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Chapter 1

Diffusion: Microscopic Theory

Diffusion is the random migration of molecules or small
particles arising from motion due to thermal energy. A
particle at absolute temperature T has, on the average, a
kinetic energy associated with movement along each axis
of kT/2, where k is Boltzmann’s constant. Einstein
showed in 1905 that thisis true regardless of the size of the
particle, even for particles large enough to be seen under a
microscape, i.e., particles that exhibit Brownian move-
ment. A particle of mass m and velocity v, on the x axis
has a kinetic energy mu,%/2. This quantity fluctuates, but
on the average {mu,%/2) = kT/2, where { ) denotes an
average over time or over an ensemble of similar particles.
From this relationship we compute the mean-square
velocity,

(v,2y = kT/m, (1.1)
and the root-mean-square velocity,
(sz')”z - (kj;‘/m)HZ' (1'2)

We can use Eq.1.2 to esiimate the instantaneous velocity
of a small particle, for example, a molecule of the protein
lysozyme. Lysozyme has a molecular weight 1.4 x 10%g.
This is the mass of one mole, or 6.0 x 102 molecules; the
mass of one molecule is m = 2.3 x 10°2 g, The value of
kT at 300°K (27°C) is 4.14 x 104 g cm?/ec?. Therefore,
05" = 1.3 x 10% cmysec. This is a sizeable speed. If
there were no obstructions, the molecule would cross a
typical classroom in about 1 second. Since the protein is
not in a vacuum but isimmersed in an aqueous medium, it
does not go very far before it bumps into molecules of
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Fig. 1.1. Particles confined initiajly in a smalt region of space (a)
diffuse symmetrically outward (b) or outward and downward (c) if
subjected to an externally applied force, F.

water. As a result, it is forced to wander around: to
execute a random walk. If a number of such particles were
confined initially in a small region of space, as shown in
Fig. 1.1a, they would wander about in all directions and
spread out, as shown in Fig, 1.1b. This is simple diffusion.
If a force were applied externally, such as that due to
gravity, the particles would spread out and move down-
ward, as shown in Fig. 1.1c. This is diffusion with drift. In
this chapter, we analyze simple diffusion from a micro-
scopic point of view, We look at the subject more broadly
in Chapters 2 and 3. Diffusion with drift is considered in
Chapter 4.

One-dimensional random walk

In order to characterize diffusive spreading, it is con-
venient to reduce the problem to its barest essentials, and
to consider the motion of particles along one axis only,
say the x axis, as shown in Fig. 1.2, The particles start at
time ¢ = 0 at position x = 0 and execute a random walk
according to the following rules:

1) Each particle steps to the right or to the left once
every 7 seconds, moving at velocity +u, a distance
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Fig. 1.2. Particles executing a one-dimensional random walk start at
the origin, 0, and move in sieps of length 8, occupying positions 0,
+8, +26, +35, ... .

6 = t+uv,7. For simplicity, we treat 7 and 8 as constants. In
practice, they will depend on the size of the particle, the
structure of the liquid, and the absolute temperature 7.

2) The probability of going to the right at each step is
1/2, and the probability of going to the left at each step is
1/2. The particles, by interacting with the molecules of
water, forget what they did on the previous leg of their
journey. Successive steps are statistically independent.
The walk is not biased.

3) Each particle moves independently of all the other
particles. The particles do not interact with one another.
In practice, this will be true provided that the suspension
of particles is reasonably dilute.

These rules have two striking consequences. The first is
that the particles go nowhere on the average. The second
is that their root-mean-square displacement is propor-
tional not to the time, but to the square-root of the time.
It is possible to establish these propositions by using an
iterative procedure. Consider an ensemble of N particles.
Let x;(n) be the position of the ith particle after the nth
step. According to rule 1, the position of a particle after
the nth step differs from its position after the (n — th
step by +6&:

xm) =x{n—1)+ & (1.3)

According to rules 2 and 3, the + sign will apply to
roughly half of the particles, the — sign to the other half.
The mean displacement of the particles after the sth step
can be found by summing over the particle index / and



8—Diffusion: Microscopic Theory
dividing by N:

N
{x(n)) = Z x;{n). (1.4)

1
N
On expressing x; (/) in terms of x;(z — 1), Eq. 1.3, we find

l N
{x(n)) = ~ ;; [x{n - 1) + 6]

N
_1 Y xf{n— 1) =L{x(m - 1}). (1.5)

N
The second term in the brackets averages to zero, because
its sign is positive for roughly half of the particles, nega-
tive for the other half. Eq.1.5 tells us that the mean posi-
tion of the particles does not change from step to step.
Since the particles all start at the origin, where the mean
position is zero, the mean position remains zero. This is
the first proposition. The spreading of the particles is

symmetrical about the origin, as shown in Fig.1.3.

Fig. 1.3. The probability of finding particles at different points x at
timesf = 1,4, and 16, The particles start out at position x = 0 at time
t = 0. The standard deviations (root-mean-square widths} of the dis-
tributions increase with the squareroot of the time. Their peak
heights decrease with the square-root of the time. See Eq. 1.22.
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How much do the particles spread? A convenient
measure of spreading is the root-mean-square displace-
ment {x(n))'/2. Here we average the square of the dis-
placement rather than the displacement itself. Since the
square of a negative number is positive, the result must be
finite; it cannot be zero. To find {x*(n)), we write x;(n)} in
terms of x,(n — 1}, asin Eq.1.3, and take the square:

XA = xf(n — 1) + 28x(n — 1) + 82 (1.6)

Then we compute the mean,

(x}(n)) = ii xin), (.7
N inl
which is
l N
Ay = ~ l_; bxAn - 1) + 26x,(n — 1) + &7

= {x¥n - 1)) + & (1.8)

As before, the second term in the brackets averages to
zero; its sign is positive for roughly half of the particles,
negative for the other half, Since x;(0) = 0 for all particles
i, {<x%(0)> = 0. Thus, {(x¥ (1)) = &, {(xX*}(2)y =28, ...,
and {xX(n)) = n8*. We conclude that the mean-square
displacement increases with the step number n, the root-
mean-square displacement with the square-root of A.
According to rule 1, the particles execute » steps in a time
t = nr: n is proportional to ¢, It follows that the mean-
square displacement is proportional to #, the root-mean-
square displacement to the square-root of ¢. This is the
second proposition. The spreading increases as the
square-root of the time, as shown in Fig. 1.3.
To see this more explicity, note that # = #/r, so that

(xX)y = (¢n)d* = 67/, 1.9
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where we write x(f) rather than x(n) to denote the fact that
x now is being considered as a function of ¢. For con-
venience, we define a diffusion coefficient, D = 6%/27, in
units cm?%sec. The reason for the factor 1/2 will become
clear in Chapter 2. This gives us

{(x¥ =2Dt (1.10)
and
{x2y\2 = (2DH?, {1.11)

where, for simplicity, we drop the explicit functional
reference (f). The diffusion coefficient, D, characterizes
the migration of particles of a given kind in a given
medium at a given temperature. In general, it depends on
the size of the particle, the structure of the mediam, and
the absolute temperature. For a small molecule in water at
room temperature, D = 10~° cm¥/%sec.

A particle with a diffusion coefficient of this order of
magnitude diffuses a distance x = 10™ cm (the width of a
bacterium) in a time ¢ = x%2D = 5 x 10~* sec, or about
half a millisecond. It diffuses a distance x = 1 cm (the
width of atest tube) inatime f = x%2D = 5§ x 104 sec, or
about 14 hours. The difference is dramatic. In order fora
particle to wander twice as far, it takes 4 times as long. In
order for it to wander 10 times as far, it takes 100 times as
long. Therefore, there is no such thing as a diffusion velo-
¢ity; displacement is not proportional to time but rather
to the square-root of the time. What happens if we try to
define a diffusion velocity by dividing the root-mean-
square displacement by the time? The result is an explicit
function of the time. Dividing both sides of Eq. 1.11 by ¢,
we find '

(1.12)

<x2>lf2 2D £/2
‘ =(T) '



Diffusion: Microscopic Theory—11

Thus, the shorter the period of observation, ¢, the larger
the apparent velocity. For values of £ smaller than 7, the
apparent velocity is larger than &7 = v,, the instanta-
neous velocity of the particle. This is an absurd result.

In Chapter 2 we will speak of adsorption rates or diffu-
sion currents. These expressions refer to the number of
particles that are adsorbed at, or cross, a given boundary
in unit time. They are bulk properties of an ensemble of
particles, proportional to their number. They are not
rates that tell us how long it takes a particle, by diffusion,
to go from here to there. This time depends on the square
of the distance, as defined by Eq. 1.10. When next you
come across the expression *“diffusion rate,” think twice!
This phrase is ambiguous, at best, and often used in-
correctly.

Two- and three-dimensional random walks

Rules | to 3 apply in each dimension. In addition, we
assert that motions in the x, y, and z directions are statis-
tically independent. If {(x?) = 2Dr, then (%} = 2Drand
{z?) = 2Dt. In two dimensions, the square of the dis-
tance from the origin to the point (x,y) is 2 = x2 + y%;
therefore,

(r?y = 4D1. {1.13)
In three dimensions, 72 = x* + y? + 22, and
(r?y = 6Dt (1.14)

A computer simulation of a two-dimensional random
walk is shown in Fig. 1.4. Steps in the x and y directions
were made at the same times, so the particle always moved
diagonally. The simulation makes graphic a remarkable
feature of the random walk, discussed further in Chap-
ter 3. Since explorations over short distances can be
made in much shorter times than explorations over long
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Fig. 1.4, An x, y plot of a two-dimensional random walk of # =
18,050 steps. The computer pen started at the upper left corner of the
track and worked its way to the upper right edge of the track. It
repeatedly traversed regions that are completely black. It moved, as
the crow flies, 196 step lengths. The expected root-mean-square dis-
placement is (2n)"2 = 190 step lengths.

distances, the particle tends to explore a given region
of space rather thoroughly. It tends to return to the same
point many times before finally wandering away. When it
does wander away, it chooses new regions to explore
blindly. A particle moving at random has no tendency to
move toward regions of space that it has not occupied
before; it has absolutely no inkling of the past. Its track
does not fill up the space uniformly.

The binomial distribution

We have learned so far that particles undergoing free
diffusion have a zero mean displacement and a root-
mean-square displacement that is proportional to the
square-root of the time. What else can we say about the
shape of the distribution of particles? To find out, we
have to work out the probabilities that the particles step
different distances to the right or to the left. While doing
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$0, it is convenient to generalize the one-dimensional ran-
dom walk and suppose that a particle steps to the right
with a probability p and to the left with a probability 4.
Since the probability of stepping one way or the otheris 1,
g = 1 — p. The probability that such a particle steps
exactly & times to the right in # trials is given by the
binomial distribution
Plcnp) = ——o—ptq™. (L15)
T kln — &) ’
This equation is derived in Appendix A; see Eqs. A.17,
A.18. The displacement of the particle in # trials, x(n), is
equal to the number of steps to the right less the number
of steps to the left times the step length, §:

x(n) = [k — (n - k)16 = (2k — n)d. (1.16)

Since we know the distribution of &, we know the distri-
bution of x. The two distributions have the same shapes.
The probability machine shown in Fig. A.3 converts one
into the other.

The mean displacement of the particle is

{x(n)} = (kY — n)d, (1.17)
where
(k) = np; (1.18)
see Eq. A.22. The mean-square displacement is
(x3(n)) = L[k — n)8)")
= (4{k% — alkyn + n%)d?, (1.19)
where
(k) = (npy + npg; (1.20)

see Eq. A.23. For the case p = g = 1/2, Eqgs. 1.17 and
1.19 yield {x(n)> = 0 and {(x*(n)) = né’, as expected.
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The Gaussian distribution

A small particle, such as lysozyme, steps an enormous
number of times every second, Given the instantaneous
velocity estimated from Eq. 1.2, v, = 87 = 10* cm/sec,
and a diffusion constant, D = /27 = 107° cm?%5sec, we
can compute the step length, 8, and the step rate, 1/7. The
step length is 2D/, = (107% cm¥5sec)/(10° cm/sec) =
10° ¢m, and the step rate is v,/6 = (10° cm/sec)/
{10 cm) = 102 gec’!, Of these n = 102 steps taken each
second, np = 0.5 x 10*? are taken to the right. The stan-
dard deviation in this number is (npq)'’? = 0.5 x 10%; see
Eq. A.25. So, to a precision of about a part in a million,
half of the steps taken each second are made to the right
and half to the left, What happens to the distribution of x
in this limit? As stated in Appendix A, when n and np are
both very large, the binomial distribution, P(k;n,p), is
equivalent to

1

where P(k)dk is the probability of finding a value of &
between k + dk, p = (k) =np, and o2 = npg, see
Eq. A.27. This is the Gaussian or normal distribution. By
substituting x = 2k — n)8, dx =26dk, p =g = 1/2,
t = n/r, and D = 8%27, we obtain

1

.P(X)dx = W e“z”m'a{x, (1.22)

P(k)dk = e k2% e (1.21)

where P(x)dx is the probability of finding a particle
between x and x + dx. This is the function plotted in Fig.
1.3. The variance of this distribution is ¢, = 2.D¢; its
standard deviation is o, = (2Dn)2,

The Gaussian or normal distribution is the distribution
encountered most frequently in discussions of propaga-
tion of errors. It is tabulated, for example, in the Hand-
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book of Chemistry and Physics, as the “normal curve of
error”; see Fig. A.5, About 68% of the area of the curve
is within one standard deviation of the origin. Thus, if
the root-mean-square displacement of the particles is
(2D1)!'2, the chances are 0.32 that a particle has wandered
that far or farther. The chances are 0.045 that it has
wandered twice as far or farther and 0.0026 that it has
wandered three times as far or farther. These numbers are
the areas under the curve for |x| =g,, 20,, and 3¢,,
respectively.

Visunalizing the Gaussian distribution: It is instructive
to generate the distributions shown in Fig. 1.3 experimen-
tally. This can be done by layering aqueous solutions of a
dve, such as fluorescein or methylene blue, into water.
For a first try, layer the dye at the center of a vertical
column of water in a graduated cylinder. The dye
promptiy sinks to the bottom! It does so because it has a
higher specific gravity than the surrounding medium. For
a second try, match the specific gravity of the medium to
the dyve by adding sucrose to the water. Now the dye drifts
about and becomes uniformly dispersed in a matter of
minutes or hours. It does so because there is nothing
to stabilize the system against convective flow. Any
variation in temperature that increases the specific gravity
of regions of the fluid that are higher in the column rela-
tive to those that are lower drives this flow. For a final try,
layer the dye into a column of water containing more
sucrose at the bottom than at the top, i.e., into a sucrose
density gradient; a 0-t0-2% w/v solution will do. Match
the specific gravity of the solution of the dye to that at
the midpoint of the gradient and layer it there. Now,
patterns of the sort shown in Fig. 1.3 will evolve over a
period of many days. The diffusion coefficients of fluo-
rescein, methylene blue, and sucrose are all about
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5 x 107% cm®sec. A sucrose gradient x = 10 ¢m high
will survive for a period of time of order ¢ = x¥2D =
107 sec, or about 4 months. The dye will generate a Gaus-
sian distribution with a standard deviation o, = 2.5 cmin
atime? = 0,%2D =6 x 10° sec, or in about 1 week. Try
it?

It is evident from this experiment that diffusive trans-
port takes a long time when distances are large. Here is
another example: The diffusion coefficient of a small
molecule in air is about 10! cm?/sec. If one relied on diffu-
sion to carry molecules of perfume across a crowded
room, delays of the order of 1 month would be required.
Evidently, the makers of scent owe their livelihood to
close encounters, wind, and/or convective flow.



Chapter 2

Diffusion: Macroscopic Theory

Fick’s equations

Most discussions of diffusion start with Fick’s equa-
tions, differential equations that describe the spatial and
temporal variation of nonuniform distributions of parti-
cles. I find it more illuminating to derive these equations
from the model of the random walk, Suppose we know
the number of particles at each point along the x axis at
time ¢, as shown in Fig, 2.1. How many particles will
Mmove across unit area in unit time from the point x to the
point x + 67 What is the net flux in the x direction, J,? At
time ¢ + 7, 1.e., after the next step, half the particles at x
will have stepped across the dashed line from left to right,
and half the particles at x + & will have stepped across the
dashed line from right to left. The net number crossing to
the right will be

- % [NCx + 8) — N(x)].
To obtain the net flux, we divide by the area normal to the

Miox) N{x+8)

I
X+ 3

Fig. 2.1. At time ¢, there are N(x) particles at position x, N(x + §)
particles at position x + &. At time ¢ + 7, half of each set will have
stepped to the right and half to the left.
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x axis, 4, and by the time interval, 7,
J= - % INGe + 8) ~ NCOI/Ar.

Multiplying by 662 and rearranging, we obtain

@I INE+8) N
T 20 8| As As |

The quantity 5%/27 is the diffusion coefficient, D.
N(x + §)/Aé is the number of particles per unit volume
at the point x + §, i.e., the concentration C(x + 8).
N(x)/A8 is the concentration C(x). Therefore,

I = =D%[C(x + 8) — C(x)].

But 6 is very small. In the limit § =0, by the definition
of a partial derivative, as explained in Appendix B, we
obtain

Je= =D EE 2.1)

dx

This is Fick’s first equation. It states that the net flux
(at x and ?) is proportional to the slope of the concenira-
tion function (at x and ¢); the constant of proportionality
is —D. If the particles are uniformly distributed, the
slopeis0,i.e.,0C/3x = 0, and J, = 0.1If J,is 0, the distri-
bution will not change with time; the system is at equilib-
rium. If the slope is constant, i.e., if 3C/8x is constant, J,
is constant. This occurs when C is a linear function of x,
as shown in Fig. 2.2. In practice, a gradient of this kind
can be maintained only if there is a source for particles at
one point and an adsorber for particles at another, e.g., in
a pipe connecting reservoirs held at fixed concentrations
Ciand C,.
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Ci
.
|

b Py

Fig. 2.2. The flux due to a linear concentration gradient
(C, — C,)/b. There is a net movement of particles from right to left,
solely because there are more particles at the right than at the left.

When we derived Eq. 1.10, we defined D = §%/27. The
reason for the 1/2 is now clear; it makes Fick’s first equa-
tion more tidy. Note that if C is expressed in parti-
clesfem?®, J, is in particles/cm?sec. If C is expressed in
moles/em? J, is in moles/cm?sec.

Fick’s second equation follows from the first, provided
that the total number of particles is conserved, i.e., that
the particles are neither created nor destroyed. Consider
the box shown in Fig. 2.3. In a period of time 7, J (x)47
particles will enter from the left and J,(x + §)A4 7 particles
will leave from the right. The volume of the box is 48, If
particles are neither created nor destroyed, the number of

particles per unit volume in the box must increase at the
rate

W

% [CE+7n - CH) —% [V ix + 8) — Ji(x)]A1/46

= _é [Volx + 8) — J.00].
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area 4

L

Sy L, 1) = — S (x+ 3, 0)

X x+B8

Fig. 2.3. Fluxes through the faces of a thin box extending from posi-
tion x to position x + 8. The area of ¢ach face is A. The faces are
normal to the x axis.

In the limit r— 0 and 56— 0, this means that

acC aJ, '
—_—— —— 2.2
at dx @2
or, given Eq. 2.1, that
2C *C
— =D— 2.3
at ax? 23

This is Fick’s second equation. It states that the time rate
of change in concentration (at x and ¢) is proportional to
the curvature of the concentration function (at x and ¢);
the constant of proportionality is D. If the slope is con-
stant, 9°C/dx? = 0, and the concentration is stationary:
just as many particles diffuse in from the region of higher
concentration as diffuse out to the region of lower concen-
tration. Eq. 2.3 tells us how a nonuniform distribution of
particles will redistribute itself in time. If we know the ini-
tial distribution and other boundary conditions, we can
figure out all later distributions.
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In three dimensions we have J, = —DaC/dx, J, =
~DJC/dy, and J, = — D 3C/dz. These are components
of a flux vector,

J= —-Dgrad C. (2.4)
The concentration changes with time as

ac

=DV, 2.5
3 2.5)

where V2 is the three-dimensional Laplacian, 4%9x? +
3Yay? + a¥az .
If the problem is spherically symmetric, the flux is
radial,
J, = ~DaC/sr, ©.6)

and

¥=D

3C 1 3(,dC
la( ar)' @.7)

Time-dependent solutions to Fick’s equations

One way to find solutions to Fick’s equations is to look
them up! An excellent source is Carslaw and Jaeger
(1959), a book dealing with the conduction of heat in
solids. The heat equation has the same form as the diffu-
sion equation. In the notation of Carslaw and Jaeger,

v _ kVp,

dat
where v is the temperature and « is the thermal diffusivity.
So, take their results and read € for » and D for «. Sources
that do not require such translation include Crank (1975)
and Jost (1960). But this strategy requires luck. If you
happen to find a discussion of just the problem that vou
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are trying to solve, well and good. If not, you will soon be
lost in a morass of complex equations. Here are some
“trivial” examples.

Diffusion from a micropipette: A micropipette filled
with an aqueous solution of a green fluorescent dye is
inserted into a large body of water. At time ¢ = 0, parti-
cles of the dye are injected into the water at the rate i per
sec for an infinitesimal period of time dt. The total num-
ber of particles injected is N = idt. With these boundary
conditions, Eq. 2.7 has the solution

N 2
Cir.t) = W g riaDr (2.8)

This is a three-dimensional Gaussian distribution; comn-
pare Eq. 1.22. Looking through a microscope, one sees
the sudden appearance of a green spot that spreads
rapidly outward and fades away. The concentration
remains highest at the tip of the pipette, but it decreases
there as the three-halves power of the time. An observer
at radius r sees a wave that peaks at = r%/6D at a con-
centration C = 0.0736 N/r3. He finds that the concen-
tration rises most rapidly at time ¢ = r%/16.325D at a rate
aC/at = 1.054 ND/r>.

The wave due to a pulse of length f, can be found by
integrating Eq. 2.8 with respect to time. For 1 < 4,

C(r,t) = (2.9

: erfc d
47 Dr (@4D)y'?’

where erfc x is the error function complement, 1 — erf x,
and erf x is the error function, defined by the integral

erf x = \[—% ig e™ du. (2.10)

This function is tabulated, just like sin x or cos x; see, for



Diffusion: Macroscopic Theory—23

example, Chapter 7 of Abramowitz and Stegun (1972)
or Appendix II of Carslaw and Jaeger {(1959). Note that
erf0=0, erf oo =1, and erf (—x) = —erf x. If the
pulse is long enough, the concentration approaches the
steady-state value

t) = 2.11
Crt) = 4= @1
Fort> t(),
erfc ———— — erfc s
C(?',[) = 4‘}1’D { (4.Dl‘)”2 [4D(f —- t{})]iﬂ *
@.12)

Figure 2.4 shows the concentration observed at r =
107 cm for a pulse of constant injection rate / and length
to = 1 sec for particles of diffusion coefficient D = 1075,
3 x 107,105, 3 x 107,107, and 3 x 10°% cm%5sec, If the
diffusion coeflicient is large, the particles diffuse beyond
the observer while the pulse is still on, and the peak con-
centration is given by Eq. 2.11. If the diffusion coefficient
is small, the events occur on a time scale that is long com-
pared to the length of the pulse, and the peak concen-
tration approaches C = 0.0736 it,/r*, as required by Eq.
2.8. For other examples of diffusion from constrictions,
see Jaeger (1965).

Diffusion in a pipe: In principle, one could measure
diffusion coefficients with experiments of the kind illus-
trated in Fig. 2.4, but in practice it is easier to work in one
dimension and to follow the spread of a narrow band of
particles, as shown in Fig. 1.3. Alternatively, one can ex-
pose a column of solution at concentration C, to one at
concentration 0 and watch the migration of particles from
one to the other. In this case, the initial conditions are
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1.0r

{ (sec)

Fig. 2.4. Concentration (in arbitrary units} as a function of time ata
distance r = 102 cm from a point-source in an infinite medium emit-
ting particles at a constant rate from ¢ = 0to ¢, = 1 sec, for particles
with diffusion coefficient, D{in cm?/sec): (@) 1075, (5) 3 x 1075, (¢)
1075, (d)3 x 1077, (€) 1077, and (£} 3 x 107%, See Eqgs. 2.9and 2.12,

C = Cyfor x> 0and C = 0 for x <0, and Eq. 2.3 has the
solution

(2.13)

X
Dy 2|’

Cix,t) = %‘1 [1 + erf

Sinceerf 0 = 0, Eq. 2.13 implies that the concentration of
particles at x = 0 falls abruptly to C,/2 and remains at
that value. This behavior is shown in Fig. 2.5. By taking
derivatives of C(x,r) with respect to x or ¢, we obtain

aC Co

o @ @14
and
acC x oC
o 2 IE 2.15
ot 2t 0x (2.13)

Equation 2.14 is similar to Eq. 1.22, Thus, D can be mea-
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o

o]
X

Fig. 2.5. Concentration as a function of position at times f = 0, 1, 4,
and 16 for diffusion from a column of liquid initially containing parti-
cles at a concentration Cj (right) into a column of liquid initially
devoid of particles (left), The horizontal axis in this figure is drawn on
the same scale as that of Fig. 1.3, which shows 8C/dx. See Eqgs.
2.13-2.15,

sured if one measures C as a function of space and/or
time. A numerical solution to a sirnilar problem is given in
Appendix B, Fig. B.3.

Steady-state solutions to Fick’s equations

If sources and adsorbers are present, the final distri-
bution of particles will not be uniform; instead, the con-
centration will approach a steady-state value that is
higher near sources, lower near adsorbers. In this limit,
aC/dt = 0, and Eq. 2.5 reduces to

vC = 0. : (2.16)
For problems with spherical symmetry, Eq. 2.7,

1 d{,dC
——[|r*—] =0. 2.17
rt dr (r dr) @17)
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We already have seen the steady-state solutions for diffu-
sion in one dimension from a plane at concentration C,
to a plane at concentration C,, Fig. 2.2, and for diffusion
in three dimensions from a continuous point-source in
an infinite medium, Eq. 2.11. Here are some other ex-
amples,

Diffusion to a spherical adsorber: Consider a spherical
adsorber of radius ¢ in an infinite medium, as shown in
Fig. 2.6. Every particle reaching the surface of the sphere
is gobbled up, so the concentration at r = ais 0. The con-
centration at r = oo is Cy. With these boundary condi-
tions, Eq. 2.17 has the solution

cw) = c0(1 - %} (2.18)
The flux, Eq. 2.6, is
J(r) = —DC'O%-. 2.19)

The net migration of molecules is radially inward, as
shown by the dashed arrows in Fig. 2.6. The particles are

— g ———

\.\ //
“‘\-. //‘
£
€:0 °
at r= e
7 ~
- ‘""\.
- ~

- ———

Fig. 2.6, A spherical adsorber of radius ¢ in an infinite medium
containing particles at an initial concentration C,. The dashed arrows
are lines of flux,
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adsorbed by the sphere at a rate equal to the area, 4742,
times the inward flux, —J{a):

I = 41 DaC,. (2.20)

If Cyis expressed in particles/cm’, I'is in particles/sec. We
will refer to this adsorption rate, 7, as a diffusion current.
Note that this current is proportional not to the area of
the sphere but to its radius. As the radius, g, increases, the
area increases as a2, but the concentration gradient, to
which the flux is proportional, decreases as 1/a.

Diffusion to a disk-like adsorber: Next, consider a disk-
shaped adsorber of radius s in a semi-infinite medium, as
shown in Fig. 2.7. Every particle reaching the surface of
the disk is gobbled up, so the concentration at the disk is
0. The concentration at x = o is ;. This problem is
cylindrically symmetric rather than spherically sym-

»
/ P
si P
- -
- — €:0 cecy
- - alsc- =
b
\\ ‘-..-\
“ ~.

Fig. 2.7. A disk-like adsorber of radius s on one edge of a semi-
infinite medium, x = 0, containing particles at an initial concentration
C,. The dashed arrows are lines of fiux.
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metric, so the mathematics is not so easy; see, for exam-
ple, p. 42 of Crank (1975). But the answer turns out to be
simple. The diffusion current is

I = 4DsC,. ©.21)
¢
\\ /
\\ r
R
~w. 7 -

C=€ -rT £:Cp
gz - ———-——j—h———-————- ot rzm
PR T N
-~ i - T
i “w
r N
; N
s A
/ Y

Fig. 2.8, A circular aperture of radius 5 in a nonadsorbing barrier
separating two semi-infinite media, x < 0 and x = 0, containing parti-
cles at initial concentrations C, > C,. The dashed arrows are lines of
flux.

An analogous problem, illustrated in Fig. 2.8, involves
diffusion through a circular aperture of radius s in a non-
adsorbing barrier separating two semi-infinite media. The

concentration at x = — oo is €, and the concentration at
Xx = o is (., The current through the aperture is
L, =2Ds(C, — Cy). (2.22)

These currents are proportional not to the area of the disk
(or aperture) but to its radius, As the radius, s, increases,
the area increases as 52, but the concentration gradient, to
which the flux is proportional, decreases as 1/s.
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Diffusion to an ellipsoidal adsorber: Next, consider a
cigar-shaped adsorber, an ellipsoid of revolution with
semi-axes @ > b = ¢. The concentration at the surface of
the ellipsoid is 0, and the concentration at r = o is Gy If
the ellipsoid is relatively thin, in particular, if a® = b2, the
diffusion current is

I = 4x DaCy/In (2a/b), (2.23)

where In denotes the natural logarithm, This current is
smaller than that found for a sphere of radius a given
in Eq. 2.20 by the factor In(2e/b). This factor is not as
large as one might expect. For example, if b = 10-2g,
InQRa/b) = 5.3;if b = 10%a, In(2a/b) = 9.9. Once again,
the current is proportional not to the area of the adsorber
but roughly to its length.

Appeal to an electrical analogue: The time-indepen-
dent diffusion equation, Eq. 2.16, is analogous to La-
place’s equation for the electrostatic potential in charge-
free space. As explained elsewhere (Berg and Purcell,
1977), this implies that the diffusion current to an isolated
adsorber of any size and shape can be written as

I = 4rDcCy, 2.24)

where ¢ is the electrical capacitance {in cgs units of centi-
meters) of an isolated conductor of that size and shape.
Since the electrical capacitances of a variety of conduc-
tors have been worked out, Eq. 2.24 can save some labor.
For example, Eq. 2.23 was obtained from an expression
for the electrical capacitance of a conducting ellipsoid [by
using formula 195.02 of Dwight, 1961, to evaluate the
integral 5.02 (4) of Smythe, 1950, and converting from
mks to cgs units by multiplying by 1 /4=¢]. Smythe used
the same integral in another limit to compute the capaci-
tance of a conducting disk, which led us to Eq. 2.21. We
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could have derived Eq. 2.20 in a similar fashion, but it
was more instructive, given the spherical symmetry, to
solve the diffusion equation directly.

Diffusion to N disk-like adsorbers on the surface of a
sphere: Given that diffusion currents to spheres, disks,
and prolate ellipsoids of similar size are roughly equal, it
seems likely that diffusion currents to other adsorbers of
similar size should be roughly equal. This turns out to be
true, even for nonadsorbing objects sprinkled with small
adsorptive patches. Suppose N disk-like adsorbers, each
of radius s, are distributed over the surface of an other-
wise impenetrable nonadsorbing sphere of radius g >» s,
as shown in Fig. 2.9. The concentration at r = o is .

N sinke
rodius s

=0

O &y

at f= e

Fig. 2.9. An impenetrable nonadsorbing sphere of radius ¢ covered
with N disk-like adsorbers, each of radius s, in an infinite medium
containing particles at an initial concentration C,.

This is a reasonable model for N chemoreceptors or N
transport proteins on the surface of a cell. How does the
total adsorption rate vary with N? If N is very small, two
adsorbers should do twice as well as one, so the rate
should increase as 4 DNsCy, Eq. 2.21. But when Nis very
large, almost the entire surface of the sphere is adsorbing,
and the rate should approach 47 DaC,, Eq. 2.20. What
happens in between? In this regime, the distance between
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Fig. 2.10. Two disk-like adsorbers of the sphere shown in Fig, 2.9,
The dashed arrows are lines of flux. These lines become radial at a dis-
tance g from the surface of the sphere, a distance roughly equal to the
distance between adjacent adsorbers.

receptors is large compared to their radius but small com-
pared to the radius of the cell, as shown in Fig. 2.10. The
lines of flux are radial for > @ + da (as in Fig. 2.6) but
converge on the adsorbers for ¢ <r < g + da (as in Fig.
2.7). Evidently, the concentration at * = ¢ + da is con-
stant at some intermediate value between 0 and C,.

This problem is formally equivalent to one in electricity
in which current flows through a medium of finite resis-
tivity to N conductive patches on an insulating sphere,
with the medium a large distance away at potential ¥, and
the patches at potential 0. The concentration, C, is an
analogue of the potential, ¥. In the electrical case, we
have Ohm’s law, which states that the current through a
resistor is equal to the potential drop across its terminals
divided by its resistance. For steady-state diffusion, we
have I = C/R, where I is the diffusion current, C is the
concentration difference, and R is the diffusion resistance.
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N resistors
in parallel

A, Ra+aa

r=a r=a+ 8o r=o
c=0 C‘=C‘0

Fig. 2.11. An electrical model for the problem of N adsorbers of
radius s on the surface of a sphere of radius g, the problem illustrated
in Figs. 2.9 and 2.10.

By appealing to this relation, we note that the diffusion
resistance for the adsorbing sphere, Eq. 2.20, is R, =
1/4% Da, and that the diffusion resistance for the disk-
like adsorber, Eq. 2.20, is R, = 1/4Ds. These resistances
are shown as discrete elements in Fig. 2.11. The total
resistance of this circuit is R =R, 4 + R/N =
1/[dxD(a + 6a)] + 1/4DNs. Since da < a, R = 1/4xDa
+ 1/4DNs = (1/4zDa)(1 + wa/Ns) = R,(1 + wa/Ns).
We conclude that the diffusion resistance for a sphere
covered with N disk-like adsorbers is larger than the diffu-
sion resistance for the completely adsorbing sphere by a
factor 1 + ma/Ns. The diffusion current is smaller by the
same factor:

I 1

I, 1+ xa/Ns’ (2.25)

where [, = 4w DaC,, Eq. 2.20. Iis plotted as a function of
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Fig. 2.12. The diffusion current, or rate of adsorption, I, as a
function of the number of adsorbers, N, for disk-like adsorbers of
radius s on the surface of a sphere of radius @. See Eq. 2.25. [ is the
diffusion current for the completely adsorbing sphere, Eq. 2.20.

NinFig. 2.12. If Nis small, the rate increases as 4 DNsCj,.
If N is large, the rate approaches 4w DaC,. This is the
asymptotic behavior that we predicted.

Note that the diffusion current reaches half of its maxi-
mum value for N = wg/s. This number is surprisingly
small. Consider a spherical cell of radius ¢ =5 um
equipped with N transport proteins, each with a binding
site of radius s = 10 A. This cell can adsorb substrate
molecules at half the rate of a cell completely covered by
such sites if N = wa/s = 15,700, Only a small fraction of
the surface of the cell need be specifically adsorbing,
namely Nws%*/4wa® = 1.6 x 107, The distance between
neighboring sites is about (dxa*N)"? = 0.14 pm, i.e.,
about 140 times the site radius. Thus, many hundreds of
different transport (or receptor} systems can be accom-
modated on the surface of the cell, each adsorbing parti-
cles of a specific kind-with an efficiency approaching that
of a cell whose entire surface is dedicated to one such task.
For other discussions of this problem, see Berg and
Purcell (1977) and DeLisi and Wiegel (1981).
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It should be stressed that the electrical analogy used
in the derivation of Eq. 2.25 does not extend to time-
dependent diffusion; it only applies in the steady-state.
The flux is proportional to the concentration gradient,
but individual particies are not moving like electrons
through a wire; they are moving strictly at random. The
same restriction applies to the analogy leading to
Eq. 2.24,

Diffusion through N circular apertures in a planar bar-
rier: Consider a system in which two plates a distance b
apart are held at concentrations C; and C,, as shown in

N
apertures

e — — — — —|

A,

5
AN

e Ry
A MM, A A
LAk b VWY YV Y

lil

LA A

A resisiors

in paraliel
Fig. 2,13, A barrier with N = nA apertures, each of radius s, sepa-
rating two plates of area A held at concentrations C, and C, {top), and
an electrical model for this system (bottom). See Eq. 2.27.
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Fig. 2.2. Let the system have a cross-sectional area A.
The diffusion current from one plate to the other is

Iz‘] = DA (Cz - C] )/b. (226)

Now insert somewhere between the two plates a thin bar-
rier containing N apertures, each of radius s <« b, as
shown in Fig. 2.13. What is the diffusion current in the
new steady state? The diffusion resistance for one aper-
ture is R, = 1/2Ds, Eq. 2.22. The diffusion resistance
of the medium between the plates is R, + R, =R, | =
b/DA, Eq. 2.26. The diffusion resistance of the entire
system is R+ R, + R/N=R,, + R/N = b/DA +
1/2DNs = (b/DAX1 + 1/2nsb), where n is the number
of apertures per unit area. It follows that the barrier
decreases the diffusion current by a factor

I 1

S . E— 2.27
L, 1+ 1/2nsh @.27)

If this ratio is written as b/(b + 1/2ns), it is evident from
the denominator that the effect of the barrier is equivalent
to the addition of an extra diffusion path of length 1/2#s.

The diffusion current reaches half of its maximum
value for n = 1/2sb. This number is surprisingly small.
Consider two cubical cells 10 um on a side joined on one
face. Assume that the membranes comprising this face
are of negligible thickness and penetrated by N pores,
each of radius 50 A. How many pores are required for the
diffusion current between the cells to be half as large as it
would be were the barrier not there? Given N/A = 1/2sb,
with 4 =10®%cm?, s =5 x 107 cm, and b = 2 x 107?
cm, we find N = 500. Only a small fraction of the surface
of the barrier need be penetrated, namely Nxs¥A =
3.9 x 10™*. The distance between neighboring pores is
about (A/N)"? = 0.45 um, i.e., about 90 times the pore
radius.
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A similar problem involves the diffusion of gases
through the stomata of leaves. In this case, the concentra-
tion is clamped at 0 inside the leaf, just to the left of the
barrier; so R, = 0, and the diffusion resistance for each
aperture is the same as that for the disk-like adsorber,
R, = 1/4Ds. Thus, the stomata add an extra diffusion
path of length 1/4ns, and the diffusion current reaches
half of its maximum value for 7 = 1/4sb. This analysis is
valid only for the boundary layer near the surface of the
leaf, i.e., in still air. For a discussion of this problem, see
Chapter 3 of Meidner and Mansfield (1968).



Chapter 3

Diffusion to Capture

In Chapter 2 we compared the steady-state rates of uptake
of particles by completely adsorbing objects of various
shapes, such as spheres, disks, and ellipsoids. We found
that these rates are proportional to the linear dimension
of the object rather than to its area, and that the shape is
not of crucial importance. For example, the diffusion cur-
rents to a sphere of radius ¢, a two-sided disk of radius a,
and an ellipsoid of revolution of length 2 and radius a/10
fall in the ratios 1 to 0.64 to 0.33. We also found that a
reflecting object of a given size and shape sparsely covered
with adsorbent patches is nearly as good at sequestering
particles as a completely adsorbing object of the same size
and shape. From a microscopic point of view, both sets of
results reflect the fact that a diffusing particle that finds
itself in a given region of space is destined, by that very
circumstance, to wander around that region for a time,
probing it rather thoroughly before wandering away for
good. A particle that finds itself in a spherical space of
radius & has a fair chance of blundering into a disk or an
ellipsoid inscribed in that space. A particle that bumps
into a reflecting object has a fair chance of hifting an
adsorbent patch nearby on its surface. This property of
the random walk is apparent in the two-dimensional
simulation shown in Fig. 1.4. That particle wandered
about in some regions at great length but ignored others
completely. It is very difficult to get a feel for this mindless
ramble from a casual study of the diffusion equation
(Eq. 2.5). In this chapter, we try to make these ideas more
quantitative by working out some probabilities of capture
and mean times t0 capture.
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Probability of capture

Suppose a particle is released near a spherical adsorber
of radius g at a point r = b > g? What is the probability
that the particle will be adsorbed at r = arather than wan-
der away for good? Naively, one might think that as b
increases, this probability would decrease as 1/b?, as
would be expected if the probability of capture depended
on the solid angle subtended by the adsorber at the point
of release. In fact, the probability decreases only as 1/5.

To see this, consider a spherical shell source of radius
between a spherical adsorber of radius a and a spherical
shell adsorber of radius ¢, as shown in Fig. 3.1. The con-
centration rises from 0 at r = ¢ to a maximum value C,,
at r = b and then falls again to 0 at r = ¢. With these

Fig. 3.1. A spherical shell source, radius b, between a spherical
adsorber of radius a and a spherical shell adsorber of radius ¢, Parti-
cles released at r = bmove inward and arc adsorbed atr = gatrate I,
or move outward and are adsorbed at r = ¢ at rate [,,. Their steady-
state concentration rises from 0 at » = @ to C, af r = b and then falls
again to 0 at r = ¢. See Egs. 3.1-3.5.
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boundary conditions, Eq. 2.17 has the solution

T o5 f";/b(l-—f:) a=r=<bph
Cr) = (3.1)
Cp ¢
c/b«—l(r 1) b=r=c.
The radial flux, Eq. 2.6, is
DC, «a
'—T'_—"I—/E)-FE ﬂﬂrﬂb
JAr) = 3.2)
DC, c
J— e
¢/b-1r? =€

Thus, the diffusion current from the spherical shell source
to the inner adsorber is

[4]

Iy = 4w DC,, ———,
n = 1 - a/b

(3.3)

and the diffusion current from the spherical shell source
to the puter adsorber is

C

Iom = 41rDCm E‘?b——-i— .

(3.4)

The ratio

Ly, _ac-b)
L‘n + Iowr b(c - (1)

{3.5)

is the probability that a particle released at r = b will be
adsorbed at 7 = a. In the limit ¢ — o, this probability is
just a/b. This is the probability of capture for the sphere
of radius ¢ immersed in an infinite medium. As b in-
creases, this probability decreases as 1/b, as predicted.
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An individual particle has no way of knowing that an
adsorber is present unless it blunders into it. Thus, Eq. 3.5
gives the probability that a particle released at r = &
reaches r = ¢ before diffusing as far as r = ¢, even when
the adsorbers are not there. Suppose a particle is released
at r = b near the surface of a reflecting sphere of radius a.
How many times, on the average, does it reach the surface
of the sphere and return to r = b before wandering away
for good? The probability that the particle visits the
sphere at least once before wandering away for good is
p = a/b. The probability that it visits the sphere once,
returns to r = b, and then wanders away for good is
p(l ~- p). The probability that the particle makes this
round trip twice and then wanders away for good
is p?(1 — p). The probability that it does so » times is
p"(1 — p). Therefore, the mean number of round trips
is

{n) =3 np"(1 - p). (3.6)
h=0
By factoring out p(1 — p) and noting that 1 + 2p +
3p2 + -+ = (1 - p)?, wefind

{ny =p/(l — p)=a/(b - a). 3.7

It follows that a particle close to the surface of the sphere
makes a large number of trips from b to ¢ and back again
before wandering away for good; the number increases
without limit as b approaches a. In the process, the parti-
cle probes the sphere at alarge number of points, some far
enough apart to allow it to find adsorbent patches, even
when these patches cover only a small fraction of the sur-
face. For a derivation of Eq. 2.25 from this point of view,
see pp. 196-198 of Berg and Purcell (1977).

What is the probability that a particle released atr = b
near the surface of an adsorbing sphere of radius ¢ wan-
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ders as far as r = ¢ or farther before being captured?
The probability that a particle is adsorbed at r = ¢ after
diffusing to an arbitrary radius is a/b. The probability
that a particle is adsorbed at r = @ without diffusing as
far as r = ¢ is given by Eq. 3.5. The probability that a
particle is adsorbed at r = a after diffusing as farasr = ¢
or farther is the difference of these two probabilities,
namely, a/b — a(c — b)/b(c — a) = a(b — a)/b(c - a).
The fraction of particles that do so is this number divided
by a/b, i.e., (b — a)/(c — a). Thus, on the average, if
100 particles are released at r = 2a, (a/2a) x 100 = 50
will be adsorbed at r = a, and 50 will wander away for
good. Of the 50 that are adsorbed at r=a,
[2a — @)/(3a — a)] x 50 = 25 will have wandered as far
as r = 3a or farther before being captured. One will have
wandered as far as r = 51a or farther before being cap-
tured.

We noted earlier that a particle executing a random
walk has no inkling of its past. These calculations empha-
size the fact that it also has no inkling of its future. The
behavior of an individual particle is not affected by an
adsorber unless, by chance, it happens to bump into it.

The one-dimensional case is shown in Fig. 3.2. The
diffusion currents are [, = DAC,/a, and I, =
DAC,, /(b — a). The probability that a particle released
at x = ¢ will be adsorbed at x = 0 1is

Ly, _ b—a 3.8)
Tiop + Loign b

In the limit & — oo, this probability is 1. The average num-
ber of trips that a particle makes from x = ato areflecting
barrier at x = 0 before reaching x = b is (b — a)/a. The
probability that a particle released at x = a is adsorbed
at x = 0 after diffusing as far as x = b or farther is
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1 — (1 — a/b) = a/b. Thus, on the average, if 100 parti-
cles are released at r = @, 50 will have wandered as far as
x = 2a or farther before being captured. One will have
wandered as far as x = 100a or farther before being cap-
tured. None of the particles will wander away for good.

Mean time to capture

When a particle is released at position x = a, as indi-
cated in Fig. 3.2, how long does it take to blunder into an
adsorber at x = 0 or x = b7 If this experiment is repeated
many times, what is the mean time to capture, W{a)? To
find out, we return to the formalism of the random walk,
release a particie at position x at time ¢ = 0, and allow it
to step to the right or to the left a distance 8 every 7 sec.
At time 7, the particle will be at position x + § with prob-
ability 1/2, or at position x — & with probability 1/2. The
mean times to capture from these positions are W(x + §)

t
1
I
|
ot 11 ZLright
-— —
]
|
|
|
|
=0 X=g x=b
630 C=Cm C=0

Fig. 3.2, A planar source at x = g between two planar adsorbers at
x = 0andx = b. The cross-sectional areq of the system is 4. Particles
released at x = a move to the left and are adsorbed at x = Qatrate I,
or move to the right and are adsorbed at x = b at rate I,,. Their
steady-state concentration rises from 0 at x = 0to C,, at x = ¢ and
then falls again to 0 at x = b, See Eq. 3.8.
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and W{(x — §), respectively. Thus, the expectation value
of Wix)is

Wx) =1+ % [Wx +8) + Wix~8)]. (3.9

By adding and subtracting W(x)/2 and multiplying
through by 2/8, we obtain

W+ 8) = W0 - %[W(x) ~ Wix - 8))
27 |
+ R

= 0.
6

In the limit of very small 6, by the definition of a deriva-
tive, we have

dw

aw _dW
dx

— +-—==0.
x dx x-b &

Dividing once more by 8, appealing again to the definition
of a derivative, and noting that 27/8% = 1/D, we obtain

2
% + }15 = 0. (3.10)
This differential equation can be solved for W given suit-
able boundary conditions. At an adsorbing boundary,
the mean time to capture is 0, so W = 0. At a reflecting
boundary, the mean time to capture does not vary with x,
so dW/dx = 0.

If there are adsorbing boundaries at x = 0 and x = b,
as shown in Fig. 3.2, then W(0) = W(b) =0, and
Eq. 3.10 has the solution

Wix) = Z—ID— (bx — x?). 3.11)
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The mean time to capture a particle released halfway in
between, at x = b/2, is b*/8 D. The mean time to capture
a particle released at random anywhere in between x = 0
and x = b is given by the average

1¢e
5 jﬂ W(x)dx, (3.12)

which, on substitution of Eq. 3.11, gives 6%/12D.

If thereis an adsorbing boundary at x = 0 and areflect-
ing boundary at x = b, then W(0) =0, dW/dx =0 at
x=b, and

_ 1 2
Wix) = 5D 2bx — x*). (3.13)

The mean time to capture a particle released at x = /2 is
now 352%/8 D, three times longer than before. Sometimes
a particle released at x = b/2 wanders from x = b/2 to
Xx = b and back again before capture at x = 0. Eq. 3.8
tells us that the probability for this is 1/2. Events of this
kind raise the mean. The mean time to capture a par-
ticle released at random is now b%/3 D, four times longer
than before.

These results are shown graphically in Fig. 3.3. The
average height of each curve is given by the area that it
subtends divided by its width, as specified by Eq. 3.12. In
the case of two adsorbing boundaries, the largest contri-
butions to the average occur when the particle is released
near x = b/2; in the case of one adsorbing and one reflect-
ing boundary, the largest contributions occur when the
particle is released near x = b.

An example of a one-dimensional process of this kind
of encermous practical significance is the diffusion of a
molecule of repressor along a strand of DNA, in quest of
its binding site at the promoter. If the repressor, after
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Fig. 3.3. Plots of the mean time to capture for particles released at
position x with adsorbing boundaries at x = 0 and x = b (lower
curve, Eq. 3.11) or with an adsorbing boundary at x = 0 and a refiect-
ing boundary at x = b {upper curve, Eq. 3.13). If x is chosen at ran-
dom, the mean time to capture is b¥ 12D or b¥3D, respectively; see
Eqg. 3.12.

having arrived at a random point on a segment of DNA
of length b terminated at one end by the promoter, is
adsorbed strongly enough that it cannot desorb but
loosely enough that it can move along the DNA with a
finite diffusion coefficient D', then its mean time to cap-
ture is »2/3.D". Given the surprisingly high rate at which
particles can be adsorbed by a thread-like object, Eq.
2.23, it is reasonable to suppose that the repressor ac-
tually finds its binding site by such a two-stage mecha-
nism. But, as discussed for an analogous problem in two
dimensions (pp. 198-200 of Berg and Purcell, 1977), the
importance of this mechanism depends on the strength of
the nonspecific binding. Unless it is strong, the repressor
can <o as well or better by staying in three dimensions,
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The equation for the mean time to capture in two or
three dimensions is

Vi + = =0, (3.14)

1
D
where V2 is the two- or three-dimensional Laplacian. This
equation also can be solved by appeal to an electrical
analogue; it is Poisson’s equation for the potential (W) in
a region of uniform charge density (1/4xD). For some
sample solutions, see Appendix B of Berg and Purcell
(1977).

Note, finally, that the logic used in the derivation of Eq.
3.10 can be applied as well to the problem posed at the
beginning of this chapter, the probability of capture of a
particle at an adsorbing boundary. The recursion refation
for the probability of capture, P(x), of a particle released
at point x, corresponding to the recursion relation for the
mean time to capture, Eq. 3.9, is

1
Px) = 2 [Px + &) + P(x — 6)]. (3.1%)
This leads to the differential equation

2
‘;xf = 0. (3.16)

The boundary conditions for capture by an adsorber at
x = 0 rather than at one at x = b are P(0) =1 and
P(b) = 0. With these boundary conditions, Eq. 3.16 has
the solution

b—-x

Py = ——

(3.17)

which, for x = a, is the result obtained earlier from com-
putation of diffusion currents, Eq. 3.8.
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In two or three dimensions we have
V2P = (), (3.18)

where, as before, V2 is the two- or three-dimensional
Laplacian. For a particle released near a spherical
adsorber of radius a at a point r = & > a the boundary
conditions are P(g) =1 and P(w) = 0. With these
boundary conditions, Eq. 3.18 has the solution

P(r) = -‘} (3.19)
which, for r = b, is the'result obtained earlier from com-
putation of diffusion currents, a/b. Equation 3.5 follows
from the solution of Eq. 3.18 for a spherical adsorber of
radius ¢ inside a spherical shell adsorber of radius ¢ with
boundary conditions P(g) = 1 and P(c) = 0.



Chapter 4
Diffusion with Drift

The theory of diffusion developed in Chapters 1-3 would
be more useful if we had a means of estimating the values
of diffusion coefficients from first principles, given the
sizes and shapes of the particles of interest. It turns out
that this can be done if we compute the velocity at which a
particle drifts through the medium when exposed to an
externally applied force, such as that due to a gravita-
tional, centrifugal, or electrical field. In practice, the ve-
locity at which the particle moves in response to such a
field is infinitesimal when compared to the instantaneous
root-mean-square velocity given by Eq. 1.2. This means
that the particles diffuse much as they would in the ab-
sence of the field, but with a small persistent directional
bias, as indicated in Fig. 1.1c.

Random walk with drift

Consider a particle of mass m at position x subjected to
an externafly applied force, F,, acting in the +x direc-
tion, as shown in Fig. 4.1. In accordance with Newton’s
second law, the force causes the particle to accelerate uni-

O —=

X+ 8 x X+d,

Fig. 4.1, A particle of mass m subjected to an externally applied
force F, while undergoing a one-dimensional random walk.
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formly to the right with acceleration @ = F,/m. The ran-
dom walk proceeds as before, according to the rules set
down in Chapter 1, with a particle stepping to the right or
the left once every 7 seconds with an initial velocity +uv,
or ~u,. A particle starting at position x with an initial
velocity +uv, movesin time r adistance§, = v,z + ar?/2,
while a particle starting at position x with an initial veloc-
ity —uv, moves in time r a distance 6. = —v,7 + ar%/2.
Since steps to the right and left are eqgually probable, the
average displacement in time 7 is ar%/2, and the particle
drifts to the right with an average velocity

bg=aQ7T=-~—T. 4.1)

It is customary to relate the drift velocity to the applied
force by a parameter, f, called the frictional drag
coefficient;

F
Uy = 7X (4.2)
In our model, f = 2m/7. Multiplying both the numeratdr
and the denominator of this expression by (§/7)? and
noting that v, = §/7 and D = §%2r, we find f = mp,%/D.
But by Eq. 1.1, mu,? = kT, therefore, f = kT/D, or

kT
D ==, 4.3
7 4.3)

This result, known as the Einstein-Smoluchowski rela-
tion, turns out to be very general. It does not depend on
any assumptions made about the structure of the particle
or the details of its motion, a point to which we will return
in Chapter 5. Given Eqgs. 4.2 and 4.3, we have a procedure
for estimating D. First, apply a force F,, measure v,, and
use Eq. 4.2 to compute f; then, use Eq. 4.3 to compute D,

A reader who knows more physics might be perturbed
by our derivation of Eq. 4.3, Real particles do not step in
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synchrony at a fixed interval, move solely in one dimen-
sion, or start each step at a fixed velocity, Step intervals,
directions, velocities, and lengths continuously vary as
the particle exchanges energy with the molecules of the
fluid in which it is suspended. In a more rigorous treat-
ment, one worries about the distributions of these quan-
tities and defines a mean collision time—or for a large
particle diffusing in a medium of small particles, a direc-
tional correlation time—a mean velocity, and a mean free
path, The functional dependence of D and f on these
parameters is the same as in our model, but some of the
numerical coefficients differ. The final result is the same.
The essential point is that a particle is accelerated by the
externally applied force; it forgets about this acceleration
when it exchanges energy with the molecules of the fluid in
which it is suspended, and then it is accelerated once
again. As a result, the particle drifts through the medium
with a velocity proportional to the externally applied
force. The constant of proportionality is D/k7T. For
further discussion of these points, see Chapters 1-43 of
Feynman, Leighton, and Sands (1963).

Note, finally, that we could have obtained the same
drift velocity, v, = (D/kT)F,, from a biased random
walk, with the step rate, velocity and distance constant,
given a probability of stepping in the +x direction
p=1/2 + F.8/4kT and a probability of stepping in
the —x direction ¢ = 1/2 — F.8/4kT. To see this, nse
Eqs. 1.17and 1.18 withn = ¢/7, D = 6%/27. Since the bias
issmall, p/g = 1 + F,6/kT.

Fick’s equations for diffusion with drift

If all the particles in a distribution drift in the +x direc-
tion at velocity vy, then the flux at point x must increase by
an amount p,C(x). Thus, Fick’s first equation, Eq. 2.1,
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becomes

ac

= —D"é}" + y,C. {4.4)

The derivation of Fick’s second equation, Eq. 2.3,
proceeds as before, giving

0C arC acC

— = — 4.5
at dax? Ya ax @.5)

We will use this equation in the general proof of the
Einstein-Smohichowski relation given in Chapter 5.

Viscous drag

If a particle is large compared to the molecules com-
prising the medium in which it is suspended, it is possible
to use the equations of motion of viscous fluids and cal-
culate the frictional drag coefficient. These eguations,
called the Navier-Stokes equations, become relatively
simple when applied to small things moving slowly, i.e.,
under conditions in which viscous forces are important
but inertial forces are not. Viscous forces arise whenever a
fluid is sheared, i.e., whenever the velocities of adjacent
regions of fluid differ. Shear is generated, for example,
when two parallel plates are moved relative to one
another, as shown in Fig. 4.2, In this case, the velocity

—_—
4 - G ir!

& rTr TET T PAF A A ar v 4
X

Fig. 4.2. A viscous fluid contained between flat plates at y = 0 and
y = h. The area of each plate is A. The bottom plate is fixed. The top
one is propelled to the right by a force in the x dicection, F, . Arrows
show the velocity of the fluid relative to the bottom plate at different
distances from this plate, y.
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profile is linear:

ve(h1)
h

ve(y) = Y, (4.6)
and the shear, dv,/3dy, does not depend on the position, y.
Note that there is no slip at the boundaries; the fluid at the
surface of each plate moves at the velocity of that plate.
The force, F,, is balanced by the viscous drag due to the
shear:

v,
ay y=}!.

F, =134 4.7)
This equation provides an operational definition for the
coefficient of viscosity, #. The viscous drag is propor-
tional to 5, the area of the plate, and the rate of shear of
the fluid at the surface of the plate. The units of 5 can be
found from the dimensional equation [gcm/sec?] =
[9licm?l[cm/secem], which yields [n] = [g/cm sec],
which is called a poise (P}. The kinematic viscosity, », is
divided by the specific gravity of the medium, e} its units
are the same as that of the diffusion coefficient, cm%/sec,
which is called a stoke. The viscosity of water at 20°C is
0.01 P, or 1 centipoise (cP). The viscosities of air, water,
and glycerol are compared in the table below,

Viscosities of various fluids ar different temperatures,
in g fem sec (poise)

Air Water Glycerol (dry)
40°C 1.93 x 10 6.53 x 107 2.83
20°C 1.83 x 10 1,00 x 10 14.1
0°C 1.71 =« 10*  1.79 = 1072 120,

The viscosity of air increéases slowly with temperature;
it is nearly independent of pressure (data not shown). The
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viscosities of the liquids decrease rapidly with tempera-
ture. For most liquids encountered in the laboratory, 4 is
a constant at a given temperature; it does not depend on
the rate of shear. However, this is not the case for solu-
tions containing molecules with long unbranched chains,
such as methylcellulose; see, for example, Berg and
Turner (1979). Indeed, some media are so complex that
the viscous drag is not even in the direction of flow.
Fortunately, we do not encounter these problems with
dilute aqueous solutions of globular particles or with sub-
stances of Jow molecular weight,

Flow through a thin rectangular channel: Here is a
sample calculation. Consider a channel of length b
bounded by flat plates at ¥y = 0 and y = &, as shown in
Fig. 4.3. If a pressure difference A Pis applied between the
left and right ends of this channel, what is the flow profile
v,{(¥)? We can solve this problem using Eq. 4.7, assuming
that the width of the channel, w, is so large compared to
its height, A, that edge effects can be neglected. Consider a
thin layer of fluid extending from y to y + dy. The net
force due to the pressure difference at the ends of this
layer tending to drive the fluid through the channel is
APwdy. The net drag due to viscous shear at the bottom
and top edges of this layer tending to resist such flow is

nbw(9v,/8), — (30,/3¥)y, o] = —nbw(8%v,/8y)dy.

b ok £ pa L Vi Z
¥ W ipEdy)
— (Y3
o - rd rArd A rd F T FrrTrr Fd
0 &

Fig. 4.3. Fluid in a channel between two parallel plates driven from
left to right by a pressure gradient A P/b. Both plates are fixed. The
channel is of height 4, length b, and width w s 4,
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Thus,

a%v AP
x o 20 a.
3y’ b 4.8)

Integrating this equation twice and applying the bound-
ary conditions v,(0) = p,(#) = 0, we obtain

AP 4o
, = (hy — 2y = 7 — 2 .
() 3b (hy — %) W (hy - y%), .9

where v, is the maximum velocity, APh%/89b. The flow
profile is parabolic; the maximum velocity occurs in the
middle of the channel at ¥ = #/2. The volume of fluid
passing through the channel per unit time is

2
w !; v Vdy = 3 whu,, . {4.10)

The average velocity of the fluid is 2v,,/3.

in its most general form, Eq. 4.8 states that the
Laplacian of the velocity is equal to the gradient of the
pressure divided by the coefficient of viscosity. This is the
basic equation of slow viscous flow; see, for example,
Chapter 2 of Landau and Lifshitz (1959).

Flow around a sphere: Viscous flows around sinall
particles are highly regular. Figure 4.4 shows the flow
lines around a sphere, radius ¢, moving to the right
through a viscous fluid at constant velocity v4. The radial
and azimuthal components of the velocity of the fluid
relative to the sphere are

3¢ o°
r= —pgcosf|l ——+ —
v va ( 2r 2r3)

3 3 (4.11)
=u,sind(1-22__4%
Vg = Ug STt ( . r3)
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.47
0.53
0.58
0.63
0.66
0.69

R f,
e e—
= —

Fig. 4.4. A solid sphere moving at a constant velocity v, through an
incompressible viscous fiuid. The fluid moves around the sphere along
the flow lines shown. See Eq. 4.11. The numbers on the flow lines at
6 = —-90° indicate the magnitudes of v, at these points in units of v,.

Note that both are 0 at the surface of the sphere and that
both increase as r increases. The fluid at the surface of the
sphere moves with the sphere; the fluid a long distance
away does not. The motion of the sphere causes the fluid
to shear. Even at the outermost fiow line shown in the
figure, the fluid is moving 30% as fast as the sphere. The
sphere casrries fluid with it. Evidently, it must move
several diameters before it can shed its local environment.

Stoke’s law: A calculation of the net force acting on the
sphere yields Stoke’s law, which states that the force
necessary to drag a sphere of radius @ at a velocity v,
through an incompressible, viscous liguid is 6mnavy.
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Given Eqs. 4.2 and 4.3, this implies that

Jsowere = 6714, {4.12)
and
kT
Dppere = . 4.13
sph 67T1f.'ﬂ ( )

For a sphere of radius @ = 10 ¢m in water at room
temperature, fipue, = 1.9 x 107 g/sec, and Dy, =
2.2 x 107 cm?/sec.

The net force acting on a liquid droplet is slightly
smaller than that for a solid sphere of the same size,
because the liquid can flow backward along the sides of
the droplet (in the +#¢ direction, Fig. 4.4) and return
along its axis. This reduces the shear in the external
medium. For a sphere of viscosity %’ in a medium of vis-
cosity 7,

21 + 33"

w = 0Tna :
fd‘mplr N 3?? +37?!

4.14)
see §337 of Lamb (1932). In the limit 4’ — oo, this reduces
to Eq. 4.12. In the limit ’ — 0, we get the frictiona) drag
coefficient for a bubbile, e.g., of air:

Sousbie = 4T 4. {(4.15)

Note that a spherical cell behaves as a solid rather than as
a liquid, because the plasma membrane is not free to flow
through the middle of the cell. The same thing is true for a
droplet or bubble in a medium containing surface-active
agents that form a monolayer at the interface.

The frictional drag coefficients of a disk and an ellip-
soid of revolution are compared in Fig. 4.5. When a parti-
cle diffuses, it continuously changes its orientation. The
frictional drag coefficient, £, that characterizes the aver-
age drift velocity (and average diffusion coefficient) of
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",

Disk, moving N J1 = 16na
face-on |

Disk, moving —— 32

ecige-on e A

Disk, moving 7
at random J = 129a

Ellipsoid, moving C:B £ = 41rna
lengthwise Y 2

b 2
Ellipsoid, moving S £ = Brna
sidewise 2= In 2a N 1
b 2
Ellipsoid, moving 7= 6mna
at random . B In 2a
b

Fig. 4.5. Comparison of the viscous drag coeflicienis of a solid
circular disk of radius ¢ and a prolate ellipsoid of revolution of semi-
major axis @ and semi-minor axes b. The expressions for the ellipsoid
are valid in the limit a® 3 b2. For general expressions for oblate and
prolate ellipsoids, see p. 49% of Perrin (1934). The average coefficient
f was obtained from £, and £, as described in the text; see also pp.
10-11 of Perrin (1936). The frictional drag coefficient for a solid
sphere of radius & is 6wna, Eq. 4.12.
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such a particle is given by 1/ = (1/f, + 1/f» + 1/£,)/3,
where f,, f», and f; are the drag coefficients for motion
along the principal axes. For the particles shown in Fig.
4.5, f, = f3. Note that even though a particle is highly
asymmetric, f; and f; differ by less than a factor of 2.

Stoke’s law gives a good ballpark estimate for the vis-
cous drag on globular things, even for particles as small as
a molecule of the protein lysozyme. As a first approxima-
tion, do not worry about the shape of the particle, just
think in terms of a sphere of roughly the same linear size.
However, situations do arise in which asymmetries in
viscous drag matter. One that we will encounter in Chap-
ter 6is flagellar propulsion. A great deal of effort has gone
into figuring out the hydrodynamic properties of objects
of complex shape; see, for example, Garcia de la Torre
and Bloomfield (1981).

Sedimentation rate

We are now in a position to write down the equations
governing the sedimentation of particles in a gravitational
or centrifugal field. A particle of mass m and volume Vis
suspended in a fluid of specific gravity o and viscosity 5
and subjected to a gravitational field of acceleration g, as
shown in Fig. 4.6. The net downward force on the particle
is

Fdown = mlgs (4-16)

where m' is the effective mass of the particie, the mass of
the particle less the mass of the fluid it displaces:

m =m-— Vp. 4.17)

In a vacuum, the downward force on the particle would
be mg. In a fluid, it is reduced by an amount Vpg, the
force due to buoyancy. If Vp is smaller than m (m' posi-
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g
Fig. 4.6. A particle suspended in a fluid and subjected to a gravita-
tional field. The particle has mass m and volume V. The fluid has
specific gravity p, viscosity n. The downward acceleration is g.

tive), the particle sinks; if it is larger than m (m' negative),
the particle floats; if it is equal to m (m’' zero), the particle
is neutrally buoyant. Equation 4.17 often is expressed as
m’ = m(1l — vp), where ¥ is the specific volume of the par-
ticle, V/m.
From Eqs. 4.2 and 4.3 we have
_ Fdawn m’gD

O (4.18)

This is the Svedberg equation. It usually is written

W_g_MmD

< T 4.19)

where S is the sedimentation rate per unit acceleration.
The units of S are in sec; 1 Svedberg = 10-3sec. A 70 S
particle, such as a ribosome from the bacterium Esche-
richia coli, sediments in a field of 1 cm/sec? at the rate
70 x 107'* cm/sec. The acceleration due to gravity, g,
is about 980 cm/sec?, so in an ultracentrifuge at
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100,000 x g, the 70§ particle sediments at the rate
70 x 10~°cm/sec. This velocity is only 10~ as large as the
instantaneous root-mean-square velocity of such a parti-
cle, which is about 100 cm/sec. The centrifugal field adds
a small but persistent bias to the much more riotous
motion due to thermal energy.

Note that the sedimentation rate depends both on the
effective mass, ', and on the diffusion coefficient, D (or
the frictional drag coefficient, f). If two particles have the
same effective mass, the one that is more compact sinks
more rapidly. To cite an extreme example, a man wearing
a parachute reaches a much higher terminal v¢locity when
his chute fails to open than when it functions properly,
even though his effective mass is the same in either case.

In a centrifuge, we deal not with the gravitational accel-
eration g, but with a centrifugal acceleration rw?, where
r is the distance from the axis of rotation and w is the
angular velocity of the rotor in radians/sec (27 times the
rotation rate in revolutions per sec). The sedimentation
rate increases with distance from the axis of rotation,
because r increases, but for now we ignore this com-
plication. In general, there are two ways of doing an
experiment. Consider a solution containing two kinds of
particles whose sedimentation rates differ by a factor of
about two. Either we start with a centrifuge tube (or
sector cell) filled with the mixture, as shown at the top of
Fig. 4.7, or we layer a small sample at the top of a tube
containing something else, usually a density gradient of
sucrose, as shown at the bottom of Fig. 4.7. In the former
case, the particles with the smaller sedimentation rate lag
behind near the top of the tube. In the latter case, the two
species separate out into different bands. The sucrose
gradient is absolutely essential; without it, the bands
would have larger specific gravities than the fluid beneath
them, and they would sink in bulk by convective flow. At
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Fig. 4.7. Sedimentation rate experiments involving a mixture of two
kinds of particles having sedimentation rates that differ by a factor of
about two, shown at times 0 (left), ¢, (middle), and 24, {right). In the
upper experiment, the mixture initially fills a sector cell in an analy-
tical centrifuge. In the lower experiment, it is layered at the top of a
sucrose gradient in a swinging bucket of a preparative centrifuge. The
same centrifugal field is applied in either case; the particles sediment
to the right. The upper and lower graphs show the concentrations of
particles observed in the two experiments, The lower graph also
depicts 3 C/8r, where Cis the concentration in the upper experiment.
In the analytical centrifuge, this function can be displayed directly
with schlieren optics. Note in the upper experiment that the particles
pile up at the bottom of the cell.

higher sucrose densities, the particles sediment more
slowly, but we ignore this buovant effect. Diffusion
broadens the moving boundaries shown in the upper
graph of Fig. 4.7, in accordance with Eq. 2.13 (see Fig.
2.5), and it broadens the moving bands shown in the
lower graph, in accordance with Eq. 1.22 (see Fig. 1.3).
The relative displacement of the boundaries (or bands)
increases linearly with time, while the spreading increases
only as the square-root of the time; therefore, the separa-
tion improves with the square-root of the time. One can
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always improve the separation by working at higher
fields, because this increases the sedimentation rates but
does not change the diffusion coefficients. From the
spreading, one can compute D; from the sedimentation
rate, given [, one can compute the effective mass, m', If
the specific volume of the particle is known, one can use
Eq. 4.7 and compute the mass, m.

From the spreading shown in Fig, 4.7, it is evident that
more rapidiy sedimenting particles have smaller diffusion
coefficients. This is generally true for globular particles
made of a similar material. The effective mass of a sphere
of radius ¢ and specific gravity p, is

m'spﬁere =m-Vp = V(Ps —-p)= 47ras(ps - ,0)/3-

(4.20)
The sedimentation rate of the sphere is
F down mrg 2
Ud sphere = = =2a - 9 N
d, sph f 61na (o5 p)g/ Ui
4.21)

a quantity that increases as @%. As we already have seen in
Eq. 4.13, the diffusion coefficient of the sphere is inversely
proportional to «. Therefore, a sphere that sediments
twice as fast has a diffusion coeflicient that is smaller by a
factor of 27172, A sphere of radius ¢ = 10~*¢m and specific
gravity p, = 1.2 g/cm? sediments in waterinafield 1 x g
at the rate vggppee = 4.4 x 107° cm/sec.

Electrophoresis

If a particle carries an electric charge, then one can
exert a force on it with an electric field. An ion carrying
charge ¢ (esu) in an electric field of intensity E (stat-
volts/cm) experiences a force in the direction of the field
Eq (dynes). Unfortunately, ¢ is not easy to define. Parti-
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cles of biological interest contain a variety of ionizable
groups whose charges depend strongly on pH. These
charges are shiclded by counter-ions attracted from the
medium in which the particles are suspended. The effec-
tiveness of the shielding depends on the ionic strength. So
you do not hear much about particles that have specified
electrophoretic drift rates per unit field (as you do, for
example, about 30, 50, or 70 S ribosomes). Nevertheless,
electrophoretic methods of separating and characterizing
biological materials are extremely useful. In practice,
they are remarkably simple.

As in the case of sedimentation, Fig. 4.7, there are
essentially two ways of doing an experiment. One either
creates a sharp interface between a column of liquid con-
taining a mixture of the particles to be studied and a
column of liquid devoid of such particles and then passes
an electrical current from one to the other, generating
patterns analogous to those shown at the top of Fig. 4.7,
or one layers a mixture of particles at the top of a medium
designed to suppress convective stirring and passes an
electrical current through that, generating patterns
analogous to those shown at the bottom of Fig. 4.7. The
physics is much the same: the relative displacement of the
boundaries {or bands)} increases linearly with time, while
the spreading increases as the square-root of the time; so
the separation improves as the square-root of the time.
But in the case of electrophoresis, it is not always possible
to improve the separation by increasing the field, because
the electric current generates heat. The heat is generated
at the same rate at all points across a transverse section of
the electrophoretic column, but it is dissipated only at the
edges, so the center of the column becomes relatively hot-
ter. In most of the media used to suppress convection (see
below), this increases the electrophoretic mobility, and
the bands become curved.
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As noted earlier, convective stirring is suppressed in the
uliracentrifuge by the use of density gradients, e.g., of
sucrose or CsCl, In an electrophoresis experiment, it is
more convenient to use a gel, e.g., polyvacrylamide or
agarose. At the end of the experiment the bands can be
precipitated into the gel and/or stained, e.g., with colored
or fluorescent dyes, or the gel can be dried down and
exposed to X-ray film to reveal components that are
radioactive. Gels are not used in the ultracentrifuge,
because they collapse in large centrifugal fields.

Gels not only suppress convective stirring, they act as
molecular sieves, The rate of migration of a particle
through the gel is strongly dependent on size. A particle
that is small compared to the pores in the gel can diffuse
through it, almost as if the gel were not there. A particle
that is large compared to the pores in the gel simply is
immobilized. Particles of intermediate size get through
with varying degrees of difficulty. Particles that would
move through a dilute aqueous medium at roughly the
same Tate move through the gel at rates that decrease
exponentially with size; as a result, an estimate of size (or
mass) can be made from a measurement of the logarithm
of the displacement. Pieces of DNA and RNA are
routinely sorted in this way, as are proteins dissolved in
ionic detergents, such as sodium dodecyl sulfate. Tt is easy
to distinguish gels of this kind, because the faster-moving
bands always are broader; the molecules that drift more
rapidly are smaller and have larger diffusion coefficients.



