tical mechanics in the same spirit as we have earlier for considering
gene regulation. The goal of our statistical mechanical model of the
synthetic switch is to work out the probability that the molecule is
in the active state. In particular, the active state corresponds to the
case in which the tethered receptor is not bound to the tethered lig-
and. That is, the tethered ligand and receptor are separately flopping
around freely. As usual, we resort to a states-and-weights diagram to
work out the probability of the active state. As shown in Figure 19.63,
there are three classes of states, each with their own correspond-
ing statistical weights: (i) the switch is in the autoinhibitory state
and the tethered ligand and receptor are bound to each other; (ii)
the tethered ligand and receptor are both flopping around freely and
the receptor has no bound free ligands; (iii) the tethered ligand and
receptor are both flopping around freely, and the receptor has bound
one of the free ligands. Our aim is to make falsifiable predictions for
the signal dependence on, for example, the linker length and ligand
concentration.

To develop an intuitive sense of how this situation plays out, the
probability of finding the switch in the active state is represented

B
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Figure 19.62: Schematic of the signaling process leading to actin polymerization. (A) Activation of Arp2/3 by ligands Cdc42 and
PIP2. (B) Synthetic switch constructed to activate Arp2/3 as a result of the presence of an alternative ligand. (C) Activity of the
synthetic switch as a function of the signaling ligand. (Adapted from J. E. Dueber et al., Science 301:1904, 2003.)
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Figure 19.63: States and weights for the synthetic signaling problem.

schematically in Figure 19.64. The essence of the situation is that
as the concentration of free ligand is increased, the probability that
the receptor will be bound by one of the free ligands will increase
until this outcome dominates the probability. From the standpoint of
testing our understanding of such systems, one of the other design
parameters that can be varied is the length of the flexible tethers. As
will be shown explicitly when we demonstrate the contributions of the
autoinhibitory state to the overall partition function, the length of the
tether is a significant part of the overall free energy budget.

To make this calculation concrete, we resort here to simple one-
dimensional ideas on the random walk introduced in Chapter 8 and
show how the calculation generalizes to three dimensions, but leave
the details for the reader as a problem at the end of the chapter. Our
strategy will be to break the total partition function for this system
down into three parts as reflected in Figure 19.63, where the sum can
be written as

Ztot(L, NR, NL) = Z1(L, NR, NL)

autoinhibitory state

+ Z2(L, NR, NL)

free tethers

+ Z3(L, NR, NL)

tether with ligand

.

(19.166)

The parameter L is the number of ligands in the system, NR is the
number of Kuhn segments in the polymer tether that has the teth-
ered receptor, and NL is the number of Kuhn segments in the polymer
tether that has the tethered ligand. Given these decompositions, we
can then write the probability that the switch will be in the active
state as

pactive = Z2 + Z3

Z1 + Z2 + Z3
. (19.167)

The separate contributions to the total partition function can be
worked out in much the way we have done in similar problems
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Figure 19.64: Probability of activation of Arp2/3. The numerator is the sum of the statistical weights of the active states.

throughout the book. The key point is that each class of state has a
number of microscopically equivalent configurations and to find their
contribution to the overall partition function, we need to multiply the
Boltzmann weight for each class of state by its corresponding micro-
scopic degeneracy (obtained by adding up all of the different ways of
arranging the system). For example, the contribution from the states
in which the tethers are flopping around freely and there is no free
ligand bound is given by

Z2 = N !
L!(N − L)!

solution ligands

× 2NR2NL

tether configs.

× e−βLεsole−βεsol

Boltzmann weight

. (19.168)

The treatment of the tether degrees of freedom is based on the sim-
plest one-dimensional random walk in which we imagine that every
segment in the tether can point either to the left or right and we do
not worry about self-avoidance. It is straightforward to use a more
robust model of the tethers, but we use this one for simplicity. What
this means precisely is that each tether can be in one of 2N differ-
ent configurations, where N is the number of Kuhn segments in the
tether of interest. We have also introduced the energy εsol for the
energy of the ligands when they are free in solution and the parameter
ε
lig
sol for the energy of the tethered ligand when it is in solution. The

most interesting class of states are those that are associated with the
autoinhibition of the switch and that involve the tethering ligand and
receptor being linked. In this case, the contribution to the partition
function is

Z1 = N !
L!(N − L)!

solution ligands

× (NR + NL)!
{[

1
2 (NR + NL)

]
!
}2

tether closure

× e−βLεsole−βεb

Boltzmann weight

, (19.169)

where we have used the result from Section 8.2.4 (p. 333). The contri-
bution from tether closure is the number of ways of making a closed
loop out of a polymer of length NR + NL Kuhn segments. The last con-
tribution to the total partition function arises from those microstates
in which one of the free ligands attaches to the tethered receptor. This
means that the solution contribution to the partition function will only
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involve L− 1 ligands. This term can be written as

Z3 = N !
(L− 1)![N − (L− 1)]!

solution ligands

× 2NR2NL

tether configs.

×e−β(L−1)εsole−βεb

Boltzmann weight

. (19.170)

The actual formula for pactive can now be obtained by substituting
the values for Z1, Z2, and Z3 obtained above into Equation 19.167. The
resulting expression is considerably simpler if we use an alternative
form of this equation, namely,

pactive = 1 + (Z3/Z2)

1 + (Z1/Z2) + (Z3/Z2)
. (19.171)

This leads to an expression for pactive of the form

pactive = 1 + (c/c0)e−β#ε1

1 + ploope−β#ε2 + (c/c0)e−β#ε1
, (19.172)

where we have introduced c = L/Nv, c0 = 1/v, and ploop, which is the
probability of forming a loop, and where #ε1 is the binding energy for
a free ligand and #ε2 is the binding energy for the tethered ligand–
receptor pair. For the one-dimensional model considered above, we
have

ploop =
(NR + NL)!/

{[
1
2 (NR + NL)

]
!
}2

2NR+NL
, (19.173)
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Figure 19.65: Prediction of
dependence of activation on effective
tail length. (A) pactive as a function of
ligand concentration for different tether
lengths. Experimental data are shown
as small circles. (B) The effective
concentration of tethered ligand as
seen by the tethered PDZ domain as a
function of tether length. (Data from
J. E. Dueber et al., Science 301:1904,
2003.)

which amounts to the ratio of the number of closed configurations for
the polymer of length NR + NL to the total number of configurations.
However, the one-dimensional model has outlived its usefulness and
we can just as well use the result of a full three-dimensional analysis
of ploop using the Gaussian model of a polymer, for example. This
calculation is left as an exercise for the reader.

The outcome of this kind of analysis is shown in Figure 19.65. There
are several subtleties that were not accounted for in the calculation
described above. First, as shown in the figure, the tethers do not
emanate from the same point. This results in a fundamental differ-
ence in the behavior of ploop as a function of tether length as shown in
Figure 19.65(B). Second, in the figure, we used a three-dimensional
Gaussian model for the tethers rather than the one-dimensional
example worked out above.

19.5 Summary and Conclusions

Regulation and signaling are two of the most important ways in which
cells orchestrate their behavior in space and time. The goal of this
chapter has been to take stock of some of the key architectures of
regulatory and signaling networks and to show how simple models
using statistical mechanics and rate equations can be put forth to
develop intuition and to make predictions about how these networks
work. The so-called “thermodynamic models” of gene expression are
predicated on the idea of using equilibrium statistical mechanics to
examine the probability of promoter occupancy. A dynamical inter-
pretation of these same questions uses rate equations to compute the
concentration of both mRNA and their associated proteins.
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19.6 Problems
Key to the problem categories: • Model refinements and
derivations, • Estimates, • Data interpretation,
• Computational simulations, • Model construction

• 19.1 Strong and weak promoters

In the chapter, we introduced repression as a quantitative
measure of the reduction in the level of gene expression due
to the action of a repressor molecule. For the simple model
of repression introduced on p. 814, make a plot comparing
repression in the case of a weak and a strong promoter.
Show that, unlike the weak promoter case, in the case of the
strong promoter, the repression depends upon the number
of polymerase molecules in the cell.

• 19.2 Lac Repressor and the lac operon

A beautiful set of quantitative experiments on the lac
operon were done by the Müller-Hill group in the 1990s,
where repression of expression of the lacZ gene was
measured in a population of different mutant E. coli cells.
The mutant cells differed in the number, sequence, and
position of the operator sites that bound the Lac repressor.
In this problem, we explore how, using thermodynamic
models of gene expression, these data can be used
to obtain a number of quantities characterizing the
Lac repressor–DNA interaction as well as DNA
looping.

(a) Using the data from Oehler et al. (1994) shown in
Figure 19.22 determine the in vivo binding energy of Lac
repressor to each one of its operators and reproduce
Figure 19.23.

(b) Use your results from (a), and the repression measured
by Oehler et al. (1994) in cells with two operators present,
which leads to DNA looping, in order to determine the
looping energy and to reproduce Figure 19.27.

(c) As mentioned many times throughout the book, Müller
et al. (1996) performed an experiment where the repression
level was measured as a function of the distance between
operators. The experiment and its results are shown in
Figure 1.11 (p. 19). Based on their repression data and the
thermodynamic models from the chapter, make a plot of the
looping energy as a function of the interoperator distance.
Show analytically that a maximum in repression
corresponds to a minimum in looping energy. At what
interoperator distance is the inferred looping free
energy at a minimum? Is this consistent with the
measured persistence length of DNA in vitro, which
is 50 nm?

(d) Fit the looping energy obtained in (c) to the functional
form #Floop = a/Nbp + b ln Nbp + cNbp + e. Use this looping
energy to make predictions about the outcome of a
hypothetical experiment similar to the one performed by
Müller et al. (1996), but now using cells bearing 10, 200, and
900 Lac repressor molecules per cell.

Relevant data for this problem are provided on the book’s
website.

• 19.3 Sensitivity of the regulation factor

An important concept in gene regulation is the sensitivity,
that is, how steep is the change in gene expression (for

example, the steepness of the transition from the “off” to the
“on” state in activation) in response to a change in the
number of transcription factors. It can be quantified by
obtaining the slope on a log–log plot of the level of gene
expression versus the number of transcription factors at
this transition. Using thermodynamic models of gene
regulation, determine how the sensitivity depends on the
relevant parameters for the following regulatory motifs in
the case of a weak promoter:

(a) Simple activation.

(b) Simple repression.

(c) Two binding sites where the same species of repressor
can bind. They can recruit each other and repress RNA
polymerase independently. What happens when the
interaction is turned off? For simplicity, assume that both
binding sites have the same binding energy.

(d) Repression in the presence of DNA looping.

• 19.4 Plasmid copy number and gene expression

In this problem, we work out an expression for the
repression for the case in which there are N plasmids, each
harboring the same promoter subjected to repression by the
simple repression motif.

(a) Write a partition function for P RNA polymerase
molecules that can bind to the plasmids, resulting in
expression of our gene of interest. Take into account the
cell’s nonspecific reservoir and assume that P ≫ N.
Calculate the mean number of plasmids occupied by RNA
polymerase, ⟨N⟩. Could you just have predicted this result
based on what you know about the N = 1 case?

(b) Work out an expression for the repression defined as

repression = ⟨N⟩(R = 0)

⟨N⟩(R ̸= 0)
. (19.174)

Make sure to take into account the distinct cases where
N < R and N > R, where R is the number of repressors, and
assume that you are dealing with a weak promoter, namely
(P/NNS)e−β#εpd ≪ 1.

(c) Show that your result yields the same expression for
simple repression in the case where N = 1 that we found in
the chapter.

(d) Consider the case where there are two plasmids (that is,
N = 2) and work out the repression as a function of the
number of repressors and make a corresponding plot.

• 19.5 The transcriptional machinery in eukaryotes

In the thermodynamic models of gene regulation discussed
in the chapter, the RNA polymerase is treated as a single
molecular species. While this might be a reasonable
assumption for transcription in prokaryotes, in eukaryotes
tens of different molecules need to come together in order
to form the transcriptional machinery. The objective of this
problem is to develop intuition about the requirements for
our simple model to apply in such a complex case by
assuming that the transcriptional machinery is made out of
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two different subunits, X and Y, that come together at the
promoter.

(a) Calculate the probability of finding the complex X + Y
bound to the promoter in the case where unit X binds to
DNA and unit Y binds to X. Can you reduce this to an
effective one-molecule problem such as in the bacterial
case?

(b) Calculate the fold-change in gene expression for simple
repression using transcriptional machinery such as that
proposed in (a). Explore the weak promoter assumption in
order to reduce the expression to that corresponding to the
bacterial case. Repeat this for the case where an activator
can contact Y.

(c) Repeat (a) and (b) for a case where Y binds to a site on
the DNA that is near the X-binding site, and there is an
interaction energy between X and Y.

• 19.6 Induction of transcription factors

Even though experiments where the concentration of a
transcription factor is varied are easier to interpret in terms
of models, like those described in this chapter, the
experiments that are the easiest to perform are those where
the affinity of the transcription factor to its specific binding
sites on the DNA is regulated by an inducer molecule. In the
case of Lac repressor, allolactose or any of its analogs (IPTG,
for example) can be used to reduce its specific binding
energy to values similar to its nonspecific binding
to DNA.

Assume a simple model of induction where one inducer
molecule binds to the repressor, which then loses its ability
to bind specifically to its operator site. Calculate repression
in this case and plot it as a function of the number of
inducer molecules in the cell.

• 19.7 Solving the unregulated promoter master
equation

Solve the master equation for the unregulated promoter
shown in Equation 19.39 in steady state by proposing a
solution in terms of a generating function given by
f (s) =

∑+∞
m=0 p(m)sm. In order to do this, you will have to

multiply both sides of the equation by sm and sum over all
values of m in order to obtain a differential equation
for f (s).

• 19.8 Cell-to-cell variability as a function of
fold-change

In the chapter, we derived the Fano factor for a promoter
architecture regulated by a repressor that binds to a single
site overlapping the promoter. In this case, the Fano factor
depends on the mean absolute number of mRNA molecules
per cell. An alternative way of looking at the Fano factor is
as a function of the fold-change in gene expression, which,
under the weak promoter approximation, is just the
regulation factor. Reproduce the plot shown in
Figure 19.37(A) by calculating the Fano factor as a function
of the corresponding fold-change in the mean level of gene
expression.

• 19.9 Separation of time scales and
transcriptional regulation

For transcription to start, the RNA polymerase bound to the
promoter needs to undergo a conformational change to the

so-called open complex. The rate of open complex
formation is often much smaller than the rates for the
polymerase binding and falling off the promoter. Here, we
investigate within a simple model how this state of affairs
might justify the equilibrium assumption underlying
thermodynamic models of gene regulation, namely that the
equilibrium probability that the promoter is occupied by the
RNA polymerase determines the level of gene expression.

(a) Write down the chemical kinetics equation for this
situation. Consider three states: RNA polymerase bound
nonspecifically on the DNA (N); RNA polymerase bound to
the promoter in the closed complex (C); and RNA
polymerase bound to the promoter in the open complex (O).
To simplify matters, take both the rate for N→ C and the
rate for C→ N to be k. Assume that the transition C→ O is
irreversible, with rate *.

(b) For * = 0, show that in the steady state there are equal
numbers of RNA polymerases in the N and C states. What is
the steady state in the case * ̸= 0?

(c) For the case * ̸= 0, show that for times 1/k≪ t ≪ 1/*,
the numbers of RNA polymerases in the N and C states are
equal, as would be expected in equilibrium.

• 19.10 Copy number and the Poisson promoter

The model of the Poisson promoter considered in the
chapter assumed that the number of copies of the gene of
interest was fixed at one. However, as a result of the
replication of the chromosomal DNA, during some part of
the cell cycle there will be two (or even more for rapidly
dividing cells) copies of the gene of interest. In this
problem, we imagine that during a fraction f of the cell
cycle, there is one copy of our gene of interest and during
the rest of the cell cycle there are two such copies.

(a) Write down the appropriate distribution p(m) for m
mRNA molecules as a function of the parameter f .

(b) Find ⟨m⟩.
(c) Find ⟨m2⟩ and use it to find the Fano factor.

(d) Plot the Fano factor as a function of f for different
choices of the mean mRNA copy number for a single
promoter. How “Poissonian” do you expect an unregulated
promoter to be?

(Problem courtesy of Rob Brewster and Daniel Jones.)

• 19.11 Gillespie algorithm revisited

In the computational exploration, we showed how the mRNA
evolves as a function of time.

(a) Plot the bias of the reaction-choice coin flip (that is,
production or decay) as a function of time. Explain
intuitively what is happening.

(b) Plot the time step as a function of time.

• 19.12 Mean protein burst size for a single mRNA

Using the probability distribution for a protein burst of size
n from Equation 19.113 and the definition of the mean burst
size as

⟨n⟩ =
∞∑

n=0

nP(n), (19.175)

demonstrate that the mean burst size is given by the ratio
of the protein translation rate to the rate of mRNA decay as
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in Equation 19.114:

⟨n⟩ =
rp
γ

= b. (19.176)

• 19.13 A minimal genetic switch

In this problem, we consider a simpler switch than that
considered in the chapter. For this switch, we consider an
activator that activates its own production.

(a) Make a figure of the states, weights, and rates for an
activator that activates itself by binding as a dimer and such
that its binding to the DNA is characterized by a Hill
function with Hill coefficient 2. Your states and weights
should be analogous to those shown in Figure 19.45. Given
these states and weights, write a rate equation for the time
evolution of the activator. Include a term for a basal rate of
production even in the absence of activator.

(b) Make a one-dimensional phase portrait by performing a
graphical analysis of the differential equation based on the
plot of dA/dt versus A. Use this phase portrait to
characterize the existence of fixed points and their stability.
Is it appropriate to refer to this as a switch?

•19.14 Chemotaxis of E. coli

In chemotaxis experiments, a source of nutrient molecules
can be introduced into the medium containing bacteria via a
micropipette. The outward diffusion of the nutrient
molecules creates a position-dependent concentration
gradient, and the chemotactic response of the bacteria can
be observed under a microscope.

(a) Estimate the nutrient gradient in steady state as a
function of the distance from the micropipette r by
assuming that it keeps the concentration fixed at c0 for
distances r < r0. Make a plot of the concentration gradient
as a function of r for typical values c0 = 1 mM and
r0 = 1 µm.

(b) Assuming that the bacterium makes two measurements
of the concentration using one array of receptor proteins at
one of its ends and another array at the other, estimate the
maximum distance from the nutrient source for which the
bacterium is still able to detect a gradient. Assume that the
receptor array counts the number of molecules present in a
cubic volume with side a = 100 nm. To solve this problem,
you should recall that the counting error for N molecules is
roughly

√
N, and in order to detect the difference in

concentration between the two ends of the bacterium, the
measurement error should be less than the difference itself.

(c) Now assume a different strategy, where one receptor is
employed but the bacterium compares the concentration at
two different positions along a run, separated by a distance
of 10 µm. Compute the maximum distance from the nutrient
source at which the bacterium will be able to detect the
gradient in this case.

• 19.15 MWC model for heterogeneous receptor
clusters

Develop an MWC model for the response of chemotactic
receptor clusters where there are M molecules of one type
of receptor and N molecules of the other type in a given
cluster. The entire cluster is either active or inactive and the
two different receptors are characterized by different
affinities for the chemoattractant of interest. Specifically,
derive an equation that is analogous to Equation 19.158 for
the probability that the receptor cluster will be in the on
state. To do so, construct a states-and-weights diagram like
that shown in Figure 19.58.

• 19.16 N-WASP and biochemistry on a leash

In the last section of the chapter, we considered the action
of N-WASP using a simple one-dimensional random walk
model to treat the statistical mechanics of looping. Redo
that analysis by using the Gaussian model of a polymer
chain. First, assume that the loop has to close on itself and
then account for the finite size of the protein domain.
Compare your results with those obtained in the chapter.

19.7 Further Reading
Alon, U (2007) An Introduction to Systems Biology: Design
Principles of Biological Circuits, Chapman & Hall/CRC. Alon’s
book gives a comprehensive and thoughtful discussion of
regulation.

Bintu, L, Buchler, NE, Garcia, HG, et al. (2005) Transcriptional
regulation by the numbers: applications, Curr. Opin. Genet.
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phenomenology of post-translational modification. This is a
reminder that there is more to regulation than transcriptional
control.

Cherry, JL, & Adler, FR (2000) How to make a biological switch,
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switches.

Ptashne, M (2004) A Genetic Switch, 3rd ed., Cold Spring
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ideas as opposed to facts and paints a picture of how gene
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Ptashne, M, & Gann, A (2002) Genes and Signals, Cold Spring
Harbor Laboratory Press. This book provides an excellent
overview of transcriptional regulation.
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article gives a comprehensive discussion of the physics of
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Müller-Hill, B (1996) The Lac Operon: A Short History of a
Genetic Paradigm, Walter de Gruyter. Müller-Hill’s book is a
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explore the complexity associated with eukaryotic gene
regulation.

Ellner, SP, & Guckenheimer, J (2006) Dynamic Models in Biology,
Princeton University Press. This book examines dynamical
models and their relevance to biology and has a treatment of
both the genetic switch and the repressilator.

Berg, HC, & Brown, DA (1972) Chemotaxis in Escherichia coli
analysed by three-dimensional tracking, Nature 239, 500.

This paper uses a three-dimensional tracking technique to
follow individual bacterial cells during chemotaxis and
demonstrates how bacteria find their way by altering the
timing of runs and tumbles.

Keymer, JE, Endres, RG, Skoge, M, Meir, Y, & Wingreen, NS
(2006) Chemosensing in Escherichia coli: two regimes of
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Section 19.4.
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