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C H A P T E R 2

Cellular Homeostasis

2.1 The Cell Membrane

The cell membrane provides a boundary separating the internal workings of the cell
from its external environment. More importantly, it is selectively permeable, permitting
the free passage of some materials and restricting the passage of others, thus regulat-
ing the passage of materials into and out of the cell. It consists of a double layer (a
bilayer) of phospholipid molecules about 7.5 nm (75 angstroms) thick (Fig. 2.1). The
term lipid is used to specify a category of water-insoluble, energy rich macromolecules,
typical of fats, waxes, and oils. Irregularly dispersed throughout the phospholipid bi-
layer are aggregates of globular proteins, which are free to move within the layer, giving
the membrane a fluid-like appearance. The membrane also contains water-filled pores
with diameters of about 0.8 nm, as well as protein-lined pores, called channels, which
allow passage of specific molecules. Both the intracellular and extracellular environ-
ments consist of, among many other things, a dilute aqueous solution of dissolved
salts, primarily NaCl and KCl, which dissociate into Na+, K+, and Cl− ions. The cell
membrane acts as a barrier to the free flow of these ions and maintains concentration
differences of these ions. In addition, the cell membrane acts as a barrier to the flow
of water.

Molecules can be transported across the cell membrane by passive transport or
active processes. An active process is one that requires the expenditure of energy, while
a passive process results solely from the inherent, random movement of molecules.
Osmosis, i.e., the diffusion of water down its concentration gradient, is the most im-
portant process by which water moves through the cell membrane. Simple diffusion
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Figure 2.1 Schematic diagram of the
cell membrane. (Davis et al., 1985,
Fig. 3-1, p. 41.)

accounts for the passage of small molecules through pores and of lipid-soluble
molecules through the lipid bilayer. For example, water, urea (a nitrogenous waste
product of metabolism), and hydrated Cl− ions diffuse through membrane pores. Oxy-
gen and carbon dioxide diffuse through the membrane readily because they are soluble
in lipids. Sodium and K+ ions pass through ion-specific channels, driven by diffusion
and electrical forces. Some other mechanism must account for the transport of larger
sugar molecules such as galactose, glucose, and sucrose, as they are too large to pass
through membrane pores.

Concentration differences are set up and maintained by active mechanisms that
use energy to pump ions against their concentration gradient. One of the most im-
portant of these pumps is the Na+–K+ ATPase, which uses the energy stored in ATP
molecules to pump Na+ out of the cell and K+ in. Another pump, the Ca2+ ATPase,
pumps Ca2+ out of the cell or into the endoplasmic reticulum. There are also a variety
of exchange pumps that use the energy inherent in the concentration gradient of one
ion type to pump another ion type against its concentration gradient. For example,
the Na+–Ca2+ exchanger removes Ca2+ from the cell at the expense of Na+ entry, and
similarly for the Na+–H+ exchanger. Typical values for intracellular and extracellular
ionic concentrations are given in Table 2.1.

Differences in ionic concentrations create a potential difference across the cell
membrane that drives ionic currents. Water is also absorbed into the cell because of
concentration differences of these ions and also because of other large molecules con-
tained in the cell, whose presence provides an osmotic pressure for the absorption
of water. It is the balance of these forces that regulates both the cell volume and the
membrane potential.
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.Table 2.1 Typical values for intracellular and extracellular ionic concentrations, Nernst po-
tentials and resting potentials, from three different cell types. Concentrations are given in units
of mM, and potentials are in units of mV. Extracellular concentrations for the squid giant axon
are for seawater, while those for frog muscle and red blood cells are for plasma. (Adapted from
Mountcastle, 1974, Table 1-1.)

Squid Frog Human
Giant Sartorius Red Blood
Axon Muscle Cell

Intracellular
concentrations

Na+ 50 13 19
K+ 397 138 136
Cl− 40 3 78

Mg2+ 80 14 5.5
Extracellular

concentrations
Na+ 437 110 155
K+ 20 2.5 5
Cl− 556 90 112

Mg2+ 53 1 2.2
Nernst

potentials
VNa +56 +55 +55
VK −77 −101 −86
VCl −68 −86 −9

Resting
potentials −65 −99 −6 to −10

2.2 Diffusion

To keep track of a chemical concentration or any other measurable entity, we must
track where it comes from and where it goes; that is, we must write a conservation law.
If U is some chemical species in some region, then the appropriate conservation law
takes the following form (in words):

rate of change of U = rate of production of U + accumulation of U due to transport.

If ! is a region of space, this conservation law can be written symbolically as

d
dt

∫

!
u dV =

∫

!
f dV −

∫

∂!
J · n dA, (2.1)

where u is the concentration of the chemical species U, ∂! is the boundary of the region
!, n is the outward unit normal to the boundary of!, f represents the local production
density of U per unit volume, and J is the flux density of U. According to the divergence
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theorem, if J is sufficiently smooth, then
∫

∂!
J · n dA =

∫

!
∇ · J dV , (2.2)

so that if the volume in which u is being measured is fixed but arbitrary, the integrals
can be dropped, with the result that

∂u
∂t

= f − ∇ · J. (2.3)

This, being a conservation law, is inviolable. However, there are many ways in which
the production term f and the flux J can vary. Indeed, much of our study in this book
is involved in determining appropriate models of production and flux.

2.2.1 Fick’s Law

Suppose that u is a function of a single spatial variable, x, and consider the two situ-
ations shown in Fig. 2.2, one where u has a steep gradient, the other with a shallow
gradient. It is intuitively reasonable that the flux of u should be greater in magnitude
in the first case than in the second, and this is indeed what is found experimentally,
provided u is not too large. Thus

J = −D
du
dx

. (2.4)

Note the sign of J. By definition, a flux of u from left to right is identified as a positive
flux, and thus the flux is opposite in sign to the gradient.

In higher dimensions

J = −D∇u. (2.5)

Equation (2.5) is called a constitutive relationship, and for chemical species it is called
Fick’s law. The scalar D is the diffusion coefficient and is characteristic of the solute
and the fluid in which it is dissolved. If u represents the heat content of the volume,
(2.5) is called Newton’s law of cooling. Fick’s law is not really a law, but is a reasonable

x

u
J>0

du/dx < 0

x

u
J<0

du/dx > 0

Figure 2.2 Fick’s Law.The flux is proportional to the gradient, and opposite in sign.
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approximation to reality if the concentration of the chemical species is not too high.
When Fick’s law applies, the conservation equation becomes the reaction–diffusion
equation

∂u
∂t

= ∇ · (D∇u) + f , (2.6)

or, if D is a constant,

∂u
∂t

= D∇2u + f . (2.7)

The diffusion equation can also be derived from a random walk (Section 2.9.1).
There is a vast literature on reaction–diffusion equations. To mention but a very few,

Aronson and Weinberger (1975), Britton (1986) and Grindrod (1991) are biologically
oriented, as is Murray (2002), while Smoller (1994) and Fife (1979) are more theoretical
presentations.

2.2.2 Diffusion Coefficients

A quantitative understanding of diffusion was given by Einstein (1906) in his theory of
Brownian motion. He showed that if a spherical solute molecule is large compared to
the solvent molecule, then

D = kT
6πµa

, (2.8)

where k = R
NA

is Boltzmann’s constant, NA is Avogadro’s number, T is the absolute tem-
perature of the solution, µ is the coefficient of viscosity for the solute, and a is the radius
of the solute molecule. For nonspherical molecules, Einstein’s formula generalizes to

D = kT
f

, (2.9)

where f is the Stokes frictional coefficient of the particle and f = 6πµa for a sphere of
radius a. The molecular weight of a spherical molecule is

M = 4
3
πa3ρ, (2.10)

where ρ is the molecular density, so that, in terms of molecular weight,

D = kT
3µ

( ρ

6π2M

)1/3
. (2.11)

The density of most large protein molecules is nearly constant (about 1.3−1.4
g/cm3), so that DM1/3 is nearly the same for spherical molecules at a fixed tempera-
ture. The diffusion of small molecules, such as the respiratory gases, is different, being
proportional to M−1/2.
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.Table 2.2 Molecular weight and diffusion coefficients of some biochemical substances in
dilute aqueous solution.

Substance Molecular Weight D(cm2/s)

hydrogen 1 4.5× 10−5

oxygen 32 2.1× 10−5

carbon dioxide 48 1.92× 10−5

glucose 192 6.60× 10−6

insulin 5,734 2.10× 10−6

Cytochrome c 13,370 1.14× 10−6

Myoglobin 16,900 5.1× 10−7

Serum albumin 66,500 6.03× 10−7

hemoglobin 64,500 6.9× 10−7

Catalase 247,500 4.1× 10−7

Urease 482,700 3.46× 10−7

Fibrinogen 330,000 1.97× 10−7

Myosin 524,800 1.05× 10−7

Tobacco mosaic virus 40,590,000 5.3× 10−8

2.2.3 Diffusion Through a Membrane: Ohm’s Law

We can use Fick’s law to derive the chemical analogue of Ohm’s law for a membrane
of thickness L. Suppose that a membrane separates two large reservoirs of a dilute
chemical, with concentration cl on the left (at x = 0), and concentration cr on the right
(at x = L). According to the diffusion equation, in the membrane (assuming that the
only gradients are transverse to the membrane)

∂c
∂t

= D
∂2c
∂x2 , (2.12)

subject to boundary conditions c(0, t) = cl, c(L, t) = cr.
The full time-dependent solution can be found using separation of variables, but

for our purposes here, the steady-state solution is sufficient. At steady state, ∂c
∂t = 0,

so that ∂J
∂x = −D ∂2c

∂x2 = 0, from which it follows that J = −D ∂c
∂x = constant, or that

c(x) = ax+b, for some constants a and b. Applying the boundary conditions, we obtain

c(x) = cl + (cr − cl)
x
L

. (2.13)

From Fick’s law it follows that the flux of chemical is constant, independent of x, and
is given by

J = D
L

(cl − cr). (2.14)

The ratio L/D is the effective “resistance” of the membrane, and so D/L is called the
conductance, or permeability, per unit area.
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2.2.4 Diffusion into a Capillary

Suppose that a long capillary, open at one end, with uniform cross-sectional area A and
filled with water, is inserted into a solution of known chemical concentration C0, and
the chemical species is free to diffuse into the capillary through the open end. Since
the concentration of the chemical species depends only on the distance along the tube
and time, it is governed by the diffusion equation

∂c
∂t

= D
∂2c
∂x2 , 0 < x < ∞, t > 0, (2.15)

where for convenience we assume that the capillary is infinitely long. Because the solute
bath in which the capillary sits is large, it is reasonable to assume that the chemical
concentration at the tip is fixed at C(0, t) = C0, and since the tube is initially filled with
pure water we set C(x, 0) = 0.

The solution of this problem is given by

C(x, t) = 2C0

(

1− 1√
2π

∫ z

−∞
exp

(

−s2

2

)

ds

)

, z = x√
2Dt

. (2.16)

From this, one can easily calculate that the total number of molecules that enter
the capillary in a fixed time T is

N = A
∫ ∞

0
C(x, T) dx = 2C0A

√
TD
π

. (2.17)

From this equation it is possible to determine the diffusion coefficient by solving (2.17)
for D, yielding

D = πN2

4C2
0A2T

. (2.18)

A second useful piece of information is found from (2.16) by observing that
C(x, t)/C0 is constant on any curve for which z is constant. Thus, the curve t = x2/D is a
level curve for the concentration, and gives a measure of how fast the substance is mov-
ing into the capillary. The time t = x2/D is called the diffusion time for the process. To
give some idea of the effectiveness of diffusion in various cellular contexts, in Table 2.3
is shown typical diffusion times for a variety of cellular structures. Clearly, diffusion is
effective for transport when distances are short, but totally inadequate for longer dis-
tances, such as along a nerve axon. Obviously, biological systems must employ other
transport mechanisms in these situations in order to survive.

2.2.5 Buffered Diffusion

It is often the case that reactants in an enzymatic reaction (as in Chapter 1) are free
to diffuse, so that one must keep track of the effects of both diffusion and reaction.
Such problems, called reaction–diffusion systems, are of fundamental significance in
physiology and are also important and difficult mathematically.
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.Table 2.3 Estimates of diffusion times for cellular structures of typical dimensions, computed
from the relation t = x2/D using D = 10−5cm2/s (typical for molecules the size of oxygen or
carbon dioxide).

x t Example
10 nm 100 ns Thickness of cell membrane
1 µm 1 ms Size of mitochondrion
10 µm 100 ms Radius of small mammalian cell
100 µm 10 s Diameter of a large muscle fiber
250 µm 60 s Radius of squid giant axon
1 mm 16.7 min Half-thickness of frog sartorius muscle
2 mm 1.1 h Half-thickness of lens in the eye
5 mm 6.9 h Radius of mature ovarian follicle
2 cm 2.6 d Thickness of ventricular myocardium
1 m 31.7 yrs Length of a (long!) nerve axon

An important situation, in which reaction and diffusion interact to modify the
behavior, occurs when a diffusing species is buffered by a larger diffusing molecule.
This occurs, for example, with oxygen in muscle (which we discuss below), or Ca2+,
or H+. The earliest studies of the buffered diffusion equation were those of Irving et
al. (1990) and Wagner and Keizer (1994), while Neher and his colleagues (Zhou and
Neher, 1993; Naraghi and Neher, 1997; Naraghi et al. 1998) have done a great deal of
work on Ca2+ buffering. More theoretical analyses have been performed by Sneyd et
al. (1998), Smith et al. (2001), and Tsai and Sneyd (2005, 2007a,b).

Consider a “one-dimensional” cell is which there are hydrogen ions (for example)
and buffer, B. We assume that the buffering reaction follows

H+ + B
k+
−→
←−
k−

HB. (2.19)

Conservation implies

∂u
∂t

= Dh
∂2u
∂x2 + k−w− k+uv + f (t, x, u), (2.20)

∂v
∂t

= Db
∂2v
∂x2 + k−w− k+uv, (2.21)

∂w
∂t

= Db
∂2w
∂x2 − k−w + k+uv, (2.22)

where u = [H+], v = [B], and w = [HB]. Since the buffer is a large molecule, we
assume that the diffusion of B is the same as that of HB. We impose no-flux boundary
conditions at the ends of the cell and assume that v and w are initially uniform (for
example, if w is initially zero, and the buffer is uniformly distributed). The reaction
term f (t, x, u) denotes all the other reactions of u apart from the buffering.



2.2: Diffusion 57

Adding (2.21) and (2.22) we obtain

∂(v + w)

∂t
= Db

∂2(v + w)

∂x2 . (2.23)

Since v + w is initially uniform, it remains uniform for all time, so that v + w = w0,
where w0 is the total amount of buffer.

If the buffering reaction is fast compared to the other reactions (i.e., those described
by f (t, x, u)), then we can assume u and v to be in quasi-equilibrium, so that

k−(w0 − v)− k+uv = 0, (2.24)

which implies that

v = Keqw0

Keq + u
, where Keq = k−

k+
. (2.25)

Subtracting (2.21) from (2.20) yields

∂(u− v)

∂t
= Dh

∂2u
∂x2 −Db

∂2v
∂x2 + f (t, x, u). (2.26)

However, since we know v as a function of u, we can eliminate v to find a nonlinear
reaction–diffusion equation for u alone,

∂

∂t

(
u− Keqw0

Keq + u

)
= Dh

∂2u
∂x2 −Db

∂2

∂x2

(
Keqw0

Keq + u

)
+ f (t, x, u). (2.27)

We expand some of the derivatives and find
(

1 + Keqw0

(Keq + u)2

)
ut = Dh

∂2u
∂x2 + Db

∂

∂x

(
Keqw0

(Keq + u)2 ux

)
+ f (t, x, u). (2.28)

Letting

θ(u) = Keqw0

(Keq + u)2 (2.29)

then gives

ut = Dh + θ(u)Db

1 + θ(u)
uxx + Dbθ

′(u)

1 + θ(u)
(ux)

2 + f (t, x, u)

1 + θ(u)
. (2.30)

Thus, buffering gives rise to a nonlinear transport equation with a diffusion coefficient
that is a nonlinear function of u.

In some cases it is reasonable to assume that u ≪ Keq. In this limit we find that u
has an effective diffusion coefficient

Deff =
Dh + Db

w0
Keq

1 + w0
Keq

, (2.31)

a convex linear combination of the two diffusion coefficients, Dh and Db. In addition,
the reaction terms are scaled by the constant factor 1

1+w0/Keq
. If, additionally, Db = 0, we
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recover the usual diffusion equation, but one for which both the diffusion coefficient
and the reaction terms are scaled by the same constant factor.

2.3 Facilitated Diffusion

A second important example in which both diffusion and reaction play a role is known
as facilitated diffusion. Facilitated diffusion occurs when the flux of a chemical is am-
plified by a reaction that takes place in the diffusing medium. An example of facilitated
diffusion occurs with the flux of oxygen in muscle fibers. In muscle fibers, oxygen is
bound to myoglobin and is transported as oxymyoglobin, and this transport is greatly
enhanced above the flow of oxygen in the absence of myoglobin (Wyman, 1966; Murray,
1971; Murray and Wyman, 1971; Rubinow and Dembo, 1977).

This well-documented observation needs further explanation, because at first
glance it seems counterintuitive. Myoglobin molecules are much larger (molecular
weight M = 16,890) than oxygen molecules (molecular weight M = 32) and therefore
have a much smaller diffusion coefficient (D = 4.4×10−7 and D = 1.2×10−5cm2/s for
myoglobin and oxygen, respectively). The diffusion of oxymyoglobin would therefore
seem to be much slower than the diffusion of free oxygen. Further, from the calculation
in the last section, the diffusion of free oxygen is much slower when it is buffered by
myoglobin since the effective diffusion coefficient of oxygen is lowered substantially
by diffusion.

To anticipate slightly, the answer is that, at steady state, the total transport of oxygen
is the sum of the free oxygen transport and additional oxygen that is transported by the
diffusing buffer. If there is a lot of buffer, with a lot of oxygen bound, this additional
transport due to the buffer can be substantial.

A simple model of this phenomenon is as follows. Suppose we have a slab reactor
containing diffusing myoglobin. On the left (at x = 0) the oxygen concentration is held
fixed at s0, and on the right (at x = L) it is held fixed at sL, which is assumed to be less
than s0.

If f is the rate of uptake of oxygen into oxymyoglobin, then equations governing
the concentrations of s = [O2], e = [Mb], c = [MbO2] are

∂s
∂t

= Ds
∂2s
∂x2 − f , (2.32)

∂e
∂t

= De
∂2e
∂x2 − f , (2.33)

∂c
∂t

= Dc
∂2c
∂x2 + f . (2.34)

It is reasonable to take De = Dc, since myoglobin and oxymyoglobin are nearly identical
in molecular weight and structure. Since myoglobin and oxymyoglobin remain inside
the slab, it is also reasonable to specify the boundary conditions ∂e/∂x = ∂c/∂x = 0
at x = 0 and x = L. Because it reproduces the oxygen saturation curve (discussed in
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Chapter 13), we assume that the reaction of oxygen with myoglobin is governed by the
elementary reaction

O2 + Mb
k+−→
←−
k−

MbO2,

so that (from the law of mass action) f = −k−c + k+se. The total amount of myoglobin
is conserved by the reaction, so that at steady state e + c = e0 and (2.33) is superfluous.

At steady state,

0 = st + ct = Dssxx + Dccxx, (2.35)

and thus there is a second conserved quantity, namely

Ds
ds
dx

+ Dc
dc
dx

= −J, (2.36)

which follows by integrating (2.35) once with respect to x. The constant J (which is yet
to be determined) is the sum of the flux of free oxygen and the flux of oxygen in the
complex oxymyoglobin, and therefore represents the total flux of oxygen. Integrating
(2.36) with respect to x between x = 0 and x = L, we can express the total flux J in
terms of boundary values of the two concentrations as

J = Ds

L
(s0 − sL) + Dc

L
(c0 − cL), (2.37)

although the values c0 and cL are as yet unknown.
To further understand this system of equations, we introduce dimensionless

variables, σ = k+
k−

s, u = c/e0, and x = Ly, in terms of which (2.32) and (2.34) become

ϵ1σyy = σ (1− u)− u = −ϵ2uyy, (2.38)

where ϵ1 = Ds
e0k+L2 , ϵ2 = Dc

k−L2 .
Reasonable numbers for the uptake of oxygen by myoglobin (Wittenberg, 1966)

are k+ = 1.4 × 1010cm3 M−1s−1, k− = 11 s−1, and L = 0.022 cm in a solution with
e0 = 1.2 × 10−5 M/cm3. (These numbers are for an experimental setup in which the
concentration of myoglobin was substantially higher than what naturally occurs in
living tissue.) With these numbers we estimate that ϵ1 = 1.5×10−7, and ϵ2 = 8.2×10−5.
Clearly, both of these numbers are small, suggesting that oxygen and myoglobin are at
quasi-steady state throughout the medium, with

c = e0
s

K + s
, (2.39)
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where K = k−/k+. Now we substitute (2.39) into (2.37) to find the flux

J = Ds

L
(s0 − sL) + Dc

L
e0

(
s0

K + s0
− sL

K + sL

)

= Ds

L
(s0 − sL)

(
1 + Dc

Ds

e0K
(s0 + K)(sL + K)

)

= Ds

L
(1 + µρ)(s0 − sL), (2.40)

where ρ = Dc
Ds

e0
K , µ = K2

(s0+K)(sL+K) .
In terms of dimensionless variables the full solution is given by

σ (y) + ρu(y) = y[σ (1) + ρu(1)] + (1− y)[σ (0) + ρu(0)], (2.41)

u(y) = σ (y)
1 + σ (y)

. (2.42)

Now we see how diffusion can be facilitated by an enzymatic reaction. In the ab-
sence of a diffusing carrier, ρ = 0 and the flux is purely Fickian, as in (2.14). However,
in the presence of carrier, diffusion is enhanced by the factor µρ. The maximum en-
hancement possible is at zero concentration, when µ = 1. With the above numbers for
myoglobin, this maximum enhancement is substantial, being ρ = 560. If the oxygen
supply is sufficiently high on the left side (near x = 0), then oxygen is stored as oxymyo-
globin. Moving to the right, as the total oxygen content drops, oxygen is released by
the myoglobin. Thus, even though the bound oxygen diffuses slowly compared to free
oxygen, the quantity of bound oxygen is high (provided that e0 is large compared to the
half saturation level K), so that lots of oxygen is transported . We can also understand
that to take advantage of the myoglobin-bound oxygen, the concentration of oxygen
must drop to sufficiently low levels so that myoglobin releases its stored oxygen.

To explain it another way, note from (2.40) that J is the sum of two terms, the
usual ohmic flux term and an additional term that depends on the diffusion coefficient
of MbO2. The total oxygen flux is the sum of the flux of free oxygen and the flux of
oxygen bound to myoglobin. Clearly, if oxymyoglobin is free to diffuse, the total flux
is thereby increased. But since oxymyoglobin can only diffuse down its gradient, the
concentration of oxymyoglobin must be higher on one side than the other.

In Fig. 2.3A are shown the dimensionless free oxygen concentration σ and the di-
mensionless bound oxygen concentration u plotted as functions of position. Notice that
the free oxygen content falls at first, indicating higher free oxygen flux, and the bound
oxygen decreases more rapidly at larger y. Perhaps easier to interpret is Fig. 2.3B, where
the dimensionless flux of free oxygen and the dimensionless flux of bound oxygen are
shown as functions of position. Here we can see that as the free oxygen concentration
drops, the flux of free oxygen also drops, but the flux of bound oxygen increases. For
large y, most of the flux is due to the bound oxygen. For these figures, ρ = 10, σ (0) = 2.0,
σ (1) = 0.1.

One mathematical detail that was ignored in this discussion is the validity of the
quasi-steady-state solution (2.39) as an approximation of (2.38). Usually, when one
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Figure 2.3 A: Free oxygen content σ (y ) and bound oxygen content u(y ) as functions of y .
B: Free oxygen flux −σ ′(y ) and bound oxygen flux −ρu′(y ) as functions of y .

makes an approximation to boundary value problems in which the order of the system
is reduced (as here where the order is four, and drops by two when ϵ1 and ϵ2 are
ignored), there are difficulties with the solution at the boundary, because the boundary
conditions cannot, in general, be met. Such problems, discussed briefly in Chapter 1
in the context of enzyme kinetics, are called singular perturbation problems, because
the behavior of the solutions as functions of the small parameters is not regular, but
singular (certain derivatives become infinitely large as the parameters approach zero).
In this problem, however, there are no boundary layers, and the quasi-steady-state
solution is a uniformly valid approximation to the solution. This occurs because the
boundary conditions on c are of no-flux (Neumann) type, rather than of fixed (Dirichlet)
type. That is, since the value of c is not specified by the boundary conditions, c is
readily adjusted so that there are no boundary layers. Only a slight correction to the
quasi-steady-state solution is needed to meet the no-flux boundary conditions, but this
correction affects only the derivative, not the value, of c in a small region near the
boundaries.

2.3.1 Facilitated Diffusion in Muscle Respiration

Even at rest, muscle fibers consume oxygen. This is because ATP is constantly consumed
to maintain a nonzero membrane potential across a muscle cell wall, and this con-
sumption of energy requires constant metabolizing of sugar, which consumes oxygen.
Although sugar can be metabolized anaerobically, the waste product of this reaction
is lactic acid, which is toxic to the cell. In humans, the oxygen consumption of live
muscle tissue at rest is about 5× 10−8 mol/cm3s, and the concentration of myoglobin
is about 2.8× 10−7 mol/cm3. Thus, when myoglobin is fully saturated, it contains only
about a 5 s supply of oxygen. Further, the oxygen at the exterior of the muscle cell must
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penetrate to the center of the cell to prevent the oxygen concentration at the center
falling to zero, a condition called oxygen debt.

To explain how myoglobin aids in providing oxygen to a muscle cell and helps to
prevent oxygen debt, we examine a model of oxygen consumption that includes the
effects of diffusion of oxygen and myoglobin. We suppose that a muscle fiber is a long
circular cylinder (radius a = 2.5× 10−3 cm) and that diffusion takes place only in the
radial direction. We suppose that the oxygen concentration at the boundary of the fiber
is a fixed constant and that the distribution of chemical species is radially symmetric.
With these assumptions, the steady-state equations governing the diffusion of oxygen
and oxymyoglobin are

Ds
1
r

d
dr

(
r
ds
dr

)
− f − g = 0, (2.43)

Dc
1
r

d
dr

(
r
dc
dr

)
+ f = 0, (2.44)

where, as before, s = [O2], c = [MbO2], and f = −k−c + k+se. The coordinate r is in the
radial direction. The new term in these equations is the constant g, corresponding to
the constant consumption of oxygen. The boundary conditions are s = sa, dc/dr = 0 at
r = a, and ds/dr = dc/dr = 0 at r = 0. For muscle, sa is typically 3.5 × 10−8 mol/cm3

(corresponding to the partial pressure 20 mm Hg). Numerical values for the parameters
in this model are difficult to obtain, but reasonable numbers are Ds = 10−5 cm2/s, Dc =
5× 10−7 cm2/s, k+ = 2.4× 1010 cm3/mol · s, and k− = 65/s (Wyman, 1966).

Introducing nondimensional variables σ = k+
k−

s, u = c/e0, and r = ay, we obtain the
differential equations

ϵ1
1
y

d
dy

(
y

dσ
dy

)
− γ = σ (1− u)− u = −ϵ2

1
y

d
dy

(
y

du
dy

)
, (2.45)

where ϵ1 = Ds
e0k+a2 , ϵ2 = Dc

k−a2 , γ = g/k−. Using the parameters appropriate for muscle,

we estimate that ϵ1 = 2.3× 10−4, ϵ2 = 1.2× 10−3, γ = 3.3× 10−3. While these numbers
are not as small as for the experimental slab described earlier, they are small enough to
warrant the assumption that the quasi-steady-state approximation (2.39) holds in the
interior of the muscle fiber.

It also follows from (2.45) that

ϵ1
1
y

d
dy

(
y

dσ
dy

)
+ ϵ2

1
y

d
dy

(
y

du
dy

)
= γ . (2.46)

We integrate (2.46) twice with respect to y to find

ϵ1σ + ϵ2u = A ln y + B + γ

4
y2. (2.47)

The constants A and B are determined by boundary conditions. Since we want the
solution to be bounded at the origin, A = 0, and B is related to the concentration at the
origin.
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ted as a function of oxygen consumption γ

4ϵ1
.

The dashed curve is the critical concentration
with no facilitated diffusion.

Now suppose that there is just enough oxygen at the boundary to prevent oxygen
debt. In this model, oxygen debt occurs if σ falls to zero. Marginal oxygen debt occurs
if σ = u = 0 at y = 0. For this boundary condition, we take A = B = 0. Then the
concentration at the boundary must be at least as large as σ0, where, using the quasi-
steady state σ (1− u) = u,

σ0 + ρ
σ0

σ0 + 1
= γ

4ϵ1
, (2.48)

and where ρ = ϵ2/ϵ1. Otherwise, the center of the muscle is in oxygen debt. Note also
that σ0 is a decreasing function of ρ, indicating a reduced need for external oxygen
because of facilitated diffusion.

A plot of this critical concentration σ0 as a function of the scaled consumption γ
4ϵ1

is shown in Fig. 2.4. For this plot ρ = 5, which is a reasonable estimate for muscle. The
dashed curve is the critical concentration when there is no facilitated diffusion (ρ = 0).
The easy lesson from this plot is that facilitated diffusion decreases the likelihood of
oxygen debt, since the external oxygen concentration necessary to prevent oxygen debt
is smaller in the presence of myoglobin than without.

A similar lesson comes from Fig. 2.5, where the internal free oxygen content σ is
shown, plotted as a function of radius y. The solid curves show the internal free oxy-
gen with facilitated diffusion, and the dashed curve is without. The smaller of the two
solid curves and the dashed curve have exactly the critical external oxygen concentra-
tion, showing clearly that in the presence of myoglobin, oxygen debt is less likely at a
given external oxygen concentration. The larger of the two solid curves has the same
external oxygen concentration as the dashed curve, showing again the contribution of
facilitation toward preventing oxygen debt. For this figure, ρ = 5, γ /ϵ1 = 14.

2.4 Carrier-Mediated Transport

Some substances are insoluble in the cell membrane and yet pass through by a process
called carrier-mediated transport. It is also called facilitated diffusion in many physiology
books, although we prefer to reserve this expression for the process described in the
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previous section. Carrier-mediated transport is the means by which some sugars cross
the cell membrane to provide an energy source for the cell. For example, glucose, the
most important of the sugars, combines with a carrier protein at the outer boundary
of the membrane, and by means of a conformational change is released from the inner
boundary of the membrane.

There are three types of carrier-mediated transport. Carrier proteins that transport
a single solute from one side of the membrane to the other are called uniports. Other
proteins function as coupled transporters by which the simultaneous transport of two
solute molecules is accomplished, either in the same direction (called a symport) or in
the opposite direction (called an antiport).

2.4.1 Glucose Transport

Although the details are not certain, the transport of glucose across the lipid bilayer of
the cell membrane is thought to occur when the carrier molecule alternately exposes
the solute binding site first on one side and then on the other side of the membrane. It
is considered highly unlikely that the carrier molecule actually diffuses back and forth
through the membrane.

We can model the process of glucose transport as follows: We suppose that the
population of enzymatic carrier proteins C has two conformational states, Ci and Ce,
with its glucose binding site exposed on the cell interior (subscript i) or exterior (sub-
script e) of the membrane, respectively. The glucose substrate on the interior Si can
bind with Ci and the glucose substrate on the exterior can bind with enzyme Ce to form
the complex Pi or Pe, respectively. Finally, a conformational change transforms Pi into
Pe and vice versa. These statements are summarized in Fig. 2.6.

The equations describing this model are

dpi

dt
= kpe − kpi + k+sici − k−pi, (2.49)
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Figure 2.6 Schematic diagram of the
glucose transporter described by (2.49)–
(2.52).

dpe

dt
= kpi − kpe + k+sece − k−pe, (2.50)

dci

dt
= kce − kci + k−pi − k+sici, (2.51)

dce

dt
= kci − kce + k−pe − k+sece. (2.52)

where si = [Si], pi = [Pi], etc. Since the total amount of receptor is conserved, we have
pi+pe+ci+ce = C0, where C0 is a constant (the total transporter concentration). Hence
there are only three independent equations, not four. The flux, J, is

J = k−pi − k+sici = k+sece − k−pe, (2.53)

where we have defined a flux from outside to inside to be positive.
We find the steady-state flux by setting all derivatives to zero and solving the

resulting algebraic system. It follows that

J = 1
2

KkC0
se − si

(si + K + Kd)(se + K + Kd)− K2
d

, (2.54)

where K = k−/k+ and Kd = k/k+. Since k is the rate at which conformational change
takes place, it acts like a diffusion coefficient in that it reflects the effect of random
thermal activity at the molecular level.

The nondimensional flux is

j = σe − σi

(σi + 1 + κ)(σe + 1 + κ)− κ2 , (2.55)

where σi = si/K, σe = se/K, κ = Kd/K. A plot of this nondimensional flux is shown in
Fig. 2.7, plotted as a function of extracellular glucose σe, with fixed intracellular glucose
and fixed κ. We can see that the rate of transport is limited by saturation of the en-
zyme kinetics (this saturation is observed experimentally) and thermal conformational
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Figure 2.7 Plot of the (nondimensional) flux of glucose as a function of extracellular glucose,
for three fixed intracellular glucose concentrations (σi), with κ = Kd /K = 0.5.

change is crucial to the transport process, as transport J drops to zero if Kd = 0. The
binding affinity of the carrier protein for glucose (k+), and hence the flux of glucose, is
controlled by insulin.

It is important to recognize that the above expression for J is for the steady-state
flux only. If the system is not at steady state, then the flux from the outside to the
transporter, Jon = k+sece− k−pe, need not be the same as the flux off the transporter to
the inside, Joff = k−pi − k+sici. Obviously, in this case the differential equations must
be solved to obtain Jon and Joff .

It should be noted that there are two ways that the model of Fig. 2.6 can be un-
derstood. First, as we did here, we can let each variable represent the concentration of
transporters in each of the four possible states. In this case, the conservation relation-
ship is si + pi + se + pe = C0. If each of the variables is scaled by C0, the conservation
relationship becomes si + pi + se + pe = 1, and each variable is then the fraction of the
population in each state.

However, there is another way to interpret this second conservation relationship.
If si +pi + se +pe = 1 we can interpret the model as referring to the behavior of a single
exchanger, in which case the variables are probabilities of being in a given state, and
the exchanger is modeled as a Markov process (see the Appendix to this chapter).

Markov models such as that shown in Fig. 2.6 can often be simplified by assuming
that some of the transitions are much faster than others. The technique of reduction
using a fast time scale is used in many places throughout this book; indeed, it is used
in Chapter 1, in the equilibrium and quasi-steady-state approximations of enzyme ki-
netics; even though the technique is described in Chapter 1, it is sufficiently important
that it warrants repeating.

The procedure can be simply illustrated with this model of the glucose transporter.
Suppose that the binding and release of glucose is much faster than the change in
conformation, i.e., that the transitions between Ce and Pe, and between Ci and Pi, are
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much faster than those between Ci and Ce, or between Pe and Pi, so that Kd ≪ 1.
Assuming fast equilibrium between Ce and Pe, and between Ci and Pi, gives

sece = Kpe, sici = Kpi. (2.56)

Now, we introduce two variables, x = ce + pe, y = ci + pi = 1 − x (taking C0 = 1).
The differential equation for x is found by adding (2.50) and (2.52) to be

dx
dt

= kci + kpi − kce − kpe

= ky− kx

= k(1− 2x), (2.57)

from which it follows that the steady value of x is x0 = 1/2.
Next, from (2.56) we find that

x = ce(1 + se/K) = pe(1 + K/se), (2.58)

with similar equations for y. Hence, at steady state, the flux through the transporter is
given by

J = k+sece − k−pe = kpi − kpe

= ksix0

si + K
− ksex0

se + K

= ksi
1
2

si + K
− kse

1
2

se + K

= kK
1
2

si − se

(si + K)(se + K)
, (2.59)

where we have used (2.58) to replace pe, and the analogous equation to replace pi.
Notice that this answer is the same as found by letting Kd → 0 in (2.54). However,

while the two approaches give the same answer, the quasi-steady-state reduction of the
full model is often preferable, especially when the solution of the full model is difficult
to obtain.

Other examples of how to simplify Markov models with a fast time scale reduction
are given in Exercises 12 and 13.

2.4.2 Symports and Antiports

Models of symport and antiport transporters follow in similar fashion. For a symport
the protein carrier has multiple binding sites, which can be exposed to the intracellu-
lar or extracellular space. A change of conformation exchanges the location of all of
the participating binding sites, from inside to outside, or vice versa. An example of a
symport is the Na+-driven glucose symport that transports glucose and Na+ from the
lumen of the gut to the intestinal epithelium. A similar process occurs in epithelial cells
lining the proximal tubules in the kidney, to remove glucose and amino acids from the



68 2: Cellular Homeostasis

filtrate (discussed in Chapter 17). Five different amino acid cotransporters have been
identified.

If there are k binding sites that participate in the exchange, then there are 2k pos-
sible combinations of bound and unbound sites. The key assumption that makes this
model of transport work is that only the completely unbound or completely bound
carrier participates in a conformational change. Thus, there is a carrier molecule, say
C, with two conformations, Ci and Ce, and a fully bound complex P, also with two
conformations, Pi and Pe, and possible transformation between the two conformations,

Ci

kc
−→
←−
k−c

Ce, Pi

kp
−→
←−
k−p

Pe. (2.60)

In addition, there are 2k possible combinations of binding and unbinding in each
of the two conformations. For example, with two substrates S and T, and one binding
site for each, we have the complexes C, SC, CT, and SCT = P. The possible reactions
are summarized in Fig. 2.8.

Unfortunately, the analysis of this fully general reaction scheme is quite compli-
cated. However, it simplifies significantly if we assume that the intermediates can be
safely ignored and postulate the multi-molecular reaction scheme

mS + nT + C
k+
−→
←−
k−

P. (2.61)

Now the result for a symport is strikingly similar to the uniport flux, with

J = 1
2

KdKk+C0
sm

e tn
e − sm

i tn
i

(sm
i tn

i + K + Kd)(sm
e tn

e + K + Kd)− K2
d

, (2.62)

where the flux of s is mJ and the flux of t is nJ. Here we have set kc = k−c = kp = k−p = k
and then K = k−/k+ and Kd = k/k+.

C

CT SC

SCT

Figure 2.8 States and possible transitions of a trans-
porter with two substrates, S and T, and one binding
site for each.
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For an antiport, the subscripts on one of the substances must be exchanged, to give

J = 1
2

KdKk+C0
sm

e tn
i − sm

i tn
e

(sm
i tn

e + K + Kd)(sm
e tn

i + K + Kd)− K2
d

. (2.63)

The effectiveness of this type of exchanger is determined by the coefficients m and n.
For this antiport, flux is positive (S flows inward and T flows outward) if

(
se

si

)m
>

(
te
ti

)n
. (2.64)

For example, for the Na+–Ca2+ exchanger (discussed in more detail in the next section)
which exchanges three Na+ ions for one Ca2+ ion, a ratio of extracellular to intracellular
Na+ of about 8 can be used to effectively pump Ca2+ out of a cell even when the ratio
of extracellular to intracellular Ca2+ is 500.

2.4.3 Sodium–Calcium Exchange

For the glucose transporter described above, membrane flux is driven by a concen-
tration difference of glucose across the membrane, and if glucose concentrations
equilibrate, the transmembrane flux becomes zero. However, because it relies on two
concentration differences, an antiport transporter such as the Na+–Ca2+ exchanger
can act as a pump. Although this transporter is a passive pump (because it consumes
no chemical energy directly), it is often described as a secondarily active pump; it uses
the Na+ gradient to pump Ca2+ out of the cell against its concentration gradient, but
energy is required to establish and maintain the Na+ gradient. Na+–Ca2+ exchange
is an important mechanism for Ca2+ removal in a number of cell types, particularly
cardiac ventricular cells, in which much of the Ca2+ that enters the cell during an ac-
tion potential is removed from the cell by the Na+–Ca2+ exchanger (Chapter 12). It
has therefore been studied extensively, and a number of highly detailed models have
been constructed (Hilgemann, 2004; Kang and Hilgemann, 2004). Here we describe a
simple model of this important transporter.

In our model (see Fig. 2.9), Ei is the exchanger protein in the conformation for
which the binding sites are exposed to the interior of the cell, and Ee is the conformation
for which the binding sites are exposed to the exterior. Starting at state X1 in the top
left of the figure, the exchanger can bind Ca2+ inside the cell, simultaneously releasing
three Na+ ions to the interior. A change of conformation to Ee then allows the exchanger
to release the Ca2+ to the outside and bind three external Na+. A return to the Ei
conformation completes the cycle. Of course, it is a crude approximation to assume
that one Ca2+ and three Na+ ions bind or unbind the exchanger simultaneously.

It is now straightforward to calculate the steady flux for this model. As with the
previous transporter models, we first solve for the steady-state values of x1, x2, y1, and
y2, the fraction of exchangers in the state X1, X2, Y1, and Y2, respectively. There are
four equations: three differential equations for exchanger states and one conservation
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Figure 2.9 Schematic diagram of a simple model of the Na+–Ca2+ exchanger.

equation. These are

dx1

dt
= k−1n3

i x2 + k4y1 − (k1ci + k−4)x1, (2.65)

dx2

dt
= k−2y2 + k1cix1 − (k2 + k−1n3

i )x2, (2.66)

dy1

dt
= k−4x1 + k3n3

e y2 − (k4 + k−3ce)y1, (2.67)

1 = x1 + x2 + y1 + y2. (2.68)

Here c and n denote, respectively, Ca2+ and Na+ concentration, and the subscripts e
and i represent external and internal concentrations.

Using a symbolic package such as Maple, the steady-state solution of these
equations is easily calculated. The flux, J, is found to be

J = k4y1 − k−4x1 = k1k2k3k4(cin3
e − K1K2K3K4cen3

i )

16 positive terms
, (2.69)

where, as usual, Ki = k−i/ki.
Notice that the units of the flux J here (1/time) are different from those in the pre-

vious examples (concentration/time), because here the variables xi and yi are fractions
of exchangers in a particular state (or probabilities) rather than concentrations of ex-
changers in a particular state. Hence, the flux in this model is a turnover rate, i.e., the
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number of times the exchanger goes around the cycle per unit time. This can easily be
converted to a concentration per time if the concentration of the exchangers is known.

An Electrogenic Exchanger
An important difference between the Na+–Ca2+ exchange process and the transport
processes discussed previously is that Na+ and Ca2+ are ions. Since each cycle of the
Na+–Ca2+ exchanger transports two positive charges out and three positive charges
in, it generates an electric current. Such exchangers are said to be electrogenic.

As is discussed in Section 2.6, all cells have an electrical potential difference across
their membranes. Clearly, additional work is necessary for the exchanger to move elec-
tric current against a potential difference. To take this into account, consider a ligand,
L, with a charge z, and suppose that there is a process that moves L from the cell interior
with potential Vi to the cell exterior with potential Ve, i.e.,

Li → Le. (2.70)

The change in chemical potential (cf. Section 1.2) for this reaction is

*G = G0
Le

+ RT ln([Le]) + zFVe −G0
Li
− RT ln([Li])− zFVi

= RT ln
( [Le]

[Li]

)
− zFV , (2.71)

where V = Vi − Ve is the transmembrane potential. (The standard convention is to
define the potential difference across the membrane as the internal potential minus
the external potential, as discussed further in Section 2.6.1.) The standard free energy
for L is the same on both sides of the membrane, so G0

Le
= G0

Li
. At equilibrium,*G = 0,

so that

K = [Li]eq

[Le]eq
= exp

(−zFV
RT

)
, (2.72)

where K is the equilibrium constant for the reaction.
For the Na+–Ca2+ exchanger, the overall reaction begins with three Na+ outside

the cell and one Ca2+ inside the cell, and ends with three Na+ inside the cell and one
Ca2+ outside. We can write this as

3Na+
e + Ca2+

i −→ 3Na+
i + Ca2+

e . (2.73)

The change in chemical potential for this reaction is

*G = RT ln

(
n3

i ce

n3
e ci

)

+ FV . (2.74)

At equilibrium we must have *G = 0, in which case

n3
i,eqce,eq

n3
e,eqci,eq

= exp
(
−FV

RT

)
. (2.75)
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Recall that detailed balance requires that around any closed reaction loop the prod-
uct of the forward rates must be the same as the product of the reverse rates. It follows
that

k1ci,eqk2k3n3
e,eqk4 = n3

i,eqk−1k−4ce,eqk−3k−2, (2.76)

and thus

K1K2K3K4 = ci,eq

ce,eq

n3
e,eq

n3
i,eq

. (2.77)

Combining (2.76) and (2.77), we get

K1K2K3K4 = exp
(

FV
RT

)
, (2.78)

which, being independent of the concentrations, must hold in general.
It follows from (2.69) that the flux is given by

J = k1k2k3k4(cin3
e − e

FV
RT cen3

i )

16 positive terms
. (2.79)

All of the terms in the denominator are cubic products of rate constants, so that the
flux J has units of inverse time. In general, the denominator of this expression also
contains terms that depend on the membrane potential difference.

In writing (2.78), no assumption was made about where the charge transfer takes
place. From Fig. 2.9 it might appear that the charge transfer takes place during the
transitions Y1 → X1 and X2 → Y2. However, this is not necessarily the case. It could
be that those conformational changes are accompanied by no charge transfer, but that
the charge transfer occurs during other transitions. However, if we assume that one
Ca2+ ion is transferred from inside to outside during the X2 → Y2 transition, and three
Na+ ions are transferred during the Y1 → X1 transition, free energy arguments yield
the additional constraints

k−2

k2
= K̃2 exp

(−2FV
RT

)
,

k4

k−4
= K̃−1

4 exp
(−3FV

RT

)
, (2.80)

where K̃2 and K̃4 are independent of voltage, and where K1K̃2K3K̃4 = 1.
The most important observation is that for given ni and ne (set by other mechanisms

such as the Na+–K+ ATPase discussed in the next section), a negative V enhances the
rate at which the Na+–Ca2+ exchanger removes Ca2+ from the cell. This makes sense;
if V is negative, the potential inside the cell is negative compared to the outside and
thus it is easier for the exchanger to move one positive charge into the cell. Since cells
typically have a negative resting potential (Section 2.6), the electrogenic nature of the
exchanger increases its ability to remove Ca2+ in resting conditions. To be specific,
if the ratio of extracellular to intracellular Na+ is 8, and the potential difference is
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V = −85 mV (which is typical), then Ca2+ is removed, provided

ci

ce
>

n3
i

n3
e

e
FV
RT = 7× 10−5. (2.81)

Notice that the difference in potential gives an improvement in the capability of the
exchanger by a factor of 27 over an exchanger that is not electrogenic.

2.5 Active Transport

The carrier-mediated transport described above is always down electrochemical gra-
dients, and so is identified with diffusion. Any process that works against gradients
requires the expenditure of energy.

There are three primary means by which cells use energy to pump chemical species.
The first is to keep the concentration of the cargo in the downstream domain small by
binding or modifying it in some way. A binding protein in one compartment could
sequester the transported cargo, or the cargo could be covalently modified in one com-
partment so that it no longer interacts with the transporter. For example, the flux
of glucose is inward because intracellular glucose is quickly phosphorylated, thereby
keeping the concentration of intracellular glucose low. However, phosphorylation of in-
tracellular glucose requires the hydrolysis of an ATP molecule, from which the needed
energy is extracted.

The second means is to use the gradient of one species to pump another species
against its gradient. This is the mechanism of the Na+–Ca2+ exchanger as well
as numerous other exchangers that use to advantage the energy stored in the Na+

gradient.
The third means is to regulate the binding of the cargo to the transporter in such

a way that binding to the transporter is favored in one compartment and unbinding is
favored in the other compartment. This change in affinity is driven by the hydrolysis of
ATP or GTP. One important example of such an active (energy-consuming) exchanger
is the Na+–K+ ATPase. This pump acts as an antiport, actively pumping Na+ ions out
of the cell and pumping K+ ions in, each against a steep electrochemical gradient. It
accomplishes this by using the energy released by the hydrolysis of ATP, and thus is
called an ATPase. As is described later in this chapter, the Na+–K+ ATPase is important
for regulating the cell volume and maintaining a membrane potential. Indeed, almost
a third of the energy requirement of a typical animal cell is consumed in fueling this
pump; in electrically active nerve cells, this figure approaches two-thirds of the cell’s
energy requirement. Other important ATPases are the sarco/endoplasmic reticulum
calcium ATPase pumps (SERCA pumps) that pump Ca2+ into the endoplasmic or sar-
coplasmic reticulum, or the plasma membrane Ca2+ ATPases, which pump Ca2+ out
of the cell.
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2.5.1 A Simple ATPase

We begin by considering a model of an ATPase that pumps a ligand, L, up its concen-
tration gradient (Fig. 2.10). This hypothetical ATPase exists in six states. E is the base
state; ATP can bind to E, followed by binding of the ligand L, to form the top line of
states in Fig. 2.10. In each of these states the L binding site is exposed to the inside
of the cell. Once ATP and L are bound, the ATPase changes conformation, exposing
the L binding site to the outside, and at the same time decreasing the affinity of L
for its binding site. Thus, L leaves the ATPase, followed by the hydrolysis of ATP and
eventual return of the ATPase to its base state to complete the cycle. The overall cycle
results in the transport of one L molecule from inside to outside. Although a realistic
ATPase cycle is considerably more complicated than this one, this simple model serves
to illustrate the basic principles.

If there is also a transition from E · ATP to Ee · ATP, as shown by the dashed line,
then the overall cycle can break into two separate subcycles as indicated. This is called
slippage, since each of the subcycles accomplishes nothing toward the goal of pumping
L. The subcycle on the left goes naturally in a clockwise direction and hydrolyzes ATP
to ADP and inorganic phosphate, Pi, without using this energy to pump L. Similarly,

E E•ATP E•ATP•L

Ee•ATP•LEe•ATPEe•ADP•Pi

Inside

Outside

Li

Le

ATP

ADP + Pi

k1 k2

k3

k4k5

k6

k-1 k-2

k-3

k-4k-5

k-6

sl
ip

pa
ge

Figure 2.10 Schematic diagram of an ATPase pump that transports one ligand, L, from the
inside to the outside against its concentration gradient. For each L transported, one molecule
of ATP is hydrolyzed. A subscript e denotes the ATPase conformation in which the L binding
sites are exposed to the exterior of the cell.



2.5: Active Transport 75

the subcycle on the right goes naturally in the direction that allows L to flow down its
concentration gradient. The energy of the ATP is used to pump L against its gradient
only when the ATPase proceeds around the entire cycle.

We use the law of mass action to write the differential equations for the six ATPase
states. For example,

d[E]
dt

= k−1[E · ATP] + k6[Ee · ADP · Pi]− (k1[ATP] + k−6[Pi][ADP])[E], (2.82)

with similar equations for each of the other states. The steady-state flux, J, is given by

J = k1[ATP][E]− k−1[E · ATP]. (2.83)

Even a relatively simple model of six states gives a long expression for the steady-
state flux. In this case (with no slippage),

J =
[ATP][Li]

[ADP][Pi][Le] − K1K2K3K4K5K6

φ
, (2.84)

where φ > 0 is a complicated function of rate constants and concentrations, and where,
as usual, Ki = k−i/ki. (Even though it is not obvious from the way it is written, the flux
J has, as before, units of inverse time.)

Since detailed balance requires

6∏

i=1

Ki = [Li]eq

[Le]eq

[ATP]eq

[ADP]eq[Pi]eq
, (2.85)

it follows that

J =
[Li]
[Le]

[ATP]
[ADP][Pi] −

[Li]eq
[Le]eq

[ATP]eq
[ADP]eq[Pi]eq

φ
. (2.86)

We see from the numerator that the flux is either positive or negative depending
on how far the concentrations of L, ATP, ADP, and Pi are from their equilibrium con-
centrations. In general, [ATP] is much higher than its equilibrium concentration (due
to other processes in the cell that are continuously generating ATP), and it is this that
causes a positive pump flux, pumping L against its gradient. However, if [Le] is high
enough it can force the pump to work in reverse, allowing L to move from the outside
to the inside of the cell, generating ATP in the process.

To relate the rate constants to the change in free energy we use that the overall
reaction is

Li + ATP −→ Le + ADP + Pi. (2.87)
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The change in free energy is given by

*G = GADP + GPi + GLe −GATP −GLi (2.88)

= G0
ADP + G0

Pi
−G0

ATP − RT ln
( [ATP][Li]

[ADP][Pi][Le]

)
(2.89)

= *G0
ATP − RT ln

( [ATP][Li]
[ADP][Pi][Le]

)
. (2.90)

Note that the standard free energy of L is the same inside and outside the cell. At
equilibrium *G = 0 and thus

*G0
ATP = RT ln

( [Li]eq

[Le]eq

[ATP]eq

[ADP]eq[Pi]eq

)
. (2.91)

Combining this with (2.85) gives

6∏

i=1

Ki = e
*G0

ATP
RT M−1, (2.92)

which, because it is independent of concentrations, must hold in general. Notice from
(2.91) that both sides of (2.92) must have units of liters per mole, or M−1. In fact, since
the free energy released by the hydrolysis of ATP is well known to be −31 kJ mole−1, it
follows that

e
*G0

ATP
RT = 3.73× 10−6. (2.93)

Now from (2.84) it follows that

J =
[Li]
[Le]

[ATP]
[ADP][Pi] − e

*G0
ATP

RT M−1

φ
. (2.94)

2.5.2 Active Transport of Charged Ions

Suppose that the interior of the cell has an electric potential of Vi while the exterior
has a potential of Ve, and suppose further that L has a charge z. Then the change in
potential of the ATPase cycle (2.87) is

*G = *G0
ATP − RT ln

( [ATP][Li]
[ADP][Pi][Le]

)
− zFV , (2.95)

where V = Vi − Ve is, as usual, the membrane potential difference.
An identical argument to before shows that

6∏

i=1

Ki = e
*0GATP

RT e
−zFV

RT l mole−1, (2.96)
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and thus

J =
[Li]
[Le]

[ATP]
[ADP][Pi] − e

*0GATP
RT e

−zFV
RT M−1

φ(V)
. (2.97)

Note that the denominator is now a function of V also, since φ depends on the rate
constants, which are themselves functions of V , and thus the precise dependence of J
on V is not immediately clear. However, if z > 0 and V > 0, the flux is zero at lower
concentrations of Li, while if V < 0, the flux is zero at higher concentrations of Li. Thus
we conclude that a positive membrane potential makes it easier for the pump to move
positive ions from inside to outside, while a negative membrane potential makes this
more difficult. Although this is not a rigorous argument, a more detailed calculation
shows that this result holds in general.

Although this thermodynamic argument shows that there must be some voltage-
dependence in the rate constants, it does not tell us in which step (or steps) the voltage-
dependence occurs. For example, in this model, the transition from E · ATP · L to Ee ·
ATP·L involves the net movement of the charge across the cell membrane, so that k−3

k3
=

e
−zFV

RT . (The argument here is identical to the argument used for the voltage-dependence
of the Na+–Ca2+ exchanger.) However, there are other possibilities. Although each
model must have the same solution when J = 0, and the expressions for J must have
the same sign, the models can have significantly different expressions for φ(V).

2.5.3 A Model of the Na+–K+ ATPase

One of the best-known ATPases is the Na+–K+ ATPase, which pumps K+ into the cell
and Na+ out of the cell through the overall reaction scheme

ATP + 3Na+
i + 2K+

e −→ ADP + Pi + 3Na+
e + 2K+

i . (2.98)

It is an electrogenic pump (each pump cycle transfers one positive charge from inside
to out) and a member of the family of P-type active cation transporters which includes
the SERCA ATPases that are discussed at length in Chapter 7. A great deal of work has
been done to determine the mechanisms that underlie Na+ and K+ transport by this
ATPase; the most widely accepted model is the Post–Albers model which was developed
by two independent groups in the 1960s (Albers et al., 1963; Charnock and Post, 1963).
A more recent review is Apell (2004), while a history of investigations into the Na+–K+

ATPase is given by Glynn (2002). An excellent mathematical implementation of the
Post–Albers scheme is that of Smith and Crampin (2004), and this is the model that we
follow here.

In the Post–Albers scheme, phosphorylation of the pump (i.e., exchange of ATP
for ADP) is associated with Na+ efflux, while hydrolysis (i.e., loss of the additional
phosphate group) is associated with K+ influx. During the transition across the mem-
brane each ion type is occluded, i.e., bound to the pump in a conformation in which
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Figure 2.11 Model of the Na+–K+ ATPase based on the Post–Albers scheme.

it is accessible from neither side of the membrane. Occlusion prevents slippage, thus
increasing the efficiency of the pump.

This scenario is illustrated in Fig. 2.11. Starting at the top left of the figure (state
X1), the ATPase begins in the conformation Ei, in which the binding sites for Na+ and
K+ are exposed to the inside of the cell. The ATPase then loses two K+ ions (which is
assumed to occur in a single step) and gains three Na+ ions, again in a single step, to
move through states X2 and X3. ATP remains bound to the pump in each of the states
X1, X2, and X3, although this is not shown explicitly in the diagram. Loss of ADP then
drives the ATPase to the occluded state Z2, in which the three Na+ ions are inaccessible
to both the inside and outside of the cell. After another conformational change to the
Ee state, in which the Na+ and K+ binding sites are exposed to the outside of the cell,
the ATPase loses its three Na+ to the outside, picks up another two K+, and loses its
extra phosphate to move through to the occluded state Z1, in which the K+ ions are
shielded. Binding of ATP then returns the ATPase to the Ei conformation to complete
the cycle. The rate constants are not shown explicitly, but each transition between states
is labeled by a circled number. For each i = 1, . . . , 8, transition i has two rate constants,
ki in the clockwise direction and k−i in the counterclockwise direction.
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From this diagram we can easily write the differential equations for each of the
ATPase states. For example, letting a lowercase letter denote the fraction of the ATPase
in that state, we have

dx1

dt
= k−1[K+

i ]2x2 + k8[ATP]z1 − (k−8 + k1)x1, (2.99)

and so on, subject to the constraint x1 +x2 +x3 +y1 +y2 +y3 +z1 +z2 = 1. The resultant
expression for the flux is long and unwieldy, of the form

J = [ATP]n3
i κ

2
e − [ADP][Pi]κ2

i n3
e (
∏8

i=1 Ki)

φ
, (2.100)

where φ is the sum of a large number of terms involving products of the rate constants
and concentrations. Here, n denotes the Na+ concentration, and κ denotes the K+ con-
centration. This expression for the flux is similar to that derived in the simpler model
of Section 2.5.1. The same thermodynamic constraints apply, and so some of the rate
constants are functions of the membrane potential. Smith and Crampin (2004), follow-
ing the ideas of Apell (1989), incorporate voltage dependence into the rate constants
for Na+ binding and unbinding, i.e., K2 and K5 in this model.

A simplified version of this model is discussed in Exercise 13.

2.5.4 Nuclear Transport

The transport of proteins from the cytoplasm to the nucleus (or the reverse) is accom-
plished by means that combine features of each of the above transport mechanisms. The
nuclear membrane contains protein structures called nuclear pore complexes (NPCs)
that allow free diffusion of soluble carrier proteins. However, these carrier proteins
can pass through the pore complex only when they are bound. These carrier pro-
teins (called importins) recognize and readily bind cargo destined for translocation.
The energy to transport cargo against its gradient is provided by the hydrolysis of
GTP via a GTPase enzyme called Ran. Ran-GTP has a very high binding affinity for
the carrier protein (*G0 = −51 kJ mol−1), effectively excluding the cargo from bind-
ing. The transportin/Ran-GTP complex is disassembled by the hydrolysis of Ran-GTP
(*G0 = −33 kJ mol−1) to Ran-GDP, which has a binding affinity for the carrier protein
that is 10,000-fold lower than that of Ran-GTP. The endogenous GTPase activity rate
is extremely slow (kcat = 1.5 × 10−5s−1). However, the hydrolysis of GTP to GDP on
Ran is catalyzed by a cytoplasmic GTPase-activating protein called RanGAP, which
accelerates this rate by as much as 500,000-fold.

One cycle of transport works as follows. Cargo in the cytoplasm that is targeted for
transport binds to the carrier molecule and moves via diffusion through the NPC. In
the nucleus, when the cargo unbinds, Ran-GTP quickly binds to the carrier, preventing
the cargo from rebinding. Ran-GTP is kept at high concentration in the nucleus by an-
other mechanism, so the Ran-GTP carrier complex diffuses into the cytoplasm through
the NPC. On the cytoplasmic side of the membrane, Ran-GTP is quickly hydrolyzed to
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Ran-GDP, which because of its much lower binding affinity, unbinds from the carrier
molecule, completing the cycle. Although all the reactions are reversible, the direction-
ality is maintained by the free energy of GTP hydrolysis and the high concentration of
GTP in the nucleus.

We leave the development of a model of this transport mechanism to the interested
reader. In the absence of RanGAP, the model is similar to that of the Na+–Ca2+ trans-
porter described above. On the other hand, if the hydrolysis of Ran-GTP to RanGDP is
assumed to be so fast that there is no unbinding of RanGTP in the cytoplasm, then the
model is similar to that of the simple ATPase described above.

2.6 The Membrane Potential

The principal function of the active ATPase transport processes described above is to
regulate the intracellular ionic composition of the cell. For example, the operation of the
Na+–K+ ATPase results in high intracellular K+ concentrations and low intracellular
Na+ concentrations. This is necessary for a cell’s survival, as without such regulation,
cells swell and burst. However, before we consider models of cell volume regulation,
we consider the effects of ionic separation.

2.6.1 The Nernst Equilibrium Potential

One of the most important equations in electrophysiology is the Nernst equation, which
describes how a difference in ionic concentration can result in a potential difference
across the membrane separating the two concentrations.

Suppose there are two reservoirs containing the same ion S, but at different con-
centrations, as shown schematically in Fig. 2.12. The reservoirs are separated by a

S S
Inside Outside

Vi Ve

Cell membrane permeable to S
but not to S

[S]i = [S ]i [S]e = [S ]e
Figure 2.12 Schematic diagram of a
membrane separating two solutions
with different ionic concentrations. By
convention, the potential difference, V ,
across the membrane is defined to be
V = Vi− Ve .
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semipermeable membrane. The solutions on each side of the membrane are assumed
to be electrically neutral (at least initially), and thus each ion S is balanced by another
ion, S′, with opposite charge. For example, S could be Na+, while S′ could be Cl−.
Because we ultimately wish to apply the Nernst equation to cellular membranes, we
call the left of the membrane the inside and the right the outside of the cell.

If the membrane is permeable to S but not to S′, the concentration difference across
the membrane results in a net flow of S from one side to another, down its concentration
gradient. However, because S′ cannot diffuse through the membrane, the diffusion of S
causes a buildup of charge across the membrane. This charge imbalance, in turn, sets
up an electric field that opposes the further net movement of S through the membrane.
Equilibrium is reached when the electric field exactly balances the diffusion of S. Note
that at steady state there are more S ions than S′ ions on one side and fewer S ions
than S′ ions on the other, and thus neither side of the membrane is exactly electrically
neutral. However, because the force from the charge buildup is so strong, only a small
amount of S moves across the membrane. To a good approximation, the concentrations
of S on either side of the membrane remain unchanged, the solutions on either side
of the membrane remain electrically neutral, and the small excess charge accumulates
near the interface. The region in which there is a charge imbalance is called the Debye
layer, and is on the order of a few nanometers thick.

The chemical potential of S on the inside of the membrane is

GS,i = G0
S + RT ln([S]i) + zFVi, (2.101)

while on the outside it is

GS,e = G0
S + RT ln([S]e) + zFVe. (2.102)

The chemical potential difference is

*GS = GS,i −GS,e = RT ln
( [S]i

[S]e

)
+ zFV . (2.103)

At equilibrium, it must be that *GS = 0, and thus the equilibrium potential
difference, VS, across the membrane must be

VS = RT
zF

ln
( [S]e

[S]i

)
= kT

zq
ln
( [S]e

[S]i

)
, (2.104)

called the Nernst potential. Here k is Boltzmann’s constant k = R
NA

, NA is Avogadro’s
number, q is the charge on a proton, and z is the charge on the ion S. When V = VS,
there is no net current of S across the membrane, as the tendency of ions to move down
their gradient is exactly balanced by the electric potential difference.

Throughout this book we follow the usual convention and define the potential
difference, V , across the membrane to be

V = Vi − Ve, (2.105)

i.e., the intracellular potential minus the extracellular potential.
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Typical concentrations (in this case, for squid axon) are 397, 50, and 40 mM for
K+, Na+, and Cl−, respectively, in the intracellular space, and 20, 437, and 556 mM
in the extracellular space. With these concentrations, the Nernst potentials for squid
nerve axon are VNa = 56 mV, VK = −77 mV, VCl = −68 mV (using RT/F = 25.8 mV at
27◦C. See Table 2.1).

The Nernst equation is independent of how the ions move through the membrane
and depends only on the ratio of concentrations. In this sense, it is a universal law
(although because it was derived from an ideal, yet approximate, law, it too is approx-
imate). Any equation that expresses the transmembrane current of S in terms of the
membrane potential, no matter what its form, must have the reversal potential of VS;
i.e., the current must be zero at the Nernst potential V = VS. However, although this is
true when a single ion species crosses the membrane, the situation is considerably more
complicated when more than one type of ion can cross the membrane. In this case, the
membrane potential that generates zero total current does not necessarily have zero
current for each individual ion. For example, a current of S in one direction might be
balanced by a current of S′ in the same direction. Hence, when multiple ion types can
diffuse through the membrane, the concentrations are not, in general, at equilibrium,
even when there is no total current. Therefore, the arguments of chemical equilibrium
used to derive the Nernst equation cannot be used, and there is no universal expression
for the reversal potential in the multiple ion case. In this case, the reversal potential
depends on the model used to describe the individual transmembrane ionic flows (see
Chapter 3).

2.6.2 Gibbs–Donnan Equilibrium

Suppose one side of the membrane contains large charged macromolecules that cannot
cross the membrane, but that both of the ion species S and S′ freely diffuse across the
membrane. To be specific, suppose that the macromolecules are negatively charged
with valence −zx, S is positively charged with valence z, and S′ is negatively charged
with valence −z. Note that both z and zx are defined to be positive.

Outside the cell, S and S′ must have the same concentration, to maintain charge
neutrality. Inside, charge neutrality requires more S than S′, in order to balance the
negative charge on the macromolecules. At equilibrium, the membrane potential must
be the Nernst potential for both S and S′, namely

VS = RT
zF

ln
( [S]e

[S]i

)
= −RT

zF
ln
( [S′]e

[S′]i

)
, (2.106)

where

zx[X] + z[S′]i = z[S]i and [S′]e = [S]e. (2.107)

It follows that

[S′]e[S]e = [S′]i[S]i, (2.108)
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and thus

[S]i
(

[S]i −
zx

z
[X]

)
− ([S]e)2 = 0. (2.109)

Now, we assume that the external concentration is fixed, and treat [S]e as a known
parameter. In this case, (2.109) can be solved to find a unique positive value for [S]i,

[S]i = σ [S]e, σ = 1
2

(Z +
√

Z2 + 4), (2.110)

where Z = zx[X]
z[S]e , and from this the transmembrane potential can be determined using

(2.106).
If, instead, we have a fixed volume and a fixed total amount of S, say, then we use

the constraint

vi[S]i + ve[S]e = [S]tot, (2.111)

where [S]tot is a constant, and vi and ve are the internal and external volumes, re-
spectively. We can now solve (2.109) subject to this constraint to find [S]i and the
transmembrane potential. Note, however, that a physical solution is not always possible
in this case, as there may be insufficient S or S′ to reach equilibrium.

This equilibrium is called the Gibbs–Donnan equilibrium (Exercise 15). The poten-
tial difference generated in this way is known to occur across cell membranes and also
across the edge of a gel in aqueous solution. This potential drop occurs across the edge
of a gel if the charged macromolecules are immobilized in the gel, and therefore unable
to diffuse out of the gel.

2.6.3 Electrodiffusion: The Goldman–Hodgkin–Katz Equations

In general, the flow of ions through the membrane is driven by concentration gradients
and also by the electric field. The contribution to the flow from the electric field is given
by Planck’s equation

J = −u
z
|z|c∇φ, (2.112)

where u is the mobility of the ion, defined as the velocity of the ion under a constant
unit electric field; z is the valence of the ion, so that z/|z| is the sign of the force on
the ion; c is the concentration of S; and φ is the electrical potential, so that −∇φ is the
electrical field.

There is a relationship, determined by Einstein, between the ionic mobility u and
Fick’s diffusion constant:

D = uRT
|z|F . (2.113)
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When the effects of concentration gradients and electrical gradients are combined,
we obtain the Nernst–Planck equation

J = −D
(
∇c + zF

RT
c∇φ

)
. (2.114)

If the flow of ions and the electric field are transverse to the membrane, (2.114) can
be viewed as the one-dimensional relation

J = −D
(

dc
dx

+ zF
RT

c
dφ
dx

)
. (2.115)

The Nernst Equation
The Nernst equation can also be derived from the Nernst–Planck equation (2.115).
When the flux J is zero, we obtain

−D
(

dc
dx

+ zF
RT

c
dφ
dx

)
= 0, (2.116)

so that
1
c

dc
dx

+ zF
RT

dφ
dx

= 0. (2.117)

Now suppose that the cell membrane extends from x = 0 (the inside) to x = L (the
outside), and let subscripts i and e denote internal and external quantities respectively.
Then, integrating (2.117) from x = 0 to x = L we get

ln(c)
∣∣ce
ci

= zF
RT

(φi − φe), (2.118)

and thus the potential difference across the membrane, V = φi − φe, is given by

V = RT
zF

ln
(

ce

ci

)
, (2.119)

which is the Nernst equation.

The Constant Field Approximation
In general, the electric potential φ is determined by the local charge density, and so, if it
is not zero, J must be found by solving a coupled system of equations (discussed in detail
in Chapter 3). However, a useful result is obtained by assuming that the electric field
in the membrane is constant, and thus decoupled from the effects of charges moving
through the membrane. Suppose two reservoirs are separated by a semipermeable
membrane of thickness L, such that the potential difference across the membrane is
V . On the left of the membrane (the inside) [S] = ci, and on the right (the outside)
[S] = ce. If the electric field is constant through the membrane, ∂φ/∂x = −V/L, where
V = φ(0)− φ(L) is the membrane potential.

At steady state and with no production of ions, the flux must be constant. In this
case, the Nernst–Planck equation (2.114) is an ordinary differential equation for the
concentration c,
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dc
dx
− zFV

RTL
c + J

D
= 0, (2.120)

whose solution is

exp
(−zVFx

RTL

)
c(x) = JRTL

DzVF

[
exp

(−zVFx
RTL

)
− 1

]
+ ci, (2.121)

where we have used the left boundary condition c(0) = ci. To satisfy the boundary
condition c(L) = ce, it must be that

J = D
L

zFV
RT

ci − ce exp
(
−zVF

RT

)

1− exp
(
−zVF

RT

) , (2.122)

where J is the flux density with units (typically) of moles per area per unit time. Note
that these units are equivalent to units of concentration × speed. This flux density
becomes an electrical current density (current per unit area) when multiplied by zF,
the amount of charge carried per mole, and thus

IS = PS
z2F2

RT
V

ci − ce exp
(
−zFV

RT

)

1− exp
(
−zFV

RT

) , (2.123)

where PS = D/L is the permeability of the membrane to S. This is the famous Goldman–
Hodgkin–Katz (GHK) current equation, and plays an important role in models of
cellular electrical activity. Notice that the GHK flux (2.122) reduces to Fick’s law (2.14)
in the limit V → 0.

The current is zero if the diffusively driven flow and the electrically driven flow are
in balance, which occurs, provided that z ̸= 0, if

V = VS = RT
zF

ln
(

ce

ci

)
, (2.124)

which is, as expected, the Nernst potential.
If there are several ions that are separated by the same membrane, then the flow of

each of these is governed separately by its own current–voltage relationship. In general
there is no potential at which these currents are all individually zero. However, the
potential at which the net electrical current is zero is called the Goldman–Hodgkin–
Katz potential. For a collection of ions all with valence z = ± 1, we can calculate the
GHK potential directly. For zero net electrical current, it must be that

0 =
∑

z=1

Pj

cj
i − cj

e exp
(
−VF
RT

)

1− exp
(
−VF
RT

) +
∑

z=−1

Pj

cj
i − cj

e exp
(

VF
RT

)

1− exp
(

VF
RT

) , (2.125)
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where Pj = Dj/L. This expression can be solved for V , to get

V = −RT
F

ln

(∑
z=−1 Pjc

j
e +∑

z=1 Pjc
j
i∑

z=−1 Pjc
j
i +∑

z=1 Pjc
j
e

)

. (2.126)

For example, if the membrane separates Na+ (z = 1), K+ (z = 1), and Cl− (z = −1)
ions, then the GHK potential is

Vr = −RT
F

ln

(
PNa[Na+]i + PK[K+]i + PCl[Cl−]e
PNa[Na+]e + PK[K+]e + PCl[Cl−]i

)

. (2.127)

It is important to emphasize that neither the GHK potential nor the GHK current
equation are universal expressions like the Nernst equation. Both depend on the as-
sumption of a constant electric field, and other models give different expressions for the
transmembrane current and reversal potential. In Chapter 3 we discuss other models
of ionic current, and compare them to the GHK equations. However, the importance
of the GHK equations is so great, and their use so widespread, that their separate
presentation here is justified.

2.6.4 Electrical Circuit Model of the Cell Membrane

Since the cell membrane separates charge, it can be viewed as a capacitor. The capac-
itance of any insulator is defined as the ratio of the charge across the capacitor to the
voltage potential necessary to hold that charge, and is denoted by

Cm = Q
V

. (2.128)

From standard electrostatics (Coulomb’s law), one can derive the fact that for two
parallel conducting plates separated by an insulator of thickness d, the capacitance is

Cm = kϵ0
d

, (2.129)

where k is the dielectric constant for the insulator and ϵ0 is the permittivity of free
space. The capacitance of cell membrane is typically 1.0 µF/cm2. Using that ϵ0 =
(10−9/(36π))F/m, we calculate that the dielectric constant for cell membrane is about
8.5, compared to k = 3 for oil.

A simple electrical circuit model of the cell membrane is shown in Fig. 2.13. It is
assumed that the membrane acts like a capacitor in parallel with a resistor (although
not necessarily ohmic). Since the current is dQ/dt, it follows from (2.128) that the
capacitive current is CmdV/dt, provided that Cm is constant. Since there can be no net
buildup of charge on either side of the membrane, the sum of the ionic and capacitive
currents must be zero, and so

Cm
dV
dt

+ Iion = 0, (2.130)

where, as usual, V = Vi − Ve.
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Figure 2.13 Electrical circuit model
of the cell membrane.

This equation appears many times in this book, as it is the basis for much of the-
oretical electrophysiology. A significant challenge is to determine the form of Iion. We
have already derived one possible choice, the GHK current equation (2.123), and others
are discussed in Chapter 3.

Another common model describes Iion as a linear function of the membrane poten-
tial. In Chapter 3 we show how a linear I–V curve can be derived from more realistic
models; however, because it is used so widely, we present a brief, heuristic, derivation
here. Consider the movement of an ion S across a membrane. We assume that the po-
tential drop across the membrane has two components. First, the potential drop due
to concentration differences is given by the Nernst equation

VS = RT
zF

ln
( [S]e

[S]i

)
, (2.131)

and, second, if the channel is ohmic, the potential drop due to an electrical current is
rIS, where r is the channel resistance and IS is the transmembrane current (positive
outward) of S. Summing these two contributions we obtain

V = rIS + VS, (2.132)

and solving for the current, we get the current–voltage relationship

IS = g(V − VS), (2.133)

where g = 1/r is the membrane conductance. The current IS and conductance g are
usually specified per unit area of membrane, being the product of the single channel
conductance times the number of channels per unit area of membrane.

Notice that this current–voltage relationship also has zero current when V = VS,
the Nernst potential, as it must.
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2.7 Osmosis

Suppose two chambers of water are separated by a rigid porous membrane. Because it
is porous, water can flow between the two chambers. If the two chambers are topped
by pistons, then water can be driven between the two chambers by applying differ-
ent pressures to the two pistons. In general there is a linear relationship between the
pressure difference and the flux of water through the membrane, given by

rQ = P1 − P2, (2.134)

where Q is the flux (volume per unit time) of water from chamber one to chamber two,
P1 and P2 are the applied pressures for chambers one and two, respectively, and r is
the flow resistance of the membrane (not the same as the resistance to flow of ions).
The expression (2.134) is actually a definition of the flow resistance r, and this linear
relationship is analogous to Ohm’s law relating current and voltage in a conductor. It
is useful but not universally correct.

Suppose that a solute is added to chamber one, and that the membrane is imper-
meable to the solute. The difference in free energy per mole (or chemical potential) of
solvent (i.e., water) between the two chambers is

*G = RT ln
S1

S2
, (2.135)

where Si is the mole fraction of solvent in the ith chamber. Note that because this
expression involves the ratio of S1 to S2, we can use whatever units are most convenient.
Hence we use mole fraction rather than concentration, which is standard. Because it
dilutes the solvent (S1 < S2), the presence of a solute lowers the chemical potential
of the solvent and induces a flow of solvent from chamber two to chamber one. In
other words, the solvent diffuses from a region of higher concentration to one of lower
concentration.

At constant temperature, equilibrium can be attained either by diluting the solution
until it is pure solvent, or by increasing the pressure on the solution. The osmotic
pressure πs is defined to be the pressure that must be applied to chamber 1 to bring the
free energy back to the free energy of the pure solvent. It follows that

RT ln
S1

S2
+ πsvs = 0, (2.136)

where vs is the molar volume (liters per mole) of the solvent. Note that, from the ideal
gas law PV = nRT, we see that πsvs has the same units as RT.

Since S2 = 1 it now follows that

πs = −RT
vs

ln(S1) = −RT
vs

ln(1−N) ≈ RT
vs

N, (2.137)
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where N is the mole fraction of solvent. Also, since N = n
n+ns

≈ n
ns

, where n and ns are
the number of moles of solute and solvent, respectively, we have that

πs = RT
vs

n
ns
≈ RcT, (2.138)

since nsvs is quite close to the volume, v, of solution. Here c is the concentration of
solvent in units of moles per liter. Using that c = n/v, (2.138) becomes

πsv = nRT, (2.139)

which is the same as the ideal gas law. Equation (2.138) was first found empirically by
van’t Hoff.

If n has the units of numbers of molecules per liter, rather than moles per liter, as
above, then (2.139) becomes

πsv = nkT. (2.140)

As with all things derived from ideal properties, the expression (2.139) is an ap-
proximation, and for real solutions at physiological concentrations, the deviation can
be significant. The formula

πsv = φnRT, (2.141)

works much better, where φ is a concentration-dependent correction factor found ex-
perimentally. For all solutes, φ approaches one for sufficiently small concentrations. At
concentrations typical of extracellular fluids in mammals, φ = 1.01 for glucose and lac-
tose, whereas for NaCl and KCl, φ = 0.93 and 0.92, respectively. Deviation from ideality
is even more significant for proteins, and is typically more concentration dependent as
well. In spite of this, in the remainder of this book we use van’t Hoff’s law (2.138) to
calculate osmotic pressure.

Notice that πs is not the pressure of the solute but rather the pressure that must be
applied to the solution to prevent solvent from flowing in through the semipermeable
membrane. Thus, the flow rate of solvent is modified by osmotic pressure to be

rQ = P1 − πs − P2, (2.142)

The flux of water due to osmotic pressure is called osmosis. The effect of the osmotic
pressure is to draw water into chamber one, causing an increase in its volume and
thereby to decrease the concentration of solute.

Osmotic pressure is determined by the number of particles per unit volume of fluid,
and not the mass of the particles. The unit that expresses the concentration in terms of
number of particles is called the osmole. One osmole is 1 gram molecular weight (that
is, one mole) of an undissociated solute. Thus, 180 grams of glucose (1 gram molecular
weight) is 1 osmole of glucose, since glucose does not dissociate in water. On the other
hand, 1 gram molecular weight of sodium chloride, 58.5 grams, is 2 osmoles, since it
dissociates into 2 moles of osmotically active ions in water.

A solution with 1 osmole of solute dissolved in a kilogram of water is said to have
osmolality of 1 osmole per kilogram. Since it is difficult to measure the amount of water
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in a solution, a more common unit of measure is osmolarity, which is the osmoles per
liter of aqueous solution. In dilute conditions, such as in the human body, osmolarity
and osmolality differ by less than one percent. At body temperature, 37◦ C, a concen-
tration of 1 osmole per liter of water has an osmotic pressure of 19,300 mm Hg, which
corresponds to a column of water over 250 meters high. Clearly, osmotic pressures can
be very large. It is for this reason that red blood cells burst when the blood serum is
diluted with pure water, and this is known to have been the cause of death in hospital
patients when pure water was accidentally injected into the veins.

Suppose two columns (of equal cross-section) of water are separated at the bottom
by a rigid porous membrane. If n molecules of sugar are dissolved in column one, what
will be the height difference between the two columns after they achieve steady state? At
steady state there is no flux between the two columns, so at the level of the membrane,
P1 − πs = P2. Since P1 and P2 are related to the height of the column of water through
P = ρgh, where ρ is the density of the fluid, g is the gravitational constant, and h is
the height of the column. We suppose that the density of the two columns is the same,
unaffected by the presence of the dissolved molecule, so we have

ρgh2 = ρgh1 −
nkT
h1A

, (2.143)

where A is the cross-sectional area of the columns. Since fluid is conserved, h1 + h2 =
2h0, where h0 is the height of the two columns of water before the sugar was added.
From these, we find a single quadratic equation for h1:

h2
1 − h0h1 −

nkT
2ρgA

= 0. (2.144)

The positive root of this equation is h1 = h0/2 + 1
2

√
h2

0 + 2nkT
ρgA , so that

h1 − h2 =
√

h2
0 + 2nkT

ρgA
− h0. (2.145)

When the solute is at a high enough concentration, physical solutions of (2.145) are
not possible. Specifically, if the solute is too concentrated with nkT

ρgA > 4h2
0, the weight

of a column of water of height 2h0 is insufficient to balance the osmotic pressure, in
which case there is not enough water to reach equilibrium.

2.8 Control of Cell Volume

The principal function of the ionic pumps is to set up and maintain concentration
differences across the cell membrane, concentration differences that are necessary for
the cell to control its volume. In this section we describe how this works by means of a
simple model in which the volume of the cell is regulated by the balance between ionic
pumping and ionic flow down concentration gradients (Tosteson and Hoffman, 1960;
Jakobsson, 1980; Hoppensteadt and Peskin, 2001).
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Because the cell membrane is a thin lipid bilayer, it is incapable of withstanding
any hydrostatic pressure differences. This is a potentially fatal weakness. For a cell
to survive, it must contain a large number of intracellular proteins and ions, but if
their concentrations become too large, osmosis causes the entry of water into the cell,
causing it to swell and burst (this is what happens to many cells when their pumping
machinery is disabled). Thus, for cells to survive, they must regulate their intracellular
ionic composition (Macknight, 1988).

An even more difficult problem for some cells is to transport large quantities of
water, ions, or other molecules while maintaining a steady volume. For example, Na+-
transporting epithelial cells, found (among other places) in the bladder, the colon, and
nephrons of the kidney, are designed to transport large quantities of Na+ from the
lumen of the gut or the nephron to the blood. Indeed, these cells can transport an
amount of Na+ equal to their entire intracellular contents in one minute. However, the
rate of transport varies widely, depending on the concentration of Na+ on the mucosal
side. Thus, these cells must regulate their volume and ionic composition under a wide
variety of conditions and transport rates (Schultz, 1981).

2.8.1 A Pump–Leak Model

We begin by modeling the active and passive transport of ionic species across the cell
membrane. We have already derived two equations for ionic current as a function of
membrane potential: the GHK current equation (2.123) and the linear relationship
(2.133). For our present purposes it is convenient to use the linear expression for ionic
currents. Active transport of Na+ and K+ is performed primarily by the Na+–K+ ATPase
(see Section 2.5.3).

3 Na+

2 K+

X

Cl-

Figure 2.14 Schematic diagram of
the pump–leak model.
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Combining the expressions for active and passive ion transport, we find that the
Na+, K+, and Cl− currents are given by

INa = gNa

[
V − RT

F
ln
( [Na+]e

[Na+]i

)]
+ 3pq, (2.146)

IK = gK

[
V − RT

F
ln
( [K+]e

[K+]i

)]
− 2pq, (2.147)

ICl = gCl

[

V + RT
F

ln

(
[Cl−]e
[Cl−]i

)]

, (2.148)

where p is the rate at which the ion exchange pump works and q is the charge of a
single ion.

We can express these current–voltage equations as differential equations by noting
that an outward ionic current of ion Az+ affects the intracellular concentration of that
ion through

IA = − d
dt

(zFw[Az+]), (2.149)

with w denoting the cell volume. (We use w rather than v to denote the cell volume to
prevent confusion with V , the membrane potential.) Thus we have

− d
dt

(Fw[Na+]i) = gNa

[
V − RT

F
ln
( [Na+]e

[Na+]i

)]
+ 3pq, (2.150)

− d
dt

(Fw[K+]i) = gK

[
V − RT

F
ln
( [K+]e

[K+]i

)]
− 2pq, (2.151)

d
dt

(Fw[Cl−]i) = gCl

[

V + RT
F

ln

(
[Cl−]e
[Cl−]i

)]

. (2.152)

Next, we let X denote the number of moles of large negatively charged molecules
(with valence zx ≤ −1) that are trapped inside the cell. The flow of water across the
membrane is driven by osmotic pressure, so that the change of cell volume is given by

r
dw
dt

= RT
(

[Na+]i − [Na+]e + [K+]i − [K+]e + [Cl−]i − [Cl−]e + X
w

)
. (2.153)

Here we have assumed that the mechanical (hydrostatic) pressure difference across
the membrane is zero, and we have also assumed that the elastic restoring force for
the membrane is negligible.

Now to determine the membrane potential, we could use the electrical circuit model
of the cell membrane, and write

Cm
dV
dt

+ INa + IK + ICl = 0. (2.154)

However, the system of equations (2.150)–(2.154) has an infinite number of steady
states. This can be seen from the fact that, at steady state, we must have INa = IK =
ICl = 0, from which it follows that dV/dt must also necessarily be zero. Since the
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solution is thus determined by the choice of initial condition, it is better to use the
integrated form of (2.154), i.e.,

CmV = Qi −Qe, (2.155)

where Qi and Qe are the total positive charge in the intracellular and extracellular
spaces, respectively. (Note that here Cm refers to the total cell capacitance, assumed to
be independent of cell volume. In other chapters of this book, Cm refers to membrane
capacitance per unit area.) Since total charge is the difference between total number
of positive and negative charges, we take

Qi = qw([Na+]i + [K+]i − [Cl−]i) + zxqX , (2.156)

Qe = qwe([Na+]e + [K+]e − [Cl−]e). (2.157)

This expression would be correct if the concentration of an ion was defined as the total
number of ions in a region divided by the volume of that region, or if the distribution of
ions was spatially homogeneous. But such is not the case here. This is because excess
charge always accumulates in a thin region at the boundary of the domain (the Debye
layer). However, this excess charge is quite small. To see this, consider a cylindrical
piece of squid axon of typical radius 500 µm. With a capacitance of 1 µF/cm2 and a
typical membrane potential of 100 mV, the total charge is Q = CmV = π × 10−8 C/cm.
In comparison, the charge associated with intracellular K+ ions at 400 mM is about
0.1 π C/cm, showing a relative charge deflection of about 10−7.

Thus, since Qi and Qe are so small compared to the charges of each ion, it is a
excellent approximation to assume that both the extracellular and intracellular media
are electroneutral. Thus, Na+, K+, and Cl− are assumed to be in electrical balance in
the extracellular space. In view of the numbers for squid axon, this assumption is not
quite correct, indicating that there must be other ions around to maintain electrical
balance. In the intracellular region, Na+, K+, and Cl− are not even close to being
in electrical balance, but here, electroneutrality is maintained by the large negatively
charged proteins trapped within the cell’s interior. It is, of course, precisely the presence
of these proteins in the interior of the cell that makes this whole exercise necessary. If a
cell were not full of proteins (negatively charged or otherwise), it could avoid excessive
osmotic pressures simply by allowing ions to cross the plasma membrane freely.

The assumption of electroneutrality gives the two equations

[Na+]e + [K+]e − [Cl−]e = 0, (2.158)

[Na+]i + [K+]i − [Cl−]i + zx
X
w

= 0. (2.159)

It is convenient to assume that the cell is in an infinite bath, so that ionic currents
do not change the external concentrations, which are thus assumed to be fixed and
known, and to satisfy (2.158).

The differential equations (2.150), (2.151), (2.152), and (2.153) together with the
requirement of intracellular electroneutrality (2.159) describe the changes of cell vol-
ume and membrane potential as functions of time. Note that we have 4 differential
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equations and one algebraic equation for the five unknowns ([Na+]i, [K+]i, [Cl−]i, w
and V).

Even though we formulated this model as a system of differential equations, we are
interested, for the moment, only in their steady-state solution. Time-dependent currents
and potentials become important in Chapter 5 for the discussion of excitability.

To understand these equations, we introduce the nondimensional variables v =
FV
RT , P = pFq

RTgNa
, µ = w

X [Cl−]e and set y = e−v. Then, the equation of intracellular
electroneutrality becomes

αy− 1
y

+ zx

µ
= 0, (2.160)

and the equation of osmotic pressure balance becomes

αy + 1
y

+ 1
µ
− 2 = 0, (2.161)

where α = [Na+]ee−3P+[K+]ee2Pγ

[Na+]e+[K+]e and γ = gNa/gK. In terms of these nondimensional
variables, the ion concentrations are

[Na+]i
[Na+]e

= e−3Py, (2.162)

[K+]i
[K+]e

= e2Pγ y, (2.163)

[Cl−]i
[Cl−]e

= 1
y

. (2.164)

Solving (2.160) for its unique positive root, we obtain

y = −zx +
√

z2
x + 4αµ2

2αµ
, (2.165)

and when we substitute for y back into (2.161), we find the quadratic equation for µ:

4(1− α)µ2 − 4µ + 1− z2
x = 0. (2.166)

For zx ≤ −1, this quadratic equation has one positive root if and only if α < 1. Expressed
in terms of concentrations, the condition α < 1 is

ρ(P) = [Na+]ee−3P + [K+]ee2Pγ

[Na+]e + [K+]e
< 1. (2.167)

One can easily see that ρ(0) = 1 and that for large P, ρ(P) is exponentially large and
positive. Thus, the only hope for ρ(P) to be less than one is if ρ′(0) < 0. This occurs if
and only if

3[Na+]e
gNa

>
2[K+]e

gK
, (2.168)

in which case there is a range of values of P for which a finite, positive cell volume is
possible and for which there is a corresponding nontrivial membrane potential.
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To decide if this condition is ever satisfied we must determine “typical” values for
gNa and gK. This is difficult to do, because, as is described in Chapter 5, excitability
of nerve tissue depends strongly on the fact that conductances are voltage-dependent
and can vary rapidly over a large range of values. However, at rest, in squid axon,
reasonable values are gK = 0.367 mS/cm2 and gNa = 0.01 mS/cm2. For these values,
and at the extracellular concentrations of 437 and 20 mM for Na+ and K+, respectively,
the condition (2.168) is readily met.

One important property of the model is that the resting value of V is equal to
the Nernst potential of Cl−, as can be seen from (2.152) or (2.164). Thus, the mem-
brane potential is set by the activity of the Na+–K+ ATPase, and the intracellular Cl−

concentration is set by the membrane potential.
In Figs. 2.15 and 2.16 the nondimensional volume µ and the potential V (assuming

RT/F = 25.8 mV) are plotted as functions of the pump rate P. In addition, in Fig. 2.16
are shown the Na+ and K+ equilibrium potentials. For these plots, γ was chosen to be
0.11, and zx = −1. Then, at P = 1.6, the Na+ and K+ equilibrium potentials and the
membrane potentials are close to their observed values for squid axon, of 56, −77 and
−68 mV, respectively.

From these plots we can see the effect of changing pump rate on cell volume and
membrane potential. At zero pump rate, the membrane potential is zero and the cell
volume is infinite (dead cells swell). As the pump rate increases from zero, the cell
volume and membrane potential rapidly decrease to their minimal values and then
gradually increase until at some upper limit for pump rate, the volume and potential
become infinite. The K+ equilibrium potential is seen to decrease rapidly as a function
of pump rate until it reaches a plateau at a minimum value. The Na+ equilibrium
potential increases monotonically.

Physically realistic values of the membrane potential are achieved fairly close to
the local minimum. Clearly, there is little advantage for a higher pump rate, and since
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Figure 2.15 Cell volume as a func-
tion of the pump rate.
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Figure 2.16 Membrane potential, Na+ equilibrium potential, and K+ equilibrium potential
as functions of the pump rate.

.Table 2.4 Resting potentials in some typical excitable cells.

CellType Resting Potential (mV)
Neuron −70
Skeletal muscle (mammalian) −80
Skeletal muscle (frog) −90
Cardiac muscle (atrial and ventricular) −80
Cardiac Purkinje fiber −90
Atrioventricular nodal cell −65
Sinoatrial nodal cell −55
Smooth muscle cell −55

the pump rate is proportional to energy expenditure, it would seem that the pump
rate is chosen approximately to minimize cell volume, membrane potential, and en-
ergy expenditure. However, no mechanism for the regulation of energy expenditure is
suggested.

Generalizations
While the above model of volume control and membrane potential is useful and gives
some insight into the control mechanisms, as with most models there are important
features that have been ignored but that might lead to substantially different behavior.

There are (at least) two significant simplifications in the model presented here.
First, the conductances gNa and gK are treated as constants. In Chapter 5 we show
that the ability of cells to generate an electrical signal results from voltage and time
dependence of the conductances. In fact, the discovery that ion channels have differing
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properties of voltage sensitivity was of fundamental importance to the understanding of
neurons. The second simplification relates to the operation of the ion exchange pump.
Figure 2.16 suggests that the minimal membrane potential is achieved at a particular
pump rate and suggests the need for a tight control of pump rate that maintains the
potential near this minimum. If indeed, such a tight control is required, it is natural
to ask what that control mechanism might be. There is also the difficulty that in this
simple model there is nothing preventing the complete depletion of Na+ ions.

A different model of the pump activity might be beneficial. Recall from (2.98) that
with each cycle of the ion exchange pump, three intracellular Na+ ions are exchanged
for two extracellular K+ ions. Our previous analysis of the Na+–K+ ATPase (see (2.100))
suggests that at low internal Na+ concentrations, the pump rate can be represented in
nondimensional variables as

P = ρu3, (2.169)

where u = [Na+]i/[Na+]e. This representation is appropriate at high pump rates, where
effects of saturation are of no concern. Notice that P is proportional to the rate of ATP
hydrolysis, and hence to energy consumption. Thus, as u decreases, so also does the
rate of energy consumption. With this change, the equation for the Na+ concentration
becomes

u exp(3ρu3) = y, (2.170)

and this must be solved together with the quadratic polynomials (2.160) and (2.161),
with (2.170) replacing (2.162).

In Fig. 2.17 are shown the membrane potential, and the Na+ and K+ equilib-
rium potentials, plotted as functions of the nondimensional reaction rate ρ. Here we
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Figure 2.17 Membrane potential, Na+ equilibrium potential, and K+ equilibrium potential
as functions of the pump rate, for the modified pump rate (2.169).
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see something qualitatively different from what is depicted in Fig. 2.16. There the
membrane potential had a noticeable local minimum and was sensitive to changes
in pump rate. In this modified model, the membrane potential is insensitive to changes
in the pump rate. The reason for this difference is clear. Since the effectiveness of the
pump depends on the internal Na+ concentration, increasing the speed of the pump-
ing rate has little effect when the internal Na+ is depleted, because of the diminished
number of Na+ ions available to be pumped.

While the pump rate is certainly ATP dependent, there are a number of drugs and
hormones that are known to affect the pump rate. Catecholamines rapidly increase the
activity of the pump in skeletal muscle, thereby preserving proper K+ during strenuous
exercise. Within minutes, insulin stimulates pump activity in the liver, muscle, and
fat tissues, whereas over a period of hours, aldosterone and corticosterones increase
activity in the intestine.

On the other hand, digitalis (clinically known as digoxin) is known to suppress
pump activity. Digitalis is an important drug used in the treatment of congestive heart
failure and during the 1980s was the fourth most widely prescribed drug in the United
States. At therapeutic concentrations, digitalis inhibits a moderate fraction (say, 30–
40%) of the Na+–K+ ATPase, by binding with the Na+ binding site on the extracellular
side. This causes an increase in internal Na+, which has an inhibitory effect on the Na+–
Ca2+ exchanger, slowing the rate by which Ca2+ exits the cells. Increased levels of Ca2+

result in increased myocardial contractility, a positive and useful effect. However, it is
also clear that at higher levels, the effect of digitalis is toxic.

2.8.2 Volume Regulation and Ionic Transport

Many cells have a more difficult problem to solve, that of maintaining their cell volume
in widely varying conditions, while transporting large quantities of ions through the
cell. Here we present a simplified model of transport and volume regulation in a Na+-
transporting epithelial cell.

As are virtually all models of transporting epithelia, the model is based on that
of Koefoed-Johnsen and Ussing (1958), the so-called KJU model. In the KJU model,
an epithelial cell is modeled as a single cell layer separating a mucosal solution from
the serosal solution (Fig. 2.18). (The mucosal side of an epithelial cell is that side
on which mucus is secreted and from which various chemicals are withdrawn, for
example, from the stomach. The serosal side is the side of the epithelial cell facing
the interstitium, wherein lie capillaries, etc.) Na+ transport is achieved by separating
the Na+ pumping machinery from the channels that allow Na+ entry into the cell.
Thus, the mucosal membrane contains Na+ channels that allow Na+ to diffuse down
its concentration gradient into the cell, while the serosal membrane contains the Na+–
K+ ATPases which remove Na+ from the cell. The overall result is the transport of Na+

from the mucosal side of the cell to the serosal side. The important question is whether
the cell can maintain a steady volume under widely varying concentrations of Na+ on
the mucosal side.
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Figure 2.18 Schematic diagram of
the model of a Na+-transporting ep-
ithelial cell, based on the model of
Koefoed-Johnsen and Ussing (1958).

We begin by letting N, K, and C denote Na+, K+, and Cl− concentrations re-
spectively, and letting subscripts m, i, and s denote mucosal, intracellular and serosal
concentrations. Thus, for example, Ni is the intracellular Na+ concentration, and Nm
is the mucosal Na+ concentration. We now write the conservation equations for Na+,
K+, and Cl− at steady state. The conservation equations are the same as those of
the pump–leak model with some minor exceptions. First, instead of the linear I–V
curve used in the pump–leak model, we use the GHK formulation to represent the
ionic currents. This makes little qualitative change to the results but is more con-
venient because it simplifies the analysis that follows. Second, we assume that the
rate of the Na+–K+ ATPase is proportional to the intracellular Na+ concentration, Ni,
rather than N3

i , as was assumed in the generalized version of the pump–leak model.
Thus,

PNav
Ni −Nme−v

1− e−v + 3qpNi = 0, (2.171)

PKv
Ki − Kse−v

1− e−v − 2qpNi = 0, (2.172)

PClv
Ci − Csev

1− ev = 0. (2.173)

Note that the voltage, v, is nondimensional, having been scaled by F
RT , and that the rate

of the Na+–K+ ATPase is pNi. Also note that the inward Na+ current is assumed to
enter from the mucosal side, and thus Nm appears in the GHK current expression, but
that no other ions enter from the mucosa. Here the membrane potential is assumed to
be the same across the lumenal membrane and across the basal membrane. This is not
quite correct, as the potential across the lumenal membrane is typically −67 mV while
across the basal membrane it is about −70 mV.
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There are two further equations to describe the electroneutrality of the intracellular
space and the osmotic balance. In steady state, these are, respectively,

w(Ni + Ki − Ci) + zxX = 0, (2.174)

Ni + Ki + Ci + X
w

= Ns + Ks + Cs, (2.175)

where X is the number of moles of protein, each with a charge of zx ≤ −1, that are
trapped inside the cell, and w is the cell volume. Finally, the serosal solution is assumed
to be electrically neutral, and so in specifying Ns, Ks, and Cs we must ensure that

Ns + Ks = Cs. (2.176)

Since the mucosal and serosal concentrations are assumed to be known, we now have
a system of 5 equations to solve for the 5 unknowns, Ni, Ki, Ci, v, and µ = w/X . First,
notice that (2.171), (2.172), and (2.173) can be solved for Ni, Ki, and Ci, respectively, to
get

Ni(v) = vNme−v

v + 3ρn(1− e−v)
, (2.177)

Ki(v) = 2ρkNi(v)
1− e−v

v
+ Kse−v, (2.178)

Ci(v) = Csev, (2.179)

where ρn = pq/PNa and ρk = pq/PK.
Next, eliminating Ni + Ki between (2.174) and (2.175), we find that

2µ(Ci − Cs) = zx − 1. (2.180)

We now use (2.179) to find that

zx − 1 = 2µCs(ev − 1), (2.181)

and thus, using (2.181) to eliminate µ from (2.174), we get

Ni(v) + Ki(v) = Cs

1− zx
[−2zx + ev(1 + zx)] ≡ φ(v). (2.182)

Since zx − 1 < 0, it must be (from (2.181)) that v < 0, and as v → 0, the cell volume
w = µX becomes infinite. Thus, we wish to find a negative solution of (2.182), with
Ni(v) and Ki(v) specified by (2.177) and (2.178).

It is instructive to consider when solutions for v (with v < 0) exist. First, notice that
φ(0) = Cs. Further, since zx ≤ −1, φ is a decreasing function of v, bounded above, with
decreasing slope (i.e., concave down), as sketched in Fig. 2.19. Next, from (2.177) and
(2.178) we determine that Ni(v) + Ki(v) is a decreasing function of v that approaches
∞ as v→−∞ and approaches zero as v→∞. It follows that a negative solution for v
exists if Ni(0) + Ki(0) < Cs, i.e., if

Nm

1 + 3ρn
+ 2ρkNm

1 + 3ρn
+ Ks < Cs. (2.183)
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Figure 2.19 Sketch (not to scale) of
the function φ(v ), defined as the right-
hand side of (2.182), and of Ni(v ) +
Ki(v ), where Ni and Ki are defined by
(2.177) and (2.178). φ(v ) is sketched for
zx < −1.

Since Ks + Ns = Cs, this becomes

Nm

Ns
<

1 + 3ρn

1 + 2ρk
. (2.184)

This condition is sufficient for the existence of a solution, but not necessary. That is,
if this condition is satisfied, we are assured that a solution exists, but if this condition
fails to hold, it is not certain that a solution fails to exist. The problem, of course, is that
negative solutions are not necessarily unique, nor is it guaranteed that increasing Nm
through Ns

1+3ρn
1+2ρk

causes a negative solution to disappear. It is apparent from (2.177) and
(2.178) that Ni(v) and Ki(v) are monotone increasing functions of the parameter Nm,
so that no negative solutions exist for Nm sufficiently large. However, for Nm = Ns

1+3ρn
1+2ρk

to be the value at which the cell bursts by increasing Nm, it must also be true that

N′i(0) + K ′i(0) < φ′(0), (2.185)

or that

4(1 + 3ρn)Cs + Ns(1− zx)
3ρn − 2ρk

1 + 2ρk
> 0. (2.186)

For the remainder of this discussion we assume that this condition holds, so that the
failure of (2.184) also implies that the cell bursts.

According to (2.184), a transporting epithelial cell can maintain its cell volume,
provided the ratio of mucosal to serosal concentrations is not too large. When Nm/Ns
becomes too large, µ becomes unbounded, and the cell bursts. Typical solutions for the
cell volume and membrane potential, as functions of the mucosal Na+ concentration,
are shown in Fig. 2.20.

Obviously, this state of affairs is unsatisfactory. In fact, some epithelial cells, such
as those in the loop of Henle in the nephron (Chapter 17), must work in environments
with extremely high mucosal Na+ concentrations. To do so, these Na+-transporting
epithelial cells have mechanisms to allow operation over a much wider range of
mucosal Na+ concentrations than suggested by this simple model.
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Figure 2.20 Numerical solutions of the
model of epithelial cell volume regulation
and Na+ transport.The membrane potential,
V , the scaled cell volume, µ, and the intracel-
lular Na+ concentration, [Na+]i, are plotted
as functions of the mucosal Na+ concentra-
tion. The solid lines are the solutions of the
simpler version of the model, where PNa and
PK are assumed to be constant.The dashed
lines are the solutions of the model when
PNa is assumed to be a decreasing function
of Ni, and PK is assumed to be an increas-
ing function of w , as described in the text.
Parameter values are Ks = 2.5, Ns = 120,
Cs = 122.5, P = 2, γ = 0.3, zx = −2. All
concentrations are in mM.

From (2.184) we can suggest some mechanisms by which a cell might avoid
bursting at high mucosal concentrations. For example, the possibility of bursting is
decreased if ρn is increased or if ρk is decreased. The reasons for this are apparent from
(2.177) and (2.178), since Ni(v)+ Ki(v) is a decreasing function of ρn and an increasing
function of ρk. From a physical perspective, increasing Nm causes an increase in Ni,
which increases the osmotic pressure, inducing swelling. Decreasing the conductance
of Na+ ions from the mucosal side helps to control this swelling. Similarly, increas-
ing the conductance of K+ ions allows more K+ ions to flow out of the cell, thereby
decreasing the osmotic pressure from K+ ions and counteracting the tendency to swell.

It has been conjectured for some time that epithelial cells use both of these mecha-
nisms to control their volume (Schultz, 1981; Dawson and Richards, 1990; Beck et al.,
1994). There is evidence that as Ni increases, epithelial cells decrease the Na+ conduc-
tance on the mucosal side of the cell, thus restricting Na+ entry. There is also evidence
that as the cell swells, the K+ conductance is increased, possibly by means of stretch-
activated K+ channels (Ussing, 1982. This assumption was used in the modeling work
of Strieter et al., 1990).
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To investigate the effects of these mechanisms in our simple model, we replace PNa
by PNa20/Ni (20 is a scale factor, so that when Ni = 20 mM, PNa has the same value as
in the original version of the model) and replace PK by PKw/w0, where w0 is the volume
of the cell when Nm = 100 mM. As before, we can solve for v and µ as functions of Nm,
and the results are shown in Fig. 2.20. Clearly the incorporation of these mechanisms
decreases the variation of cell volume and allows the cell to survive over a much wider
range of mucosal Na+ concentrations.

The model of control of ion conductance used here is extremely simplistic, as for
example, there is no parametric control of sensitivity, and the model is heuristic, not
mechanistic. More realistic and mechanistic models have been constructed and an-
alyzed in detail (Lew et al., 1979; Civan and Bookman, 1982; Strieter et al., 1990;
Weinstein, 1992, 1994, 1996; Tang and Stephenson, 1996).

2.9 Appendix: Stochastic Processes

Although all of the models that have been presented so far in this text have been deter-
ministic, the reality is that biological processes are fundamentally noisy. Furthermore,
many of the assumptions underlying deterministic models are questionable, largely
because of significant stochastic effects.

The purpose of this appendix is to outline some of the basic ideas of stochastic
processes that play an important role in mathematical modeling of biological phenom-
ena. Furthermore, there are a number of sections in the remainder of this book where
stochastic models are crucial, and we hope that this appendix provides the necessary
background for these. Of course, this is not a detailed treatment of these topics; for
that one needs to consult a text on stochastic processes such as Gardiner (2004) or van
Kampen (2007).

2.9.1 Markov Processes

A Markov process is any stochastic process that has no memory. More precisely, if
the value of the state variable x is known at two times, say t1 < t2, to be x1 and x2,
respectively, then

P(x, t | x1, t1, x2, t2) = P(x, t | x2, t2), (2.187)

where P(x | y) denotes the conditional probability of x given y. In words, the conditional
probability for the value of the state variable depends only on the most recent condition
and not on any previous conditions.

A simple example of a Markov process is radioactive decay. For example, an atom
of carbon-14 may lose an electron and decay to nitrogen-14. This is a Markov process,
because the probability of decay does not depend on how old the carbon-14 atom is.
A newly formed carbon-14 atom has exactly the same probability of decay in the next
second as a very old carbon-14 atom.
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To model this process, we suppose that the state variable has two possible values,
say C (for carbon) and N (for nitrogen), and we denote the probability that the molecule
is in state S at time t by P(S, t). Now suppose that the probability of radioactive decay
in a small interval of time dt is λ dt. (Note that λ need not be independent of time for
this to be a Markov process.) Then,

P(N, t +*t) = P(N, t) + P(C, t)λ*t. (2.188)

For this problem we assume that P(C, t)+P(N, t) = 1. It follows that in the limit*t→ 0,

dP(N, t)
dt

= λ(1− P(N, t)). (2.189)

By similar arguments, many of the differential equations in this chapter describing
concentrations or fractions of molecules in a given state can be reinterpreted as equa-
tions for the probability that a single molecule is in a particular state. For example, for
a transporter molecule that has two states,

Ci

k
−→
←−

k

Ce, (2.190)

under the assumption that transitions between states do not depend on how long the
molecule has been in a given state, the probability P of being in state Ci at time t, P(Ci, t),
is given by

dP(Ci, t)
dt

= k(1− P(Ce, t))− kP(Ci, t). (2.191)

Similarly, for the chemical reaction

A
k+
−→
←−
k−

B, (2.192)

the probability P(A, t) of a molecule being in state A at time t is determined by

dP(A, t)
dt

= k−P(B, t)− k+P(A, t). (2.193)

Of course, this is the same as the equation found using the law of mass action for the
conversion of A to B, namely,

da
dt

= k−b− k+a. (2.194)

Even though these equations are identical, their interpretations are quite different. For
example, at steady state, a

b = k−
k+

implies that the ratio of the number of molecules in

state A to the number of those in state B is k−
k+

. However, this cannot be the probabilistic
interpretation, since there is no fractional state. Instead, the probabilistic interpretation
is that the ratio of the time a single molecule spends in state A to the time it spends in
state B is k−

k+
.
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2.9.2 Discrete-State Markov Processes

Often, the state space of a Markov process is discrete; for example, the model of the
Na+–K+ ATPase (Fig. 2.11) assumes that the ATPase can be in only a small number of
different states. The simple chemical reaction in the previous section is also a model
of this type, since the molecule can exist in only two states, A or B. Since time is
a continuous variable, such models are called discrete-space continuous-time Markov
processes. Such Markov processes play an enormously important role in modeling;
indeed, a large fraction of the models of chemical reactions, exchangers, pumps, and ion
channels we discuss in this book are discrete-space continuous-time Markov processes.
As is described in Chapter 3, one of the most important applications of such models is
the analysis of data from single ion channels.

To describe the stochastic behavior of a discrete-space continuous-time Markov
process with n possible states (open, closed, inactivated, etc.), we introduce a discrete
random variable S(t) ∈ 1, 2, . . . , n defined so that S(t) = i if the model is in state i at
time t. Further, we suppose that the probability that the model changes from state i to
state j in the time interval (t, t + dt) is kijdt. In more condensed notation,

P(S(t + dt) = j | S(t) = i) = kijdt. (2.195)

Note that (2.195) is valid only in the limit of small dt, since for sufficiently large dt and
kij nonzero, this probability exceeds 1. Also, the probability that the model does not
change state in the time interval (t, t + dt) is given by

P(S(t + dt) = i | S(t) = i) = 1− Kidt, (2.196)

where Ki = ∑
j ̸=i kij.

Now we let .j(t) = P(S(t) = j), i.e., .j(t) is the probability that the model is in state
j at time t. In words, the probability that the model is in state j at time t + dt is the
probability that it was in state j at time t and did not leave state j between times t and
t + dt plus the probability that at time t it was in another state and switched into state
j in the time interval t to t + dt. In mathematical language,

.j(t + dt) = .j(t)P(S(t + dt) = i | S(t) = i) +
∑

l ̸=j

P(S(t + dt) = j | S(t) = l).l(t)

= .j(t)
(
1− Kjdt

)
+
∑

l ̸=j

klj.l(t)dt, (2.197)

and thus, taking the limit dt→ 0,

d.j

dt
= −Kj.j(t) +

∑

l ̸=j

klj.l(t). (2.198)

In vector notation, with . the vector having elements .j, we have

d.
dt

= AT.(t), (2.199)
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where A is the matrix

A =

⎛

⎜⎝
−K1 k12 · · · k1n
k21 −K2 · · · k2n

...
...

...
...

⎞

⎟⎠ . (2.200)

Of course, this is exactly the system of differential equations we would have written
down for a system of first-order chemical reactions with reaction rates between species
kij. Here, however, the variables.j are probabilities and so must sum to one. In the ter-
minology of stochastic processes, (2.199) is called the master equation for this Markov
process.

The Waiting Time
One important question is how long a Markov model stays in a particular state before
switching. This is called the waiting-time problem. To solve this we let Ti be the random
time at which the model switches from state i to some other state, and we let Pi(t) =
P(Ti < t), that is, Pi(t) is the probability that by time t the switch has occurred. In words,
the probability that the switch has occurred by time t + dt is the probability that it has
occurred by time t plus the probability that the switch has not occurred by time t and
occurs in the time interval between t and t + dt. In mathematical language,

Pi(t + dt) = Pi(t) + (1− Pi)Kidt. (2.201)

Taking the limit dt → 0 we obtain the differential equation for the waiting-time
probability

dPi

dt
= Ki(1− Pi), (2.202)

which, since Pi(0) = 0 (assuming that the switch has not occurred at time t = 0), and
if Ki is independent of time, yields

Pi(t) = 1− exp(−Kit). (2.203)

The function Pi(t) is a cumulative probability distribution function, with probability
density function

pi(t) = dPi

dt
= Ki exp(−Kit). (2.204)

The probability that the switch occurs between two specified times, t1 and t2, is

P(t1 < Ti < t2) =
∫ t2

t1
pi(s) ds = Pi(t2)− Pi(t1), (2.205)

and the expected switching time is

E(Ti) =
∫ ∞

0
tpi(t) dt. (2.206)
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If Ki is time-independent,

E(Ti) = 1
Ki

. (2.207)

The Transition Time
The waiting-time problem can be generalized to calculate the probability density
function, φij, for the time it takes to move from state i to state j.

To do this we make state j an absorbing state and then solve the master equations
starting in state i. That is, we set kjl = 0 for every l, and then solve for .j(t), with the
initial condition .i(0) = 1, .l(0) = 0 for l ̸= i. Then, .j(t) is the probability that the
process is in state j at time t, given that it started in state i at time 0. Hence, .j(t) is
the cumulative probability that the transition to state j occurred at some time previous
to t. Of course, this relies on the assumption that once state j is reached, it cannot
be left. The probability density function for the transition time is the derivative of the
cumulative probability. Hence,

φij(t) = d.j

dt
=
∑

l ̸=j

klj.l. (2.208)

Note that
∫ ∞

0
φij dt = .j

∣∣∞
0 = 1, (2.209)

and thus φij is indeed a probability density as claimed.

2.9.3 Numerical Simulation of Discrete Markov Processes

It is becoming increasingly important and valuable to do numerical simulations of
discrete stochastic processes. The definition (2.195) provides a natural numerical algo-
rithm for such a simulation. For a fixed small time step of size dt, divide the unit interval
into n− 1 regions of length kijdt and one remaining region of length 1−Kidt. Then, at
each time step, pick a random number that is uniformly distributed on the unit interval
and determine the next state by the subinterval in which the random number falls.

While this method of numerical simulation is simple and direct, it is not particularly
efficient. Furthermore, it converges (i.e., gives the correct statistics) only in the limit
that dt→ 0.

A method that is much more efficient is known as Gillespie’s method (Gillespie,
1977). The idea of this method is to calculate the sequence of random switching times.
For example, suppose that at time t = 0, the state variable is S(0) = i. We know from
(2.204) that the probability that the first transition out of state i occurs in the interval
(t, t+dt) is

∫ t+dt
t Ki exp(−Kis) ds. Hence, we can calculate the time to the next transition

by selecting a random number from the exponential waiting-time distribution, pi(t).
We do this by selecting a random number x uniformly distributed on the unit interval,
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and transforming that number via some transformation t = f (x) to get the time at
which the transition occurs. The transformation we use should preserve probabilities,

pi(t)dt = q(x)dx, (2.210)

where q(x) = 1 is the uniform distribution. Integrating gives x =
∫ t

0 pi(s) ds = 1 −
exp(−Kiy) = Pi(t), and solving for t, we get

t = − 1
Ki

ln(1− x). (2.211)

However, since x is uniformly distributed on the unit interval, it is equivalent to replace
1− x by x to get

t = − 1
Ki

ln(x). (2.212)

Therefore, to calculate the next switching time, pick a random number that is
uniformly distributed on the unit interval, say ξ , and then pick the time interval, T, to
the next switch to be

T = − 1
Ki

ln(ξ). (2.213)

To determine the state into which to switch, divide the unit interval into segments of
length kij

Ki
, and select the next interval to be the subinterval in which another uniformly

distributed random number η resides. The reasoning for this is that if a switch is to
occur, then the probability that the switch is into state j is kij

Ki
.

There are numerous advantages to Gillespie’s method. First, it is maximally efficient
and it is exact. That is, since there is no time discretization step dt, accuracy does not
require taking a limit dt → 0. However, other nice features of the method are that it
is easier to collect statistics such as closed time and open time distributions, because
these quantities are directly, not indirectly, calculated.

A word of caution, however, is that while this method works well for time-
independent processes (which we assumed in this discussion), for time-dependent
processes, or processes in which the transition rates depend on other time-varying
variables, determination of the next transition time requires a more sophisticated
calculation (Alfonsi et al., 2005).

Further difficulties with stochastic simulations occur when there are reactions with
vastly different time scales. Then, it is often the case that the rapid reactions achieve
quasi-equilibrium, but most of the computational time for a stochastic simulation is
taken in calculating the many fast transitions of the fast reactions. It is beyond the
scope of this text to describe what to do in these situations.

Gillespie’s method is the method of choice in many situations. It has been im-
plemented by Adalsteinsson et al. (2004) in a useful software package that is readily
available.
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2.9.4 Diffusion

The diffusion equation (2.7) was derived to describe the evolution of a chemical con-
centration, under the assumption that the concentration is a continuous variable, even
though the number of molecules involved is necessarily an integer. Einstein recognized
that the solution of the diffusion equation could also be interpreted as the probability
distribution function for the location of a single particle undergoing some kind of a
random walk. That is, if p(x, t) is the solution of the diffusion equation

∂p
∂t

= D∇2p, (2.214)

then
∫
! p(x, t) dx could be identified as the probability that a particle is in the region !

at time t. More specifically, if p(x, t | x0, t0) is the probability distribution function for
the particle to be at position x at time t, given that it was at position x0 at time t0, then

p(x, t0 | x0, t0) = δ(x− x0), (2.215)

and solving the diffusion equation (in one spatial dimension) gives

p(x, t | x0, t0) = 1
2
√
πD(t− t0)

exp

(

− (x− x0)2

4D(t− t0)

)

, (2.216)

provided t > t0. It follows immediately that the mean and variance of this distribution
are

⟨x⟩ =
∫ ∞

−∞
xp(x, t | 0, 0) dx = 0 (2.217)

and

⟨x2⟩ =
∫ ∞

−∞
x2p(x, t | 0, 0) dx = 2Dt. (2.218)

The conditional probability p(x, t | x0, t0) is the Green’s function of the diffusion
equation on an infinite domain (where we require, for physical reasons, that the so-
lution and all its derivatives vanish at infinity). As a side issue (but a particularly
interesting one), note that, from the transitive nature of Green’s functions, it follows
that

p(x1, t1 | x3, t3) =
∫

x2

p(x1, t1 | x2, t2)p(x2, t2 | x3, t3) dx2, t3 < t2 < t1, (2.219)

which is known as the Chapman–Kolmogorov equation. From the point of view of
conditional probabilities, the Chapman–Kolmogorov equation makes intuitive sense;
for Markov processes, the probability of x1 given x3 is the sum of the probabilities of
each path by which one can get from x3 to x1.

Now suppose we let X(t) represent the position as a function of time of a sam-
ple path. We can readily calculate that X(t) is continuous, since for any ϵ > 0, the
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probability of escaping from a region of size ϵ in time *t is
∫

|x−z|> ϵ
p(x, t +*t | z, t) dx = 2

∫ ∞

ϵ

1
2
√
πD*t

exp

(

− x2

4D*t

)

dx

=
∫ ∞

ϵ

2
√

D*t

exp
(
−x2

)
dx,

which approaches zero in the limit *t → 0. On the other hand, the velocity of the
particle is likely to be extremely large, since

Prob
(

1
*t

(X(t +*t)− X(t)) > k
)

=
∫ ∞

k*t

1
2
√
πD*t

exp

(

− x2

4D*t

)

dx

=
∫ ∞

k
2

√
*t
πD

exp
(
−x2

)
dx→ 1

2
, (2.220)

in the limit that *t → 0. In other words, with probability 1, the absolute value of the
velocity is larger than any number k, hence infinite.

If D = 1, the stochastic process X(t) is known as a Wiener process, is usually denoted
by W(t), and is a model of Brownian motion.

Diffusion as a Markov Process
A popular derivation of the diffusion equation is based on a Markovian random walk
on a grid, as follows. We suppose that a particle moves along a one-dimensional line in
discrete steps of length*x at discrete times with time step*t. At each step, however, the
direction of motion is random, with probability 1

2 of going to the left and probability
1
2 of going to the right. If p(x, t) is the probability of being at position x at time t, then

p(x, t +*t) = 1
2

p(x +*x, t) + 1
2

p(x−*x, t). (2.221)

Now we make the assumption that p(x, t) is a smooth function of both x and t and
obtain the Taylor series expansion of (2.221),

*t
∂p
∂t

+ O(*t2) = *x2

2
∂2p
∂x2 + O(*x4). (2.222)

In the limit that*t and*x both approach zero, keeping *x2

*t = 1, we obtain the diffusion
equation with diffusion coefficient 1

2 .

2.9.5 Sample Paths; the Langevin Equation

The diffusion equation describes the probability distribution that a particle is at a par-
ticular place at some time, but does not describe how the particle actually moves. The
challenge, of course, is to write (and solve) an equation for motion that is random
and continuous, but nowhere differentiable. Obviously, one cannot use a standard dif-
ferential equation to describe the motion of such a particle. So, instead of writing
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dx
dt = something (which does not make sense, since the velocity dx

dt of a Brownian
particle is not finite), it is typical to write

dx =
√

2D dW. (2.223)

To make careful mathematical sense of this expression requires a discussion of the
Ito or Stratonovich calculus, topics that are beyond the scope of this text. However, a
reasonable verbal description of what this means in practical terms is as follows. The
term dW is intended to represent the fact that the displacement of a particle after a
very short time interval, say dt, is a random variable having three properties, namely,
it is uncorrelated with previous displacements (it has no memory and is therefore
Markovian), it has zero mean, and it has variance dt, in the limit dt → 0. This is also
referred to as uncorrelated Gaussian white noise. In fact, this definition is rigged so
that the probability distribution for this particle is described by the diffusion equation.

For this text, it is important to know how to numerically calculate representative
sample paths, and to this end we write

dx =
√

2D dtN(0, 1), (2.224)

where N(0, 1) represents the Gaussian (normal) distribution with zero mean and vari-
ance 1. The interpretation of this is that at any given time one randomly chooses a
number n from a normal distribution, takes a step of size dx =

√
2Ddtn, and then in-

crements time by dt. It can be shown that in the limit that dt→ 0, this converges to the
Wiener process (2.223).

Equation (2.223) is an example of a stochastic differential equation, also called a
Langevin equation. More generally, Langevin equations are of the form

dx = a(x, t) dt +
√

2b(x, t) dW, (2.225)

or, in a form that suggests a numerical algorithm,

dx = a(x, t) dt +
√

2b(x, t) dtN(0, 1). (2.226)

Here a(x, t) represents the deterministic part of the velocity, since if there were no noise
(b(x, t) = 0), this would be the same as the deterministic equation

dx
dt

= a(x, t). (2.227)

Thus, the displacement dx is a random variable, with mean value a(x, t)dt and variance
2b(x, t)dt, in the limit dt→ 0.

The special case a(x, t) = −x, b(x, t) = 1, called an Ornstein–Uhlenbeck process, is
important in the study of molecular motors, described in Chapter 15.

2.9.6 The Fokker–Planck Equation and the Mean First Exit Time

The diffusion equation is the simplest example of an equation describing the evolution
of the probability distribution function for the position of a particle. More generally,
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if we suppose that the position of the particle is continuous in time (no finite jumps
are possible), that the Chapman–Kolmogorov equation (2.219) holds, and that the dis-
placement of the particle in time dt has mean a(x, t)dt and variance 2b(x, t)dt, then one
can derive that the probability distribution p(x, t) for the position, x, of the particle at
time t is governed by

∂p
∂t

= − ∂

∂x
(a(x, t)p) + ∂2

∂x2 (b(x, t)p), (2.228)

called the Fokker–Planck equation. Note that, since this equation models the motion
of a particle which must be at a single position y at the starting time t0, the initial
condition must be p(x, t0 | y, t0) = δ(x − y). Thus, the probability distribution for the
position of the particle is the Green’s function of (2.228).

More generally, it is possible to start with the Chapman–Kolmogorov equation
(2.219) and derive a general version of the Fokker–Planck equation that includes
discrete jump processes. This is the point of view usually taken in the stochastic pro-
cesses literature, which treats the Chapman–Kolmogorov equation as a fundamental
requirement of a Markov process.

An extremely important problem is the so-called mean first exit time problem, in
which we wish to determine how long a particle stays in a particular region of space.
Before we can solve this problem we must first determine the equation for the condi-
tional probability, p(x, t | y, τ ), as a function of y and τ < t, with x and t fixed. That is, we
want to know the probability distribution function for a particle with known position
x at time t to have been at the location y at time τ < t.

The equation governing this conditional probability is most easily derived by using
the fact that p(x, t | y, τ ) is the Green’s function of the Fokker–Planck equation. It follows
from the properties of Green’s functions (Keener, 1998) that

p(x, t | y, τ ) = p∗(y, τ | x, t), (2.229)

where p∗ is the Green’s function of the adjoint equation. The adjoint equation is easily
calculated using integration by parts, and assuming that p and all its derivatives vanish
at infinity. It follows that p, considered as a function of y and τ , satisfies the adjoint
equation

∂p
∂τ

= −a(y, τ )
∂p
∂y
− b(y, τ )

∂2p
∂y2 , (2.230)

subject to the condition p(x, t | y, t) = δ(x − y). This equation for the backward con-
ditional probability is called the backward Fokker–Planck equation. Notice that this is
a backward diffusion equation, which in forward time is ill posed. However, it is well
posed when solved for backward times τ < t.

Armed with the backward Fokker–Planck equation, we now turn our attention to
the mean first exit time problem. Suppose a particle is initially at position y, inside a
one-dimensional region α < y < β, and that the wall at y = α is impermeable, but the
particle can leave the region freely at y = β. If we let τ (y) represent the time at which
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the particle first leaves the region having started from position y, then

P(τ (y) > t) = G(y, t) =
∫ β

α
p(x, t | y, 0) dx, (2.231)

which is the probability that the particle is inside the region at time t. Notice that since
p(x, 0 | y, 0) = δ(x− y), G(y, 0) = 1.

Since

P(τ (y) > t) = G(y, t) = −
∫ ∞

t
Gt(y, s) ds, (2.232)

it follows that Gt(y, t) is the probability density function for the random variable τ (y).
Thus, the expected value of τ (y) is

T(y) = E(τ (y)) = −
∫ ∞

0
tGt(y, t) dt =

∫ ∞

0
G(y, t) dt, (2.233)

where we have integrated by parts to get the final expression. Note that T(y) is the mean
time at which a particle leaves the domain, given that it starts at y at time t = 0.

For a time-independent process (i.e., a(y, t) = a(y), b(y, t) = b(y)) we have p(x, t |
y, 0) = p(x, 0 | y,−t). Hence, substituting −t for t in (2.230), and writing q(y, t | x) =
p(x, t | y, 0), it follows that q satisfies the negative backward Fokker–Planck equation

∂q
∂t

= a(y)
∂q
∂y

+ b(y)
∂2q
∂y2 , (2.234)

with q(y, 0 | x) = δ(x − y). Integrating with respect to x from x = α to x = β (since
G(y, t) =

∫ β
α p(x, t | y, 0) dx) then gives

∂G
∂t

= a(y)
∂G
∂y

+ b(y)
∂2G
∂y2 , (2.235)

with G(y, 0) = 1. Finally, we can determine the equation for the expected value of τ (y)
by integrating (2.235) in time to find

−1 = a(y)
∂T
∂y

+ b(y)
∂2T
∂y2 . (2.236)

To completely specify the problem, we must specify boundary conditions. At imper-
meable boundaries, we require ∂T

∂y = 0, while at absorbing boundaries (boundaries
through which exit is allowed but reentry is not permitted) we require T = 0.

As an example, consider a pure diffusion process on a domain of length L with a
reflecting boundary at x = 0 and an absorbing boundary at x = L. The mean first exit
time satisfies the differential equation

DTxx = −1, (2.237)

subject to boundary conditions Tx(0) = 0, T(L) = 0. This has solution

T(x) = −x2 + L2

2D
. (2.238)
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We readily calculate that T(0) = L2

2D , as might be expected from (2.218). In addition, as
x increases, T(x) decreases, which again makes intuitive sense. The closer the particle
starts to the absorbing boundary, the shorter is the mean first exit time.

2.9.7 Diffusion and Fick’s Law

The Fokker–Planck equation describes the evolution of the probability distribution
function for single particle diffusion. However, it also applies to the concentration of
a dilute chemical species under the assumption that the chemical particles have no
self-interaction. If the diffusion coefficient is homogeneous in space, then the Fokker–
Planck equation and the diffusion equation are the same. However, if diffusion is not
homogeneous in space, then the diffusion equation, derived using Fick’s law, and the
Fokker–Planck equation are not the same. With Fick’s law, the diffusion equation is

∂c
∂t

= ∂

∂x

(
D
∂c
∂x

)
(2.239)

and the Fokker–Planck equation is

∂c
∂t

= ∂2(Dc)
∂x2 . (2.240)

Which of these is correct?
There is a simple observation that can help answer this question. If Fick’s law is

correct, then at steady state the flux in a closed container is zero, so that

D
∂c
∂x

= 0, (2.241)

implying that c(x) is a uniform constant. On the other hand, if the Fokker–Planck
equation is correct, then at steady state

D(x)c(x) = constant. (2.242)

Notice that in this solution, the concentration varies inversely with D. That is, if D is
low then c should be high, and vice versa. Further, if c is initially uniform, Fick’s law
predicts no change in the solution as a function of time, whereas the Fokker–Planck
equation predicts transient behavior leading to a nonuniform distribution of c.

Van Milligen et al. (2006) reported a simple experimental test of this observation.
They added green food coloring to water and then added differing amounts of gelatin
to small quantities of the colored water. They then created gel bilayers consisting of
two layers of the colored gelatin with differing gelatin concentrations under the as-
sumption that diffusion of food coloring varies inversely with the amount of gelatin.
They recorded the color intensity at several later times and compared these recordings
with the solution of the partial differential equations.

The first observation is that the initially uniform concentration of food coloring did
not remain uniform, but increased in regions where the gelatin density was highest.
Even more striking, they were able to find very good fits of the data to the numerical
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solution of the Fokker–Planck equation. These observations lead to the conclusion
that Fick’s law is not the correct description of chemical diffusion in media where the
diffusion coefficient is not constant. The more appropriate description, coming from
the Fokker–Planck equation, is that

J = −∇(Dc). (2.243)

2.10 Exercises
1. A rule of thumb (derived by Einstein) is that the diffusion coefficient for a globular molecule

satisfies D ∼ M−1/3, where M is the molecular weight. Determine how well this relationship
holds for the substances listed in Table 2.2 by plotting D and M on a log-log plot.

2. A fluorescent dye with a diffusion coefficient D = 10−7 cm2/s and binding equilibrium
Keq = 30 mM is used to track the spread of hydrogen (Dh = 4.4× 10−5cm2/s). Under these
conditions the measured diffusion coefficient is 8× 10−6cm2/s. How much dye is present?
(Assume that the dye is a fast buffer of hydrogen and that the amount of hydrogen is much
less that Keq.)

3. Segel, Chet and Henis (1977) used (2.18) to estimate the diffusion coefficient for bacteria.
With the external concentration C0 at 7 × 107 ml−1, at times t = 2, 5, 10, 12.5, 15, and 20
minutes, they counted N of 1,800, 3,700, 4,800, 5,500, 6,700, and 8,000 bacteria, respec-
tively, in a capillary of length 32 mm with 1 µl total capacity. In addition, with external
concentrations C0 of 2.5, 4.6, 5.0, and 12.0 ×107 bacteria per milliliter, counts of 1,350,
2,300, 3,400, and 6,200 were found at t = 10 minutes. Estimate D.

4. Calculate the effective diffusion coefficient of oxygen in a solution containing 1.2 ×
10−5 M/cm3 myoglobin. Assume that the rate constants for the uptake of oxygen by
myoglobin are k+ = 1.4× 1010cm3 M−1s−1 and k− = 11 s−1.

5. Find the maximal enhancement for diffusive transport of carbon dioxide via binding with
myoglobin using Ds = 1.92 × 10−5 cm2/s, k+ = 2 × 108 cm3/M · s, k− = 1.7 × 10−2/s.
Compare the amount of facilitation of carbon dioxide transport with that of oxygen at
similar concentration levels.

6. Devise a model to determine the rate of production of product for a “one-dimensional”
enzyme capsule of length L in a bath of substrate at concentration S0. Assume that the
enzyme is confined to the domain 0 ≤ x ≤ L and there is no flux through the boundary at
x = 0. Assume that the enzyme cannot diffuse within the capsule but that the substrate and
product can freely diffuse into, within, and out of the capsule. Show that the steady-state
production per unit volume of enzyme is less than the production rate of a reactor of the
same size in which substrate is homogeneously mixed (infinite diffusion).

7. Devise a model to determine the rate of production of product for a spherical enzyme
capsule of radius R0 in a bath of substrate at concentration S0. Assume that the enzyme
cannot diffuse within the capsule but that the substrate and product can freely diffuse into,
within, and out of the capsule. Show that spheres of small radius have a larger rate of
production than spheres of large radius.
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Hint: Reduce the problem to the nondimensional boundary value problem

1
y2 (y2σ ′)′ − α2 σ

σ + 1
= 0, (2.244)

σ ′(0) = 0, (2.245)

σ (1) = σ0, (2.246)

and solve numerically as a function of α. How does the radius of the sphere enter the
parameter α?

8. Red blood cells have a passive exchanger that exchanges a single Cl− ion for a bicarbonate
(HCO−3 ) ion. Develop a model of this exchanger and find the flux.

9. Almost immediately upon entering a cell, glucose is phosphorylated in the first reaction
step of glycolysis. How does this rapid and nearly unidirectional reaction affect the trans-
membrane flux of glucose as represented by (2.54)? How is this reaction affected by the
concentration of ATP?

10. In the model of the glucose transporter (Fig. 2.6) the reaction diagram was simplified by
assuming that each conformation of the transporter is equally likely, and that the affinity
of the glucose binding site is unaffected by a change in conformation.

(a) Construct a more detailed model in which these assumptions are relaxed, and calculate
the flux through the model.

(b) What is the total change in chemical potential after one cycle of the exchanger? What
is the equilibrium condition?

(c) Apply detailed balance to obtain a relationship between the rate constants.

11. Consider the model of a nonelectrogenic, 3 for 1, Na+–Ca2+ exchanger. At equilibrium, the
concentrations on either side of the membrane are related by the equation

n3
e ci

n3
i ce

= 1. (2.247)

Assume that the membrane separates two equal volumes. For a given set of initial con-
centrations and assuming there are no other exchange processes, what three additional
conservation equations must be used to determine the equilibrium concentrations? Prove
that there is a unique equilibrium solution. Hint: Give a graphical proof.

12. Simplify the model of the Na+–Ca2+ exchanger (Fig. 2.9) by assuming that the binding and
unbinding of Na+ and Ca2+ are fast compared to the exchange processes between the inside
and the outside of the cell. Write the new model equations and calculate the steady-state
flux. Hint: The assumption of fast equilibrium gives

k1cix1 = k−1n3
i x2, (2.248)

k3n3
e y2 = k−3cey1. (2.249)

Then introduce the new variables X = X1 + X2 and Y = Y1 + Y2 and derive the equations
for X and Y.

13. Simplify the model of Fig. 2.11 by assuming fast binding of Na+ and K+, and draw the
reaction diagram of the simplified model. Calculate the expression for the steady-state flux.
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Hint: Combine the states X1, X2, and X3 into a single state, X, and similarly for Y1, Y2, and
Y3. Then use the equilibrium conditions

x1 = K1x2κ
2
i , (2.250)

n3
i x2 = K2x3, (2.251)

y3 = K5n3
e y2, (2.252)

κ2
e y2 = K6y1, (2.253)

where Ki = k−i/ki, n denotes [Na+], and κ denotes [K+], to derive the differential equations
for X and Y.

14. Calculate the flux of the Ran-GTP nuclear transporter. Use the information given in the text
to estimate the concentrating ability of this transporter, assuming there is no difference in
potential across the nuclear membrane.

15. Suppose that two compartments, each of one liter in volume, are connected by a membrane
that is permeable to both K+ and Cl−, but not to water or protein (X). Suppose further that,
as illustrated in Fig. 2.21, the compartment on the left initially contains 300 mM K+ and
300 mM Cl−, while the compartment on the right initially contains 200 mM protein, with
valence −2, and 400 mM K+.

(a) Is the starting configuration electrically and osmotically balanced?

(b) Find the concentrations at equilibrium.

(c) Why is [K+]i at equilibrium greater than its starting value, even though [K+]i > [K+]e
initially? Why does K+ not diffuse from right to left to equalize the concentrations?

(d) What is the equilibrium potential difference?

(e) What would happen if the connecting membrane were suddenly made permeable to
water when the system is at equilibrium? How large would the osmotic pressure be?

16. The derivation of the Gibbs–Donnan equilibrium for the case when [S]e is not fixed requires
an additional constraint. Show that it is equivalent to use either vi[S]i + ve[S]e = [S]tot or
vi[S′]i + ve[S′]e = [S′]tot. How must [S]tot and [S′]tot be related so that the answers for the
two are the same?

1 liter 1 liter

[ X2- ] = 200 mM

[ K+ ]i = 400 mM[ K+ ]e = 300 mM

[ Cl- ]e = 300 mM

Figure 2.21 The initial configura-
tion for Exercise 15.
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17. Suppose the intracellular macromolecule X can bind b molecules of the ion S via X +
bS −→←− XSb. What is the effect of this buffering on the Gibbs–Donnan equilibrium potential?

18. A 1.5 oz bag of potato chips (a typical single serving) contains about 200 mg of Na+.
When eaten and absorbed into the body, how many osmoles does this bag of potato chips
represent?

19. (a) Confirm that πs in (2.138) has units of pressure.

(b) Confirm the statement that a pressure of 25 atm corresponds to a column of water over
250 meters high.

(c) Consider a vertical tube with a cross-sectional area of 1 cm2. The bottom of the tube
is closed with a semipermeable membrane, and 1 gram of sugar is placed in the tube.
The membrane-closed end of the tube is then put into an inexhaustible supply of pure
water at T = 300 K. What will be the height of the water in the tube at equilibrium?
(The weight of a sugar molecule is 3×10−22 gm, and the density of water is 1 gm/cm3).

(d) Two columns with cross-sectional area 1 cm2 are initially filled to a height of one
meter with water at T = 300 K. Suppose 0.001 gm of sugar is dissolved in one of the
two columns. How high will the sugary column be when equilibrium is reached?

(e) Suppose that, in the previous question, 1 gm of sugar is dissolved in one of the two
columns. What is the equilibrium height of the two columns?

20. Suppose an otherwise normal cell is placed in a bath of high extracellular K+. What happens
to the cell volume and resting potentials?

21. Based on what you know about glycolysis from Chapter 1, how would you expect anoxia
(insufficient oxygen) to affect the volume of the cell? How might you incorporate this into a
model of cell volume? Hint: Lactic acid does not diffuse out of a cell as does carbon dioxide.

22. Suppose 90% of the Na+ in the bath of a squid axon is replaced by inert choline, preserving
electroneutrality. What happens to the equilibrium potentials and membrane potentials?

23. Determine the effect of temperature (through the Nernst equation) on cell volume and
membrane potential.

24. Simulate the time-dependent differential equations governing cell volume and ionic con-
centrations. What happens if the extracellular ionic concentrations are suddenly increased
or decreased?

25. Ouabain is known to compete with K+ for external K+ binding sites of the Na+–K+ ATPase.
Many animal cells swell and burst when treated with the drug ouabain. Why? Hint: How
would you include this effect in a model of cell volume control?

26. Since the Na+–K+ ATPase is electrogenic, the pump rate P in the pump-leak model must
also include effects from the membrane potential. What effect does membrane potential
have on the expression (2.169) and how does this modification affect the solution?

27. Use (2.224) to simulate a diffusion process, and verify that the mean and variance of the
process are 0 and 2Dt, respectively, as expected.

28. Find the steady-state probability distribution for the Ornstein–Uhlenbeck process.
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29. A small particle (with diffusion constant D and viscosity ν) experiences a constant load F
directed to the left but is not permitted to move into the region with x < 0. Suppose that
the particle is initially at x = 0. What is the expected time to first reach location x = δ?

30. Suppose that a molecule enters a spherical cell of radius 5 µm at its boundary. How long
will it take for the molecule to move by diffusion to find a binding target of radius 0.5 nm
located at the center of the cell? Use a diffusion coefficient of 10−6 cm2/s. (Hint: In higher
dimensions the differential equation for the mean first exit time is ∇2T = −1.)



C H A P T E R 3

Membrane Ion Channels

Every cell membrane contains ion channels, macromolecular pores that allow specific
ions to travel through the channels by a passive process, driven by their concentration
gradient and the membrane potential. One of the most extensively studied problems in
physiology is the regulation of such ionic currents. Indeed, in practically every chapter
of this book there are examples of how the control of ionic current is vital for cellular
function. Already we have seen how the cell membrane uses ion channels and pumps
to maintain an intracellular environment that is different from the extracellular envi-
ronment, and we have seen how such ionic separation results in a membrane potential.
In subsequent chapters we will see that modulation of the membrane potential is one
of the most important ways in which cells control their behavior or communicate with
other cells. However, to understand the role played by ion channels in the control of
membrane potential, it is first necessary to understand how membrane ionic currents
depend on the voltage and ionic concentrations.

There is a vast literature, both theoretical and experimental, on the properties of ion
channels. One of the best books on the subject is that of Hille (2001), to which the reader
is referred for a more detailed presentation than that given here. The bibliography
provided there also serves as a starting point for more detailed studies.

3.1 Current–Voltage Relations

Before we discuss specific models of ion channels, we emphasize an important fact that
can be a source of confusion. Although the Nernst equation (2.104) for the equilibrium
voltage generated by ionic separation can be derived from thermodynamic considera-
tions and is thus universally applicable, there is no universal expression for the ionic
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current. An expression for, say, the Na+ current cannot be derived from thermodynamic
first principles and depends on the particular model used to describe the Na+ channels.
Already we have seen two different models of ionic currents. In the previous chapter we
described two common models of Na+ current as a function of the membrane potential
and the internal and external Na+ concentrations. In the simpler model, the Na+ cur-
rent across the cell membrane was assumed to be a linear function of the membrane
potential, with a driving force given by the Na+ Nernst potential. Thus,

INa = gNa(V − VNa), (3.1)

where VNa = (RT/F) ln([Na+ ]e/[Na+ ]i) is the Nernst potential of Na+ , and where V =
Vi − Ve. (As usual, a subscript e denotes the external concentration, while a subscript
i denotes the internal concentration.) Note that the Na+ current is zero when V is the
Nernst potential, as it must be. However, we also discussed an alternative model, where
integration of the Nernst–Planck equation (2.114), assuming a constant electric field,
gave the Goldman–Hodgkin–Katz (GHK), or constant-field, current equation:

INa = PNa
F2

RT
V

⎡

⎣
[Na+ ]i − [Na+ ]e exp

(
−VF
RT

)

1− exp
(
−VF
RT

)

⎤

⎦ . (3.2)

As before, the Na+ current is zero when V equals the Nernst potential, but here the
current is a nonlinear function of the voltage and linear in the ionic concentrations. In
Fig. 3.1A we compare the linear and GHK I–V curves when there is only a single ion
present.

There is no one “correct” expression for the Na+ current, or any other ionic current
for that matter. Different cells have different types of ion channels, each of which may
have different current–voltage relations. The challenge is to determine the current–
voltage, or I–V , curve for a given ion channel and relate it to underlying biophysical
mechanisms.

Our choice of these two models as examples was not coincidental, as they are the
two most commonly used in theoretical models of cellular electrical activity. Not only
are they relatively simple (at least compared to some of the other models discussed later
in this chapter), they also provide good quantitative descriptions of many ion channels.
For example, the I–V curves of open Na+ and K+ channels in the squid giant axon are
approximately linear, and thus the linear model was used by Hodgkin and Huxley in
their classic model of the squid giant axon (discussed in detail in Chapter 5). However,
the I–V curves of open Na+ and K+ channels in vertebrate axons are better described
by the GHK equation, and so nonlinear I–V curves are often used for vertebrate models
(Frankenhaeuser, 1960a,b, 1963; Campbell and Hille, 1976).

Because of the importance of these two models, we illustrate another way in which
they differ. This also serves to illustrate the fact that although the Nernst potential is
universal when there is only one ion present, the situation is more complicated when
two or more species of ion can pass through the membrane. If both Na+ and K+ ions
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are present and both obey the GHK current equation, we showed in (2.127) that the
reversal potential Vr at which there is no net current flow is

Vr = RT
F

ln
(

PNa[Na+ ]e + PK[K+ ]e
PNa[Na+ ]i + PK[K+ ]i

)
. (3.3)

However, if instead that the I–V curves for Na+ and K+ are assumed to be linear, then
the reversal potential is

Vr = gNaVNa + gKVK

gNa + gK
, (3.4)

where VK is the Nernst potential of K+ . Clearly, the reversal potential is model-
dependent. This is due to the fact that at the reversal potential the net current flow
is zero, but the individual Na+ and K+ currents are not. Thus, the equilibrium argu-
ments used to derive the Nernst equation do not apply, and a universal form for the
reversal potential does not exist. As an illustration of this, in Fig. 3.1B we plot the re-
versal potentials Vr from (3.3) and (3.4) as functions of [K+ ]e. Although the linear and
GHK I–V curves predict different reversal potentials, the overall qualitative behavior
is similar, making it difficult to distinguish between a linear and a GHK I–V curve on
the basis of reversal potential measurements alone.

3.1.1 Steady-State and Instantaneous Current–Voltage Relations

Measurement of I–V curves is complicated by the fact that ion channels can open or
close in response to changes in the membrane potential. Suppose that in a population
of ion channels, I increases as V increases. This increase could be the result of two
different factors. One possibility is that more channels open as V increases while the
current through an individual channel remains unchanged. It is also possible that the
same number of channels remain open but the current through each one increases. To
understand how each channel operates, it is necessary to separate these two factors to
determine the I–V curve of a single open channel. This has motivated the definition of
steady-state and instantaneous I–V curves.

If channels open or close in response to a change in voltage, but this response is
slower than the change in current in a channel that is already open, it should be possible
to measure the I–V curve of a single open channel by changing the voltage quickly and
measuring the channel current soon after the change. Presumably, if the measurement
is performed fast enough, no channels in the population have time to open or close
in response to the voltage change, and thus the observed current change reflects the
current change through the open channels. Of course, this relies on the assumption
that the current through each open channel changes instantaneously. The I–V curve
measured in this way (at least in principle) is called the instantaneous I–V curve and
reflects properties of the individual open channels. If the current measurement is per-
formed after channels have had time to open or close, then the current change reflects
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Figure 3.1 A: I–V curves of the linear and GHK models for Na+ flux through a membrane.
Both curves have the same reversal potential as expected, but the GHK model (dashed curve)
gives a nonlinear I–V curve.Typical concentrations and conductances of the squid axon were
used: [Na+ ]i = 50 mM, [Na+ ]e = 437 mM, and gNa = 0.01 mS/cm2. PNa was chosen so that
the GHK I–V curve intersects the linear I–V curve at V = 0. B: Reversal potentials of the linear
and GHK models as functions of [K+ ]e .The membrane is permeable to both Na+ and K+ .The
same parameters as A, with [K+ ]i = 397 mM and gK = 0.367 mS/cm2. PK was chosen so that
the GHK I–V curve for K+ , with [K+ ]e = 20 mM, intersects the linear I–V curve for K+ at V = 0.

the I–V curve of a single channel as well as the proportion of open channels. In this
way one obtains a steady-state I–V curve.

There are two basic types of model that are used to describe ion flow through
open channels, and we discuss simple versions of each. In the first type of model, the
channel is described as a continuous medium, and the ionic current is determined by
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the Nernst–Planck electrodiffusion equation, coupled to the electric field by means of
the Poisson equation. In more complex models of this type, channel geometry and the
effects of induced charge on the channel wall are incorporated. In the second type of
model the channel is modeled as a sequence of binding sites, separated by barriers that
impede the ion’s progress: the passage of an ion through the channel is described as a
process of “hopping” over barriers from one binding site to another. The height of each
barrier is determined by the properties of the channel, as well as by the membrane
potential. Thus, the rate at which an ion traverses the channel is a function both of the
membrane potential and of the channel type. An excellent summary of the advantages
and disadvantages of the two model types is given by Dani and Levitt (1990).

We also discuss simple models of the kinetics of channel gating, and the stochastic
behavior of a single channel. These models are of fundamental importance in Chapter 5,
where we use an early model of the voltage-dependent gating of ion channels proposed
by Hodgkin and Huxley as part of their model of the action potential in the squid
giant axon. More detailed recent models of channel gating are not discussed at any
length. The interested reader is referred to Hille (2001), Armstrong (1981), Armstrong
and Bezanilla (1973, 1974, 1977), Aldrich et al. (1983), and Finkelstein and Peskin
(1984) for a selection of models of how channels can open and close in response to
changes in membrane potential. An important question that we do not consider here
is how channels can discriminate between different ions. Detailed discussions of this
and related issues are in Hille (2001) and the references therein.

3.2 Independence, Saturation, and the Ussing Flux Ratio

One of the most fundamental questions to be answered about an ion channel is whether
the passage of an ion through the channel is independent of other ions. If so, the channel
is said to obey the independence principle.

Suppose a membrane separates two solutions containing an ion species S with
external concentration ce and internal concentration ci. If the independence principle
is satisfied, the flow of S is proportional to its local concentration, independent of the
concentration on the opposite side of the membrane, and thus the flux from outside to
inside, Jin, is

Jin = kece, (3.5)

for some constant ke. Similarly, the outward flux is given by

Jout = kici, (3.6)

where in general, ke ̸= ki. We let VS denote the Nernst potential of the ion S, and let
V denote the potential difference across the membrane. Now we let c∗e be the external
concentration for which V is the Nernst potential. Thus,

ce

ci
= exp

(
zVSF
RT

)
, (3.7)
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and
c∗e
ci

= exp
(

zVF
RT

)
. (3.8)

If the external concentration were c∗e with internal concentration ci, then there would
be no net flux across the membrane; i.e., the outward flux equals the inward flux,
and so

kec∗e = kici. (3.9)

It follows that the flux ratio is given by

Jin

Jout
= kece

kici
= kece

kec∗e
= ce

c∗e

=
exp

(
zVSF
RT

)

exp
(

zVF
RT

)

= exp
[

z(VS − V)F
RT

]
. (3.10)

This expression for the ratio of the inward to the outward flux is usually called the
Ussing flux ratio. It was first derived by Ussing (1949), although the derivation given
here is due to Hodgkin and Huxley (1952a). Alternatively, the Ussing flux ratio can be
written as

Jin

Jout
= ce

ci
exp

(−zVF
RT

)
. (3.11)

Note that when V = 0, the ratio of the fluxes is equal to the ratio of the concentrations,
as might be expected intuitively.

Although many ion channels follow the independence principle approximately over
a range of ionic concentrations, most show deviations from independence when the
ionic concentrations are sufficiently large. This has motivated the development of mod-
els that show saturation at high ionic concentrations. For example, one could assume
that ion flow through the channel can be described by a barrier-type model, in which
the ion jumps from one binding site to another as it moves through the channel. If
there are only a limited number of binding sites available for ion passage through the
channel, and each binding site can bind only one ion, then as the ionic concentration
increases there are fewer binding sites available, and so the flux is not proportional
to the concentration. Equivalently, one could say that each channel has a single bind-
ing site for ion transfer, but there are only a limited number of channels. However, in
many of these models the Ussing flux ratio is obeyed, even though independence is not.
Hence, although any ion channel obeying the independence principle must also satisfy
the Ussing flux ratio, the converse is not true. We discuss saturating models later in
this chapter.

Another way in which channels show deviations from independence is in flux-
coupling. If ions can interact within a channel so that, for example, a group of ions
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must move through the channel together, then the Ussing flux ratio is not satisfied. The
most common type of model used to describe such behavior is the so-called multi-ion
model, in which it is assumed that there are a number of binding sites within a single
channel and that the channel can bind multiple ions at the same time. The consequent
interactions between the ions in the channel can result in deviations from the Ussing
flux ratio. A more detailed consideration of multi-ion models is given later in this
chapter. However, it is instructive to consider how the Ussing flux ratio is modified by a
simple multi-ion channel mechanism in which the ions progress through the channel
in single file (Hodgkin and Keynes, 1955).

Suppose a membrane separates two solutions, the external one (on the right) con-
taining an ion S at concentration ce, and the internal one (on the left) at concentration ci.
To keep track of where each S ion has come from, all the S ions on the left are labeled A,
while those on the right are labeled B. Suppose also that the membrane contains n bind-
ing sites and that S ions traverse the membrane by binding sequentially to the binding
sites and moving across in single file. For simplicity we assume that there are no va-
cancies in the chain of binding sites. It follows that the possible configurations of the
chain of binding sites are [Ar, Bn−r], for r = 0, . . . , n, where [Ar, Bn−r] denotes the con-
figuration such that the r leftmost sites are occupied by A ions, while the rightmost
n − r sites are occupied by B ions. Notice that the only configuration that can result
in the transfer of an A ion to the right-hand side is [AnB0], i.e., if the chain of binding
sites is completely filled with A ions.

Now we let α denote the total rate at which S ions are transferred from left to right.
Since α denotes the total rate, irrespective of labeling, it does not take into account
whether an A ion or a B ion is moved out of the channel from left to right. For this
reason, α is not the same as the flux of labeled ions. Similarly, let β denote the total flux
of S ions, irrespective of labeling, from right to left. It follows that the rate at which
[ArBn−r] is converted to [Ar+ 1Bn−r−1] is α[ArBn−r], and the rate of the reverse conversion
is β[Ar+ 1Bn−r−1]. According to Hodgkin and Keynes, it is reasonable to assume that if
there is a potential difference V across the membrane, then the total flux ratio obeys
the Ussing flux ratio,

α

β
= ce

ci
exp

(−VF
RT

)
. (3.12)

This assumption is justified by the fact that a flux of one ion involves the movement of
a single charge (assuming z = 1) through the membrane (as in the independent case
treated above) and thus should have the same voltage dependence. We emphasize that
α/β is not the flux ratio of labeled ions, but the total flux ratio.

To obtain the flux ratio of labeled ions, notice that the rate at which A ions are
transferred to the right-hand side isα[AnB0], and the rate at which B ions are transferred
to the left-hand side is β[A0Bn]. Thus, the flux ratio of labeled ions is

Jin

Jout
= α

β

[AnB0]
[A0Bn] . (3.13)
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At steady state there can be no net change in the distribution of configurations, so that

[Ar+ 1Bn−r−1]
[ArBn−r]

= α

β
. (3.14)

Thus,

Jin

Jout
= α

β

[AnB0]
[A0Bn] =

(
α

β

)2 [An−1B1]
[A0Bn] = · · · =

(
α

β

)n+ 1
, (3.15)

so that

Jin

Jout
=
[

ce

ci
exp

(−VF
RT

)]n+ 1
. (3.16)

A similar argument, taking into account the fact that occasional vacancies in the chain
arise when ions at the two ends dissociate and that these vacancies propagate through
the chain, gives

Jin

Jout
=
[

ce

ci
exp

(−VF
RT

)]n
. (3.17)

Experimental data confirm this theoretical prediction (although historically, the
theory was motivated by the experimental result, as is often the case). Hodgkin and
Keynes (1955) showed that flux ratios in the K+ channel of the Sepia giant axon could
be described by the Ussing flux ratio raised to the power 2.5. Their result, as presented
in modified form by Hille (2001), is shown in Fig. 3.2. Unidirectional K+ fluxes were
measured with radioactive K+ , and the ratio of the outward to the inward flux was
plotted as a function of V − VK. The best-fit line on a semilogarithmic plot has a slope
of 2.5, which suggests that at least 2 K+ ions traverse the K+ channel simultaneously.

3.3 Electrodiffusion Models

Most early work on ion channels was based on the theory of electrodiffusion. Recall
from Chapter 2 that the movement of ions in response to a concentration gradient and
an electric field is described by the Nernst–Planck equation,

J = −D
(

dc
dx

+ zF
RT

c
dφ
dx

)
, (3.18)

where J denotes the flux density, c is the concentration of the ion under considera-
tion, and φ is the electrical potential. If we make the simplifying assumption that the
field dφ/dx is constant through the membrane, then (3.18) can be solved to give the
Goldman–Hodgkin–Katz current and voltage equations (2.123) and (2.126). However,
in general there is no reason to believe that the potential has a constant gradient in the
membrane. Ions moving through the channel affect the local electric field, and this local
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Figure 3.2 K+ flux ratios as measured by Hodgkin and Keynes (1955), Fig. 7. Slightly modified
into modern conventions by Hille (2001), page 487. Ko is the external K+ concentration, and n′
is the flux-ratio exponent, denoted by n in (3.17). (Hille, 2001, Fig. 15.7, p. 487.)

field in turn affects ionic fluxes. Thus, to determine the electric field and consequent
ionic fluxes, one must solve a coupled problem.

3.3.1 Multi-Ion Flux: The Poisson–Nernst–Planck Equations

Suppose there are two types of ions, S1 and S2, with concentrations c1 and c2, passing
through an ion channel, as shown schematically in Fig. 3.3.

For convenience, we assume that the valence of the first ion is z > 0 and that of the
second is −z. Then, the potential in the channel φ(x) must satisfy Poisson’s equation,

d2φ

dx2 = −zq
ϵ

Na(c1 − c2), (3.19)

where q is the unit electric charge, ϵ is the dielectric constant of the channel medium
(usually assumed to be an aqueous solution), and Na is Avogadro’s number, necessary
to convert units of concentration in moles per liter into number of molecules per liter.
The flux densities J1 and J2 of S1 and S2 satisfy the Nernst–Planck equation, and at
steady state dJ1/dx and dJ2/dx must both be zero to prevent charge buildup within
the channel. Hence, the steady-state flux through the channel is described by (3.19)
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Figure 3.3 Schematic diagram of the electrodiffusion model of current through an ionic
channel. Each side of the channel is electrically neutral, and both ion types can diffuse through
the channel.

coupled with

J1 = −D1

(
dc1

dx
+ zF

RT
c1

dφ
dx

)
, (3.20)

J2 = −D2

(
dc2

dx
− zF

RT
c2

dφ
dx

)
, (3.21)

where J1 and J2 are constants. To complete the specification of the problem, it is neces-
sary to specify boundary conditions for c1, c2, and φ. We assume that the channel has
length L, and that x = 0 denotes the left border, or inside, of the membrane. Then,

c1(0) = ci, c1(L) = ce,

c2(0) = ci, c2(L) = ce, (3.22)

φ(0) = V , φ(L) = 0.

Note that the solutions on both sides of the membrane are electrically neutral. V is the
potential difference across the membrane, defined, as usual, as the internal potential
minus the external potential. While at first glance it might appear that there are too
many boundary conditions for the differential equations, this is in fact not so, as the
constants J1 and J2 are additional unknowns to be determined.

In general, it is not possible to obtain an exact solution to the Poisson–Nernst–
Planck (PNP) equations (3.19)–(3.22). However, some simplified cases can be solved
approximately. A great deal of work on the PNP equations has been done by Eisenberg
and his colleagues (Chen et al., 1992; Barcilon, 1992; Barcilon et al., 1992; Chen and
Eisenberg, 1993). Here we present simplified versions of their models, ignoring, for
example, the charge induced on the channel wall by the presence of ions in the channel,
and considering only the movement of two ion types through the channel. Similar
models have also been discussed by Peskin (1991).
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It is convenient first to nondimensionalize the PNP equations. We let y = x/L,
ψ = φzF/RT, v = VF/RT, uk = ck/c̃, for k = 1, 2, i and e, where c̃ = ce + ci. Substituting
into (3.19)–(3.21), we find

−j1 = du1

dy
+ u1

dψ
dy

, (3.23)

−j2 = du2

dy
− u2

dψ
dy

, (3.24)

d2ψ

dy2 = −λ2(u1 − u2), (3.25)

where λ2 = L2qFNac̃/(ϵRT), j1 = J1L/(c̃D1), and j2 = J2L/(c̃D1). The boundary
conditions are

u1(0) = ui, u1(1) = ue,

u2(0) = ui, u2(1) = ue, (3.26)

ψ(0) = v, ψ(1) = 0.

The Short-Channel or Low Concentration Limit
If the channel is short or the ionic concentrations on either side of the membrane are
small, so that λ ≪ 1, we can find an approximate solution to the PNP equations by
setting λ = 0. This gives

d2ψ

dy2 = 0, (3.27)

and thus
dψ
dy

= −v. (3.28)

Hence, λ ≈ 0 implies that the electric potential has a constant gradient in the mem-
brane, which is exactly the constant field assumption that was made in the derivation
of the GHK equations (Chapter 2). The equation for u1 is then

du1

dy
− vu1 = −j1, (3.29)

and thus

u1 = j1
v

+ K1evy. (3.30)

From the boundary conditions u1(0) = ui, u1(1) = ue it follows that

j1 = v
ui − uee−v

1− e−v . (3.31)

In dimensional form, this is

I1 = FJ1 = D1

L
F2

RT
V

(
ci − ce exp(−zVF

RT )

1− exp(−zVF
RT )

)

, (3.32)
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Figure 3.4 The concentration and
potential profiles for the short-channel
limit of the Poisson–Nernst–Planck
equations. Dimensionless parame-
ters were set arbitrarily at ui = 50/

550 = 0.091, ue = 500/550 = 0.909,
v = 1. In this limit the electric field
is constant through the channel (the
potential has a constant slope), the
concentration profile is nonlinear, and
the GHK I–V curve is obtained.

which is, as expected, the GHK current equation. Graphs of the concentration and
voltage profiles through the membrane are shown in Fig. 3.4. It is reassuring that the
widely used GHK equation for the ionic flux can be derived as a limiting case of a more
general model.

The Long-Channel Limit
Another interesting limit is obtained by letting the length of the channel go to infinity.
If we let η = 1/λ denote a small parameter, the model equations are

−j1 = du1

dy
+ u1

dψ
dy

, (3.33)

−j2 = du2

dy
− u2

dψ
dy

, (3.34)

−η2 d2ψ

dy2 = (u1 − u2). (3.35)

Since there is a small parameter multiplying the highest derivative, this is a singular
perturbation problem. The solution obtained by setting η = 0 does not, in general,
satisfy all the boundary conditions, as the degree of the differential equation has been
reduced, resulting in an overdetermined system. In the present case, however, this
reduction of order is not a problem.

Setting η = 0 in (3.35) gives u1 = u2, which happens to satisfy both the left and
right boundary conditions. Thus, u1 and u2 are identical throughout the channel. From
(3.33) and (3.34) it follows that

d
dy

(u1 + u2) = −j1 − j2. (3.36)

Since both j1 and j2 are constants, it follows that du1/dy is a constant, and hence, from
the boundary conditions,

u1 = u2 = ui + (ue − ui)y. (3.37)



3.3: Electrodiffusion Models 133

We are now able to solve for ψ . Subtracting (3.35) from (3.34) gives

2u1
dψ
dy

= 2j, (3.38)

where 2j= j2 − j1, and hence

ψ = j
ue − ui

ln[ui + (ue − ui)y] + K, (3.39)

for some other constant K. Applying the boundary conditions ψ(0) = v, ψ(1) = 0 we
determine jand K, with the result that

ψ = − v
v1

ln
[

ui

ue
+
(

1− ui

ue

)
y
]

, (3.40)

where v1 = ln(ue/ui) is the dimensionless Nernst potential of ion S1. The flux density
of one of the ions, say S1, is obtained by substituting the expressions for u1 and ψ into
(3.33) to get

j1 = ue − ui

v1
(v− v1), (3.41)

or in dimensional form,

J1 = D1

L
zF
RT

ce − ci

ln ce
ci

(V − RT
zF

ln
ce

ci
), (3.42)

which is the linear I–V curve that we met previously. Graphs of the corresponding
concentration and voltage profiles through the channel are shown in Fig. 3.5.

In summary, by taking two different limits of the PNP equations we obtain either
the GHK I–V curve or a linear I–V curve. In the short-channel limit, ψ has a constant
gradient through the membrane, but the concentration does not. In the long-channel
limit the reverse is true, with a constant gradient for the concentration through the
channel, but not for the potential. It is left as an exercise to prove that although the
GHK equation obeys the independence principle and the Ussing flux ratio, the linear
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Figure 3.5 The concentration and po-
tential profiles for the long-channel limit
of the Poisson–Nernst–Planck equa-
tions. Dimensionless parameters were
set arbitrarily at ui = 50/550 = 0.091,
ue = 500/550 = 0.909, v = 1. In
this limit the concentration profile has
a constant slope, the potential profile
is nonlinear, and the linear I–V curve is
obtained.
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I–V curve obeys neither. Given the above derivation of the linear I–V curve, this is not
surprising. A linear I–V curve is obtained when either the channel is very long or the
ionic concentrations on either side of the channel are very high. In either case, one
should not expect the movement of an ion through the channel to be independent of
other ions, and so that the independence principle is likely to fail. Conversely, the GHK
equation is obtained in the limit of low ionic concentrations or short channels, in which
case the independent movement of ions is not surprising.

3.4 Barrier Models

The second type of model that has been widely used to describe ion channels is based
on the assumption that the movement of an ion through the channel can be modeled
as the jumping of an ion over a discrete number of free-energy barriers (Eyring et al.,
1949; Woodbury, 1971; Läuger, 1973). It is assumed that the potential energy of an ion
passing through a channel is described by a potential energy profile of the general form
shown in Fig. 3.6. The peaks of the potential energy profile correspond to barriers that
impede the ion flow, while the local minima correspond to binding sites within the
channel.

To traverse the channel the ion must hop from one binding site to another. Accord-
ing to the theory of chemical reaction rates, the rate at which an ion jumps from one
binding site to the next is an exponential function of the height of the potential energy

c0

c2

c3

c1

Inside Outside

 G1
 G-1

k 0

k -1

k 1

k -2

Figure 3.6 General potential energy profile for barrier models.The local minima correspond
to binding sites within the channel, and the local maxima are barriers that impede the ion flow.
An ion progresses through the channel by hopping over the barriers from one binding site to
another.
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barrier that it must cross. Thus, in the notation of the diagram,

kj= κ exp
(−)Gj

RT

)
, (3.43)

for some factor κ with units of 1/time. One of the most difficult questions in the use
of this expression is deciding the precise form of the factor κ. According to Eyring
rate theory (as used in this context by Hille (2001), for example), κ = kT/h, where k is
Boltzmann’s constant, T is the temperature, and h is Planck’s constant. The derivation
of this expression for κ relies on the quantization of the energy levels of the ion in
some transition state as it binds to the channel binding sites. However, it is not clear
that at biologically relevant temperatures energy quantization has an important effect
on ionic flows. Using methods from nonequilibrium statistical thermodynamics, an
alternative form of the factor has been derived by Kramers (1940), and discussions of
this, and other, alternatives may be found in McQuarrie (1967) and Laidler (1969). In
the appendix to this chapter, we give a derivation of Kramers’ formula, but we do not
enter into the debate of which answer is best. Instead, in what follows, we assume that
κ is known, and independent of )Gj, even though, for Kramers’ formula, such is not
the case.

For simplicity, we assume that each local maximum occurs halfway between the
local minima on each side. Barriers with this property are called symmetrical. An elec-
tric field in the channel also affects the rate constants. If the potential difference across
the cell membrane is positive (so that the inside is more positive than the outside), it
is easier for positive ions to cross the barriers in the outward direction but more diffi-
cult for positive ions to enter the cell. Thus, the heights of the barriers in the outward
direction are reduced, while the heights in the inward direction are increased. If there
is a potential difference of )Vjover the jth barrier, then

kj= κ exp
[

1
RT

(−)Gj+ zF)Vj+ 1/2)

]
, (3.44)

k−j= κ exp
[

1
RT

(−)G−j− zF)Vj/2)

]
. (3.45)

The factor 2 appears because the barriers are assumed to be symmetrical, so that the
maxima are lowered by zF)Vj/2. A simple illustration of this is given in Fig. 3.7A and
B and is discussed in detail in the next section.

In addition to symmetry, the barriers are assumed to have another important prop-
erty, namely, that in the absence of an electric field the ends of the energy profile are at
the same height, and thus

n−1∑

j=0

)Gj−
n∑

j=1

)G−j= 0. (3.46)

If this were not so, then in the absence of an electric field and with equal concentrations
on either side of the membrane, there would be a nonzero flux through the membrane,
a situation that is clearly unphysiological.
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A number of different models have been constructed along these general lines.
First, we consider the simplest type of barrier model, in which the ionic concentration
in the channel can become arbitrarily large, i.e., the channel does not saturate. This
is similar to the continuous models discussed above and can be thought of as a dis-
crete approximation to the constant field model. Because of this, nonsaturating models
give the GHK I–V curve in the limit of a homogeneous membrane. We then discuss
saturating barrier models and multi-ion models. Before we do so, however, it is impor-
tant to note that although barrier models can provide good quantitative descriptions
of some experimental data, they are phenomenological. In other words, apart from the
agreement between theory and experiment, there is often no reason to suppose that the
potential energy barrier used to describe the channel corresponds in any way to phys-
ical properties of the channel. Thus, although their relative simplicity has led to their
widespread use, mechanistic interpretations of the models should be made only with
considerable caution. Of course, this does not imply that barrier models are inferior
to continuous models such as the constant field model or the Poisson–Nernst–Planck
equations, which suffer from their own disadvantages (Dani and Levitt, 1990).

3.4.1 Nonsaturating Barrier Models

In the simplest barrier model (Eyring et al., 1949; Woodbury, 1971), the potential energy
barrier has the general form shown in Fig. 3.7A, and it is assumed that the movement
of an ion S over a barrier is independent of the ionic concentrations at the neighboring
barriers. This is equivalent to assuming that the concentration of S at any particular
binding site can be arbitrarily large.

The internal concentration of S is denoted by c0, while the external concentration
is denoted by cn. There are n− 1 binding sites (and thus n barriers) in the membrane,
and the concentration of S at the jth binding site is denoted by cj. Note the slight change
in notation from above. Instead of using ce and ci to denote the external and internal
concentrations of S, we use cn and c0. This allows the labeling of the concentrations
on either side of the membrane to be consistent with the labeling of the concentra-
tions at the binding sites. There is an equal voltage drop across each barrier, and thus
the electrical distance between each binding site, denoted by λ, is the same. For con-
venience, we assume the stronger condition, that the physical distance between the
binding sites is the same also, which is equivalent to assuming a constant electric field
in the membrane. In the absence of an electric field, we assume that the heights of the
energy barriers decrease linearly through the membrane, as in Fig. 3.7, with

)Gj= )G0 − jδG, (3.47)

for some constant increment δG. Finally, it is assumed that the flux from left to right, say,
across the jth barrier, is proportional to cj−1, and similarly for the flux in the opposite
direction. Thus, the flux over the jth barrier, J, is given by

J = λ(kj−1cj−1 − k−jcj). (3.48)
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Figure 3.7 The potential energy diagram used in the nonsaturating model of Woodbury
(1971). There is an equal distance between the binding sites, and the barriers are symmet-
rical. A. In the absence of an electric field the barrier height decreases linearly through the
membrane. B.The presence of a constant electric field skews the energy profile, bringing the
outside down relative to the inside.This increases the rate at which positive ions traverse the
channel from inside to out and decreases their rate of entry.

Note that the units of J are concentration × distance/time, or moles per unit area per
time, so J is a flux density. As usual, a flux from inside to outside (i.e., left to right) is
defined as a positive flux.

At steady state the flux over each barrier must be the same, in which case we obtain
a system of linear equations,

k0c0 − k−1c1 = k1c1 − k−2c2 = · · · = kn−1cn−1 − k−ncn = M, (3.49)
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where M = J/λ is a constant. Hence

k0c0 = (k1 + k−1)c1 − k−2c2, (3.50)

k1c1 = (k2 + k−2)c2 − k−3c3, (3.51)

k2c2 = (k3 + k−3)c3 − k−4c4, (3.52)
...

We need to determine J in terms of the concentrations on either side of the membrane,
c0 and cn. Solving (3.51) for c1 and substituting into (3.50) gives

k0c0 = c2k2φ2 − c3k−3φ1, (3.53)

where

φj=
j∑

i=0

πi, (3.54)

πj= k−1 · · · k−j

k1 · · · kj
, π0 = 1. (3.55)

Then solving (3.52) for c2 and substituting into (3.53) gives

k0c0 = c3k3φ3 − c4k−4φ2. (3.56)

Repeating this process of sequential substitutions, we find that

k0c0 = kn−1cn−1φn−1 − cnk−nφn−2. (3.57)

Since

cn−1 = M + k−ncn

kn−1
, (3.58)

it follows that

k0c0 = φn−1(M + k−ncn)− cnk−nφn−2, (3.59)

and hence

J = λM =
λk0

(
c0 − cnπn

kn
k0

)

φn−1
. (3.60)

It remains to express the rate constants in terms of the membrane potential. If
there is a potential difference V across the membrane (as shown in Fig. 3.7B), the
constant electric field adds FzV/(2n) to the barrier when moving from right to left, and
−FzV/(2n) when moving in the opposite direction. Hence

)Gj= )G0 − jδG− FzV
2n

, (3.61)

)G−j= )G0 − (j− 1)δG + FzV
2n

. (3.62)



3.4: Barrier Models 139

Now we use (3.43) to get

k−j

kj−1
= exp(−v/n),

k−j

kj
= exp(−g− v/n), (3.63)

where g = δG/(RT) and v = FzV/(RT). Hence

πj= exp(−j(g + v/n)), (3.64)

and

φn−1 =
n−1∑

j=0

exp(−j(g + v/n)) = e−n(g+ v/n) − 1
e−(g+ v/n) − 1

, (3.65)

so that

J = k0λ(c0 − cne−v)
e−(g+ v/n) − 1
e−n(g+ v/n) − 1

. (3.66)

As expected, (3.66) satisfies both the independence principle and the Ussing flux ratio.
Also, the flux is zero when v is the Nernst potential of the ion.

The Homogeneous Membrane Simplification
One useful simplification of the nonsaturating barrier model is obtained if it is assumed
that the membrane is homogeneous. We model a homogeneous membrane by setting
g = δG/(RT) = 0 and letting n → ∞. Thus, there is no increase in barrier height
through the membrane, and the number of barriers approaches infinity. In this limit,
keeping nλ = L fixed,

J = k00λ
2

L
v

c0 − cne−v

1− e−v , (3.67)

where k00 is the value of k0 at V = 0, L is the width of the membrane, and k00λ
2 is the

diffusion coefficient of the ion over the first barrier in the absence of an electric field.
Notice that for this to make sense it must be that k00 scales like λ−2 for small λ. In
Section 3.7.3 we show that this is indeed the case.

It follows that in the homogeneous membrane case,

J = DS

L
v

c0 − cne−v

1− e−v ,

= PSv
c0 − cne−v

1− e−v , (3.68)

which is exactly the GHK current equation (2.122) derived previously.

3.4.2 Saturating Barrier Models: One-Ion Pores

If an ion channel satisfies the independence principle, the flux of S is proportional to [S],
even when [S] gets large. However, this is not usually found to be true experimentally.
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It is more common for the flux to saturate as [S] increases, reaching some maximum
value as [S] gets large. This has motivated the development of models in which the flux
is not proportional to [S] but is a nonlinear, saturating, function of [S]. As one might
expect, equations for such models are similar to those of enzyme kinetics.

The basic assumptions behind saturating barrier models are that to pass through
the channel, ions must bind to binding sites in the channel, but that each binding site
can hold only a single ion (Läuger, 1973; Hille, 2001). Hence, if all the binding sites are
full, an increase in ionic concentration does not increase the ionic flux—the channel
is saturated. Saturating barrier models can be further subdivided into one-ion pore
models, in which each channel can bind only a single ion at any one time, and multi-
ion pore models, in which each channel can bind multiple ions simultaneously. The
theory of one-ion pores is considerably simpler than that of multi-ion pores, and so we
discuss those models first.

The Simplest One-Ion Saturating Model
We begin by considering the simplest one-ion pore model, with a single binding site. If
we let Se denote the ion outside, Si the ion inside, and X the binding site, the passage
of an ion through the channel can be described by the kinetic scheme

X + Si

k0
−→
←−
k−1

XS
k1
−→
←−
k−2

X + Se. (3.69)

Essentially, the binding site acts like an enzyme that transfers the ion from one side of
the membrane to the other, such as was encountered in Chapter 2 for the transport of
glucose across a membrane. Following the notation of the previous section, we let c0
denote [Si] and c2 denote [Se]. However, instead of using c1 to denote the concentration
of S at the binding site, it is more convenient to let c1 denote the probability that the
binding site is occupied. (In a population of channels, c1 denotes the proportion of
channels that have an occupied binding site.) Then, at steady state,

k0c0x− k−1c1 = k1c1 − k−2c2x, (3.70)

where x denotes the probability that the binding site is empty. Note that (3.70) is sim-
ilar to the corresponding equation for the nonsaturating pore, (3.49), with the only
difference that x appears in the saturating model. In addition, we have a conservation
equation for x,

x + c1 = 1. (3.71)

Solution of (3.70) and (3.71) gives the flux J as

J = k0c0x− k−1c1 = k0k1c0 − k−1k−2c2

k0c0 + k−2c2 + k−1 + k1
. (3.72)

It is important to note that J, as defined by (3.72), does not have the same units (con-
centration × distance/time) as in the previous model, but here has units of number of
ions crossing the membrane per unit time. The corresponding transmembrane current,
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Figure 3.8 Plot of J against c0 for the simplest saturating model with one binding site.When
c0 is small, the flux is approximately a linear function of c0, but as c0 increases, the flux saturates
to a maximum value.

I, is given by I = zqJ, where q is the unit charge, and has the usual units of number of
charges crossing the membrane per unit time. A plot of J as a function of c0 is shown in
Fig. 3.8. When c0 is small, J is approximately a linear function of c0, but as c0 increases,
J saturates at the maximum value k1.

We now use (3.43) to express the rate constants in terms of the membrane potential.
As before, we assume that the local maxima of the energy profile occur midway between
the local minima; i.e., we assume that the barriers are symmetrical. However, we no
longer assume that the barriers are equally spaced through the channel. If the local
minimum occurs at an electrical distance δ from the left-hand side, it follows that

k0 = κ exp
[

1
RT

(−)G0 + δzFV/2)

]
, (3.73)

k1 = κ exp
[

1
RT

(−)G1 + (1− δ)zFV/2)

]
, (3.74)

k−1 = κ exp
[

1
RT

(−)G−1 − δzFV/2)

]
, (3.75)

k−2 = κ exp
[

1
RT

(−)G−2 − (1− δ)zFV/2)

]
. (3.76)

Because δ denotes an electrical, not a physical, distance, it is not necessary to assume
that the electric field in the membrane is constant, only that there is a drop of δV
over the first barrier and (1− δ)V over the second. In general, the energy profile of any
particular channel is unknown. However, the number and positions of the binding sites
and the values of the local maxima and minima can, in principle at least, be determined
by fitting to experimental data. We consider an example of this procedure (for a slightly
more complicated model) below.
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The Ussing Flux Ratio
Earlier in this chapter we stated that it is possible for a model to obey the Ussing flux
ratio but not the independence principle. Single-ion saturating models provide a simple
example of this. First, note that they cannot obey the independence principle, since the
flux is not linearly proportional to the ionic concentration. This nonlinear saturation
effect is illustrated in Fig. 3.8.

To see that the model obeys the Ussing flux ratio, it is necessary to set up the model
in a slightly different form. Suppose we have two isotopes, S and S̄, similar enough so
that they have identical energy profiles in the channel. Then, we suppose that a channel
has only S on the left-hand side and only S̄ on the right. We let c denote [S] and c̄ denote
[S̄]. Since S and S̄ have identical energy profiles in the channel, the rate constants for
the passage of S̄ through the channel are the same as those for S. From the kinetic
schemes for S and S̄ we obtain

k0c0x− k−1c1 = k1c1 − k−2c2x = JS, (3.77)

k0c̄0x− k−1c̄1 = k1c̄1 − k−2c̄2x = JS̄, (3.78)

but here the conservation equation for x is

x + c̄1 + c1 = 1. (3.79)

To calculate the individual fluxes of S and S̄ it is necessary to eliminate x from (3.77)
and (3.78) using the conservation equation (3.79). However, to calculate the flux ratio
this is not necessary. Solving (3.77) for JS in terms of x, c0, and c2, we find

JS = x

⎛

⎜⎜⎝
k0c0 −

k−1k−2

k1
c2

1 + k−1/k1

⎞

⎟⎟⎠ , (3.80)

and similarly,

JS̄ = x

⎛

⎜⎜⎝
k0c̄0 −

k−1k−2

k1
c̄2

1 + k−1/k1

⎞

⎟⎟⎠ . (3.81)

If S is present only on the left-hand side and S̄ only on the right, we then have
c2 = 0 and c̄0 = 0, in which case

JS

JS̄
= − k0k1

k−1k−2

c0

c̄2
. (3.82)

The minus sign on the right-hand side appears because the fluxes are in different direc-
tions. Now we substitute for the rate constants, (3.73) to (3.76), and use the fact that the



3.4: Barrier Models 143

ends of the energy profile are at the same height (and thus)G0 + )G1−)G−1−)G−2 =
0) to find

∣∣∣∣
JS

JS̄

∣∣∣∣ = exp
(

zVF
RT

)
c0

c̄2
, (3.83)

which is the Ussing flux ratio, as proposed.

Multiple Binding Sites
When there are multiple binding sites within the channel, the analysis is essentially the
same as the simpler case discussed above, but the details are more complicated. When
there are n barriers in the membrane (and thus n − 1 binding sites), the steady-state
equations are

k0c0x− k−1c1 = k1c1 − k−2c2 = · · · = kn−1cn−1 − k−ncnx = J, (3.84)

where x is the probability that all of the binding sites are empty and cjis the probability
that the ion is bound to the jth binding site. Because the channel must be in either state
x or one of the states c1, . . . , cn−1 (since there is only one ion in the channel at a time),
it follows that

x = 1−
n−1∑

i=1

ci. (3.85)

It is left as an exercise to show that

J = k0c0 − k−ncnπn−1

φn−1 + βk0c0 + k−ncn(αφn−1 − βφn−2)
, (3.86)

where

α =
n−1∑

j=1

φn−2 − φj−1

kjπj
, (3.87)

β =
n−1∑

j=1

φn−1 − φj−1

kjπj
, (3.88)

where φjand πjare defined in (3.54) and (3.55).
Equation (3.86) does not satisfy the independence principle, but it does satisfy the

Ussing flux ratio. However, the details are left as an exercise (Exercise 5).

3.4.3 Saturating Barrier Models: Multi-Ion Pores

We showed above that single-ion models obey the Ussing flux ratio, even though they
do not obey the independence principle. This means that to model the type of channel
described in Fig. 3.2 it is necessary to use models that show flux coupling as predicted
by Hodgkin and Keynes (1955). Such flux coupling arises in models in which more
than one ion can be in the channel at any one time. Although the equations for such
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multi-ion models are essentially the same as the equations for the single-ion models
described in the previous section, the analysis is complicated considerably by the fact
that there are many more possible channel states. Hence, numerical techniques are
the most efficient for studying such models. A great deal has been written about multi-
ion models (e.g., Hille and Schwartz, 1978; Begenisich and Cahalan, 1980; Schumaker
and MacKinnon, 1990; Urban and Hladky, 1979; Kohler and Heckmann, 1979). Space
does not allow for a detailed discussion of the properties of these models, but so we
present only a brief discussion of the simplest model. Hille and Schwartz (1978) and
Hille (2001) give more detailed discussions.

Multi-ion models are based on assumptions similar to one-ion models. It is assumed
that the passage of an ion through the channel can be described as the jumping of an ion
over energy barriers, from one binding site to another. In one-ion models each binding
site can either have an ion bound or not, and thus a channel with n binding sites can be
in one of n independent states (i.e., the ion can be bound to any one of the binding sites).
Hence, the steady-state ion distribution is found by solving a system of n linear equa-
tions, treating the concentrations on either side of the membrane as known. If more
than one ion can be present simultaneously in the channel, the situation is more compli-
cated. Each binding site can be in one of two states: binding an ion or empty. Therefore,
a channel with n binding sites can be in any of 2n states (at least; more states are possi-
ble if there is more than one ion type passing through the channel), and the steady-state
probability distribution must be found by solving a large system of linear equations.

The simplest possible multi-ion model has three barriers and two binding sites, and
so the channel can be in one of 4 possible states (Fig. 3.9). Arbitrary movements from
one state to another are not possible. For example, the state OO (where both binding

SS

OO

OS 4

1

2 SO

3

Figure 3.9 State diagram for a multi-
ion barrier model with two binding sites
and a single ion.
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sites are empty) can change to OS or SO but cannot change to SS in a single step, as this
would require two ions entering the channel simultaneously. We number the states as
in Fig. 3.9 and let kijdenote the rate of conversion of state i to state j. Also, let Pjdenote
the probability that the channel is in the jth state, and let ce and ci denote the external
and internal ion concentrations, respectively. Then, the equations for the probabilities
follow from the law of mass action; they are

dP1

dt
= −(k12 + k14)P1 + k21ceP2 + k41ciP4, (3.89)

dP2

dt
= −(k21ce + k23 + k24)P2 + k12P1 + cik32P3 + k42P4, (3.90)

dP3

dt
= −(cik32 + cek34)P3 + k43P4 + k23P2, (3.91)

dP4

dt
= −(k41ci + k42 + k43)P4 + k14P1 + k24P2 + cek34P3. (3.92)

The probabilities must also satisfy the conservation equation

4∑

i=1

Pi = 1. (3.93)

Using the conservation equation in place of the equation for P4, the steady-state
probability distribution is given by the linear system
⎛

⎜⎜⎝

−k12 − k14 k21 0 k41
k12 −k21 − k23 − k24 cek32 k42
0 k23 −cek32 − cik34 k43
1 1 1 1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

P1
P2
P3
P4

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

0
0
0
1

⎞

⎟⎟⎠ . (3.94)

Since each rate constant is determined as a function of the voltage in the same way
as one-ion models (as in, for example, (3.73)–(3.76)), solution of (3.94) gives each Pi
as a function of voltage and the ionic concentrations on each side of the membrane.
Finally, the membrane fluxes are calculated as the net rate of ions crossing any one
barrier, and so, choosing the middle barrier arbitrarily, we have

J = P2k24 − P4k42. (3.95)

Although it is possible to solve such linear systems exactly (particularly with the
help of symbolic manipulators such as Maple or Mathematica), it is often as useful to
solve the equations numerically for a given energy profile. It is left as an exercise to
show that the Ussing flux ratio is not obeyed by a multi-ion model with two binding
sites and to compare the I–V curves of multi-ion and single-ion models.

3.4.4 Electrogenic Pumps and Exchangers

Recall from Chapter 2 that detailed balance required that rate constants in models of
electrogenic exchangers and pumps be dependent on the membrane potential. See,
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for example, (2.78) or (2.96). However, although the arguments from chemical equi-
librium show that voltage-dependency must exist, they do not specify exactly which
rate constants depend on the voltage, or what the functional dependency is. As we
have come to expect, it is much more difficult to answer these questions. Just as
there are many ways to model ionic current flow, so there are many ways to model
how rate constants depend on the membrane potential. In addition, depending on
the exact assumptions, any of the steps in the model could depend on membrane
potential. In other words, not only are there a number of ways to model the voltage-
dependence when it occurs, there are also many places where it could occur. It is,
in general, a very difficult task to determine the precise place and nature of the
voltage-dependence.

One simple approach is to assume that the conformational change of the carrier
protein is the step that moves the charge across the membrane, and thus requires
the crossing of a free energy barrier. Consider the diagram shown in Fig. 2.9. If we as-
sume that the transition from state X2 to Y2 involves the movement of 2 positive ions
across an energy barrier and a potential difference V , then we can model the rate
constants as

k2 = κ exp
[

1
RT

(−)G+ + 2FV/2)

]
(3.96)

= k̄2 exp
(

FV
RT

)
, (3.97)

k−2 = κ exp
[

1
RT

(−)G− − 2FV/2)

]
(3.98)

= k̄−2 exp
(−FV

RT

)
, (3.99)

where k̄2 = κ exp[−)G+ /(RT)] and similarly for k̄−2. In (3.96) and (3.98) 2FV is divided
by 2 as we assume, for simplicity, that the energy barrier occurs halfway through the
membrane.

If we make similar assumptions for k4 and k−4, i.e., that these transitions involve
the reverse movement of 3 positive charges across an energy barrier and a potential
difference, we obtain similar equations for those rate constants. Then

k−2

k2

k−4

k4
= k̄−2

k̄2

k̄−4

k̄4
exp

(−2FV
RT

)
exp

(
3FV
RT

)

= k̄−2

k̄2

k̄−4

k̄4
exp

(
FV
RT

)
, (3.100)

from which it follows that K1K2K3K4 = exp
(

FV
RT

)
(cf. (2.78)), which is the necessary

equilibrium condition.
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3.5 Channel Gating

So far in this chapter we have discussed how the current through a single open channel
depends on the membrane potential and the ionic concentrations on either side of the
membrane. However, it is of equal interest to determine how ionic channels open and
close in response to voltage. As described in Chapter 5, the opening and closing of ionic
channels in response to changes in the membrane potential is the basis for electrical
excitability and is thus of fundamental significance in neurophysiology.

Recall that there is an important difference between the instantaneous and steady-
state I–V curves. In general, the current through a population of channels is the product
of three terms,

I = Ng(V , t)φ(V), (3.101)

where φ(V) is the I–V curve of a single open channel, and g(V , t) is the proportion of
open channels in the population of N channels. In the previous sections we discussed
electrodiffusion and barrier models of φ(V); in this section we discuss models of the
dependence of g on voltage and time.

Consider, for example, the curves in Fig. 3.10, which show typical responses of
populations of Na+ and K+ channels. When the voltage is stepped from −65 mV to
−9 mV, and held fixed at the new level, the K+ conductance (gK) slowly increases
to a new level, while the Na+ conductance (gNa) first increases and then decreases.

Figure 3.10 Na+ and K+ conductances as a function of time after a step change in voltage
from −65 mV to −9 mV.The dashed line shows that after repolarization gNa recovers quickly,
and gK recovers more slowly. (Hille, 2001, Fig. 2.11, p. 41.)
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From these data we can draw several conclusions. First, as the voltage increases, the
proportion of open K+ channels increases. Second, although the proportion of open
Na+ channels initially increases, a second process is significant at longer times, as the
Na+ channel is inactivated. Thus, Na+ channels first activate and then inactivate.

3.5.1 A Two-State K+ Channel

The simplest model of the K+ channel assumes that the channel can exist in either a
closed state, C, or an open state, O, and that the rate of conversion from one state to
another is dependent on the voltage. Thus,

C
α(V)

−→
←−
β(V)

O. (3.102)

If g denotes the proportion of channels in the open state (so 1− g is the proportion of
closed channels), the differential equation for the rate of change of g is

dg
dt

= α(V)(1− g)− β(V)g. (3.103)

Under voltage-clamp conditions (i.e., where the voltage is piecewise constant, as in Fig.
3.10), α and β are constants, and thus one can readily solve for g as a function of time.
Equation (3.103) is often written as

τg(V)
dg
dt

= g∞(V)− g, (3.104)

where g∞(V) = α/(α + β) is the steady-state value of g, and τg(V) = 1/(α + β) is the
time constant of approach to the steady state. From experimental data, such as those
shown in Fig. 3.10, one can obtain values for g∞ and τg, and thus α and β can be
unambiguously determined.

The form of g∞(V) can be determined from free energy arguments. The reason for
voltage dependence must be that the subunit is charged and that to change from one
conformation to another charges must move in the potential field. This movement of
charge is a current, called the gating current. Now the difference in free energy between
the two conformations is of the form

)G = )G0 + aFV , (3.105)

where )G0 is the free energy difference between the two states in the absence of a
potential, and a is a constant related to the number of charges that move and the relative
distance they move during a change of conformation. It follows that the equilibrium
constant for the subunit must be of the form

β

α
= k0 exp

(
aFV
RT

)
, (3.106)

in which case

g∞(V) = α

α + β
= 1

1 + k0 exp(aFV
RT )

, (3.107)
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which can also be expressed in the form

g∞(V) = 1
2

+ 1
2

tanh(b(V − V0)). (3.108)

3.5.2 Multiple Subunits

An important generalization of the two-state model occurs when the channel is as-
sumed to consist of multiple identical subunits, each of which can be in either the
closed or open state. For example, suppose that the channel consists of two identical
subunits, each of which can be closed or open. Then, the channel can take any of four
possible states, S00, S10, S01, or S11, where the subscripts denote the different subunits,
with 1 and 0 denoting open and closed subunits, respectively. A general model of this
channel involves three differential equations (although there is a differential equation
for each of the four variables, one equation is superfluous because of the conservation
equation S00 + S10 + S01 + S11 = 1), but we can simplify the model by grouping the
channel states with the same number of closed and open subunits. Because the sub-
units are identical, there should be no difference between S10 and S01, and thus they
are amalgamated into a single variable.

So, we let Si denote the group of channels with exactly i open subunits. Then,
conversions between channel groups are governed by the reaction scheme

S0

2α
−→
←−
β

S1

α

−→
←−
2β

S2. (3.109)

The corresponding differential equations are

dx0

dt
= βx1 − 2αx0, (3.110)

dx2

dt
= αx1 − 2βx2, (3.111)

where xi denotes the proportion of channels in state Si, and x0 + x1 + x2 = 1. We now
make the change of variables x2 = n2, where n satisfies the differential equation

dn
dt

= α(1− n)− βn. (3.112)

A simple substitution shows that (3.110) and (3.111) are satisfied by x0 = (1− n)2 and
x1 = 2n(1− n).

In fact, we can derive a stronger result. We let

x0 = (1− n)2 + y0, (3.113)

x2 = n2 + y2, (3.114)



150 3: Membrane Ion Channels

so that, of necessity, x1 = 2n(1− n)− y0 − y2. It follows that

dy0

dt
= −2αy0 − β(y0 + y2), (3.115)

dy2

dt
= −α(y0 + y2)− 2βy2. (3.116)

This is a linear system of equations with eigenvalues −(α + β),−2(α + β), and so y0, y2
go exponentially to zero. This means that x0 = (1 − n)2, x2 = n2 is an invariant stable
manifold for the original system of equations; the solutions cannot leave this manifold,
and with arbitrary initial data, the flow approaches this manifold exponentially. Notice
that this is a stable invariant manifold even if α and β are functions of time (so they
can depend on voltage or other concentrations).

This argument generalizes to the case of k identical independent binding sites where
the invariant manifold for the flow is the binomial distribution with probability n sat-
isfying (3.112) (see Exercise 14). Thus, the channel conductance is proportional to nk,
where n satisfies the simple equation (3.112). This multiple subunit model of channel
gating provides the basis for the model of excitability that is examined in Chapter 5.

3.5.3 The Sodium Channel

A more complex model is needed to explain the behavior of the Na+ channel, which
both activates and inactivates. The simplest approach is to extend the above analysis to
the case of multiple subunits of two different types, m and h, say, where each subunit
can be either closed or open, and the channel is open, or conducting, only when all
subunits are open. To illustrate, we assume that the channel has one h subunit and two
m subunits. The reaction diagram of such a channel is shown in Fig. 3.11. We let Sij
denote the channel with i open m subunits and jopen h subunits, and we let xijdenote
the fraction of channels in state Sij. The dynamics of xijare described by a system of six
differential equations. However, as above, direct substitution shows that this system of
equations has an invariant manifold x00 = (1 −m)2(1 − h), x10 = 2m(1 −m)(1 − h),
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Figure 3.11 Diagram of the possible
states in a model of the Na+ channel.
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Figure 3.12 A: Schematic diagram of the states of the Na+ chan-
nel. C, O, and I denote the closed, open, and inactivated states,
respectively.

x20 = m2(1− h), x01 = (1−m)2h, x11 = 2m(1−m)h, and x21 = m2h, provided

dm
dt

= α(1−m)− βm, (3.117)

dh
dt

= γ (1− h)− δh. (3.118)

Furthermore, the invariant manifold is stable. A model of this type was used by Hodgkin
and Huxley in their model of the nerve axon, which is discussed in detail in Chapter 5.

In an alternate model of the Na+ channel (Aldrich et al., 1983; Peskin, 1991), it
is assumed that the Na+ channel can exist in three states, closed (C), open (O), or
inactivated (I), and that once the channel is inactivated, it cannot return to either the
closed or the open state (Fig. 3.12). Thus, the state I is absorbing. While this is clearly
not true in general, it is a reasonable approximation at high voltages.

As before, we let g denote the proportion of open channels and let c denote the
proportion of closed channels. Then,

dc
dt

= −(α + δ)c + βg, (3.119)

dg
dt

= αc− (β + γ )g, (3.120)

where the proportion of channels in the inactivated state is i = 1 − c − g. Initial con-
ditions are c(0) = 1, g(0) = 0, i.e., all the channels are initially in the closed state. This
system of first-order differential equations can be solved directly to give

g(t) = a(eλ1t − eλ2t), (3.121)

where λ2 < λ1 < 0 are the roots of the characteristic polynomial

λ2 + (α + β + γ + δ)λ + (α + δ)(β + γ )− αβ = 0, (3.122)

and where

g′(0) = α = a(λ1 − λ2) > 0. (3.123)

As in the simple two-state model, the function g can be fit to data to determine
the parameters a, λ1, and λ2. However, unlike the two-state model, the rate constants
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cannot be determined uniquely from these parameters. For, since λ1 and λ2 are the
roots of (3.122), it follows that

α + β + γ + δ = −λ1 − λ2, (3.124)

(α + δ)(β + γ )− αβ = λ1λ2. (3.125)

Thus, there are only three equations for the four unknowns, α,β, γ , and δ, so the sys-
tem is underdetermined (see Exercise 16). This problem cannot be resolved using the
macroscopic data that have been discussed so far, but requires data collected from a
single channel, as described in Section 3.6.

3.5.4 Agonist-Controlled Ion Channels

Many ion channels are controlled by agonists, rather than by voltage. For example, the
opening of ion channels in the postsynaptic membrane of the neuromuscular junction
(Chapter 8) is controlled by the neurotransmitter acetylcholine, while in the central ner-
vous system a host of neurotransmitters such as glutamate, dopamine, γ -aminobutyric
acid (GABA), and serotonin have a similar role. The inositol trisphosphate receptor and
ryanodine receptor are other important agonist-controlled ion channels (Chapter 7).

Early theories of agonist-controlled ion channels (Clark, 1933) assumed that the
channel was opened simply by the binding of the agonist. Thus,

A + T
k1
−→
←−
k−1

AT, (3.126)

where the state AT is open. However, this simple theory is unable to account for a
number of experimental observations. For example, it can happen that only a fraction
of channels are open at any given time, even at high agonist concentrations, a result
that cannot be explained by this simple model.

In 1957, del Castillo and Katz proposed a model that explicitly separated the
agonist-binding step from the gating step:

A + T
k1−→←−

k−1
AT

β
−→←−
α

AR.

agonist state 3 state 2 state 1
closed closed open

unoccupied occupied occupied

(3.127)

Note that the only open state is AR (state 1; the slightly unusual numbering of the
states follows Colquhoun and Hawkes, 1981). Thus, in this model, binding of the ago-
nist places the channel into an occupied state that allows, but does not require, opening.
The agonist-binding step is controlled by the affinity of the channel for the agonist, while
the gating is determined by the efficacy of the agonist. This separation of affinity and ef-
ficacy has proven to be an extremely powerful way of understanding agonist-controlled
channels, and is at the heart of practically all modern approaches (Colquhoun, 2006).
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The conductance of a population of agonist-controlled channels is determined as
the solution of the system of differential equations

d.1

dt
= β.2 − α.1, (3.128)

d.2

dt
= α.1 + k1a(1−.2 −.1)− (β + k−1).2, (3.129)

where .1, .2, and 1 − .1 − .2 represent the percentage of channels in states 1, 2,
and 3, respectively, and a is the concentration of agonist A. The solution of this system
of differential equations is easy to determine, provided a is constant. However, the
practical usefulness of this exact solution is extremely limited, since in any realistic
situation a is changing in time.

The steady-state solution is also readily found to be

.1 = 1

1 + β
α + βk−1

αk1a

, (3.130)

and this can be fit to data to find the equilibrium constants β
α and k−1

k1
. However, com-

plete determination of the four kinetic parameters is much more challenging. One
could imagine a “concentration clamp” experiment, in which the concentration of a
is suddenly switched from one level to another and the conductance of the channels
monitored. From these data one could then determine the two eigenvalues of the sys-
tem (3.128)–(3.129). However, usually such experiments are very difficult to perform.
In Section 3.6 we show that there is more information contained in single-channel
recordings and how this additional information can be used to determine the kinetic
parameters of channel models.

3.5.5 Drugs and Toxins

Many drugs act by blocking a specific ion channel. There are numerous specific channel
blockers, such as Na+ channel blockers, K+ channel blockers, Ca2+ channel blockers,
and so on. In fact, the discovery of site-specific and channel-specific blockers has been of
tremendous benefit to the experimental study of ion channels. Examples of important
channel blockers include verapamil (Ca2+ -channel blocker), quinidine, sotolol, nico-
tine, DDT, various barbiturates (K+ -channel blockers), tetrodotoxin (TTX, the primary
ingredient of puffer fish toxin), and scorpion toxins (Na+ -channel blockers).

To include the effects of a drug or toxin like TTX in a model of a Na+ channel is a
relatively simple matter. We assume that a population P of Na+ channels is available
for ionic conduction and that a population B is blocked because they are bound by the
toxin. Thus,

P + D
k+
−→
←−
k−

B, (3.131)
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where D represents the concentration of the drug. Clearly, P + B = P0, so that

dP
dt

= k−(P0 − P)− k+ DP, (3.132)

and the original channel conductance must be modified by multiplying by the
percentage of unbound channels, P/P0.

In steady state, we have

P
P0

= Kd

Kd + D
. (3.133)

The remarkable potency of TTX is reflected by its small equilibrium constant Kd, as
Kd ≈1–5 nM for Na+ channels in nerve cells, and Kd ≈1–10 µM for Na+ channels in
cardiac cells. By contrast, verapamil has Kd ≈140–940 µM.

Other important drugs, such as lidocaine, flecainide, and encainide are so-called
use-dependent Na+ -channel blockers, in that they interfere with the Na+ channel
only when it is open. Thus, the more the channel is used, the more likely that it is
blocked. Lidocaine is an important drug used in the treatment of cardiac arrhyth-
mias. The folklore explanation of why it is useful is that because it is use-dependent,
it helps prevent high-frequency firing of cardiac cells, which is commonly associated
with cardiac arrhythmias. In fact, lidocaine, flecainide, and encainide are officially
classified as antiarrhythmic drugs, even though it is now known that flecainide and
encainide are proarrhythmic in certain postinfarction (after a heart attack) patients. A
full explanation of this behavior is not known.

To keep track of the effect of a use-dependent drug on a two-state channel, we
suppose that there are four classes of channels, those that are closed but unbound by
the drug (C), those that are open and unbound by the drug (O), those that are closed
and bound by the drug (CB), and those that are open and bound by the drug (OB) (but
unable to pass a current). For this four-state model a reasonable reaction mechanism is

C
α

−→
←−
β

O,

CB
α

−→
←−
β

OB,

CB
k+−→ C + D,

O + D
k+
−→
←−
k−

OB.

Notice that we have assumed that the drug does not interfere with the process of open-
ing and closing, only with the flow of ionic current, and that the drug can bind the
channel only when it is open. It is now a straightforward matter to find the differential
equations governing these four states, and we leave this as an exercise.

This is not the only way that drugs might interfere with a channel. For example, for a
channel with multiple subunits, the drug may bind only when certain of the subunits are
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in specific states. Indeed, the binding of drugs with channels can occur in many ways,
and there are numerous unresolved questions concerning this complicated process.

3.6 Single-Channel Analysis

Since the late 1970s, the development of patch-clamp recording techniques has allowed
the measurement of ionic current through a small piece of cell membrane, containing
only a few, or even a single, ionic channel (Hamill et al., 1981; Sakmann and Neher,
1995; Neher and Sakmann received the 1991 Nobel Prize in Physiology or Medicine
for their development of the patch-clamp technique).

Much of the mathematical theory of how to analyze single-channel recordings was
worked out in a series of papers by Colquhoun and Hawkes (1977, 1981, 1982). As is
true of most things written by Colquhoun and Hawkes, these are eminently readable.
However, newcomers to the field should first read the two chapters in the Plymouth
Workshop Handbook on Microelectrode Techniques (Colquhoun, 1994; Colquhoun and
Hawkes, 1994), since these are an excellent introduction. The chapter by Colquhoun
and Hawkes in the book by Sakmann and Neher (1995) is also a valuable reference.

An example of an experimental record for Na+ channels is given in Fig. 3.13. The
current through an individual channel is stochastic (panel A) and cannot be described
by a deterministic process. Nevertheless, the ensemble average over many experi-
ments (panel B) is deterministic and reproduces the same properties that are seen
in the macroscopic measurements of Fig. 3.10. However, the single-channel recordings
contain more information than does the ensemble average.

What information is available from single-channel recordings that is not available
from ensemble averages? First of all, one can measure how long a channel is open on av-
erage, or more generally, the distribution of open times. Similarly, one can measure the
distribution of times the channel is in the closed state. If there are additional dynamical
processes underlying the opening and closing of channels, as there are with Na+ chan-
nels, one can measure (for example) how many times a channel opens (and closes) be-
fore it is inactivated (permanently closed) or how many channels fail to open even once.

The most common models of ion channels are discrete-space continuous-time
Markov processes, the basic theory of which was described in Section 2.9.2. Since
it is this theory that lies at the heart of the analysis of single-channel data, the reader
is encouraged to review the relevant sections of Chapter 2 before continuing.

3.6.1 Single-Channel Analysis of a Sodium Channel

Consider the Na+ channel model shown in Fig. 3.12. For this model there are two
obvious waiting-time problems. The probability that the amount of time spent in the
closed state before opening is less than t is governed by the differential equation

dP
dt

= α(1− P), (3.134)
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Figure 3.13 A: Na+ currents from a single channel (or possibly two in the first trace) following
a voltage step from −80 mV to −40 mV. B: Average open probability of the Na+ channel,
obtained by averaging over many traces of the type shown in A. (Hille, 2001, Fig. 3.16, p. 90.)

with P(0) = 1, and therefore is

P(t) = 1− exp(−αt), (3.135)

so that the closed time distribution is α exp(−αt).
Similarly, the probability that the amount of time spent in the open state is less

than t is 1− exp(−(β + γ )t), so that the open time distribution is (β + γ ) exp(−(β + γ )t).
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According to this model, the channel can inactivate from the closed state at rate
δ or from the open state at rate γ . At the beginning of the experiment the channel is
in the closed state, and from there it can either open or inactivate. The probability
that the first transition is to the open state is A = α

α+ δ , and the probability that the
first transition is to the inactivated state is 1 − A. Thus, 1 − A can be estimated by
the proportion of experimental records in which no current is observed, even after the
depolarizing stimulus was maintained for a long time.

A channel may open and close several times before it finally inactivates. To un-
derstand this, we let N be the number of times the channel opens before it finally
inactivates and calculate the probability distribution for N. Clearly, P[N = 0] = 1 − A.
Furthermore,

P[N = k] = P[N = k and channel enters I from O]
+ P[N = k and channel enters I from C]

= AkBk−1(1− B) + AkBk(1− A)

= (AB)k
(

1− AB
B

)
, (3.136)

where B = β
β+ γ .

We now have enough information to estimate the four channel rate constants.
Since A can be determined from the proportion of channels that never open, B can be
determined from a plot of the experimental data for P[N = k] vs. k. Then, β + γ can be
determined from the open time distribution of the channel and α can be determined
from the closed time distribution.

Since the work of Hodgkin and Huxley (described in Chapter 5), the traditional
view of a Na+ channel has been that it activates quickly and inactivates slowly. Ac-
cording to this view, the decreasing portion of the gNa curve in Fig. 3.10 is due entirely
to inactivation of the channel. However, single-channel analysis has shown that this
interpretation of macroscopic data is not always correct. It turns out that the rate of
inactivation of some mammalian Na+ channels is faster than the rate of activation. For
example, Aldrich et al. (1983) found α = 1/ms, β = 0.4/ms, γ = 1.6/ms, and δ = 1/ms at
V = 0 for channels in a neuroblastoma cell line and a pituitary cell line. Although this
reversal of activation and inactivation rates is not correct for all Na+ channels in all
species, the result does overturn some traditional ideas of how Na+ channels work.

More modern models of the Na+ channel are based on a wide range of experimental
data, including single-channel recordings and macroscopic ionic and gating currents.
It is a very difficult matter to decide, on the basis of these data, which is the best model
of the channel. One of the most rigorous attempts is that of Vandenberg and Bezanilla
(1991), who concluded that a sequential Markov model with three closed states, one
open state, and one inactivated state was the best at reproducing the widest array of
data. However, because of the ill-posed nature of this inverse problem, it is impossible
to rule out the existence of multiple other states.
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3.6.2 Single-Channel Analysis of an Agonist-Controlled Ion Channel

The single-channel analysis of the agonist-controlled ion channel (3.127) is more subtle
than that of the Na+ channel. This is because there are states that cannot be directly
observed, but can only be inferred from the data. If the state AR is the only open state,
then a typical single-channel recording might look (at least, in an ideal situation) like
that shown in Fig. 3.14. The openings occur in bursts as the channel flicks between the
AR and AT states, with longer interburst periods occurring when the channel escapes
from AT into the closed state, T, because of agonist unbinding. However, because the
binding and unbinding transitions are not directly observable, this process is called a
hidden Markov process.

There are two distributions that are readily determined from the data. These are
the open time and closed time distributions. Since the open state, AR, can close only
by a single pathway to AT, the open time distribution is the exponential distribution
αe−αt, with mean 1/α.

The Closed Time Distribution
Every period during which the channel is closed must begin with the channel in state
AT and end with the channel in state AR. However, during this time the channel can
be in either state AT or state T. Thus, the closed time distribution is the transition time
from state AT to state AR (see Section 2.9.2).

To calculate the closed time probability, we set state AR to be an absorbing state
(i.e., set α = 0), and impose the initial condition that the receptor starts in state AT.
Hence,

d.1

dt
= β.2, (3.137)

T

AT

AR

closed

open

burst burstgap

Figure 3.14 Schematic diagram of a possible single-channel recording in the model de-
scribed by (3.127). The openings occur in bursts as the channel flickers between states AR
and AT. However, the transitions between statesT and AT cannot be observed. (Adapted from
Colquhoun and Hawkes (1981), Fig. 1.)
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d.2

dt
= −(β + k−1).2 + ak1.3, (3.138)

d.3

dt
= k−1.2 − ak1.3, (3.139)

with initial data .1(0) = 0, .2(0) = 1, .3(0) = 0.
We can readily solve this system of differential equations to determine that the

transition time from state 2 to state 1 has the probability density

φ21(t) = d.1

dt
= βx2 = β

λ1 − λ2
[(λ1 + ak1)eλ1t − (λ2 + ak1)eλ2t], (3.140)

where the eigenvalues λ1 and λ2 are the roots (both negative) of λ2 + λ(β + k−1 + k1a) +
ak1β = 0.

Since the closed time distribution is the sum of two exponentials, the open and
closed time distributions along with the steady-state open probability (3.130) theoret-
ically provide enough information to determine uniquely the four kinetic parameters
of the model.

Other Distributions
There are other distributions that can be calculated, but obtaining the data for these
is somewhat subjective. These are the distribution of closed times during a burst, the
number of openings in a burst, and the distribution of gap closed times.

The distribution of closed times during a burst is the easiest to calculate, being
simply β exp(−βt).

Each time the channel is in state AT a choice is made to go to state AR (with
probability β/(β + k−1)) or to go to state T (with probability k−1/(β + k−1)). Thus, for
there to be N openings in a burst, the channel must reopen by going from state AT to
state AR N − 1 times, and then end the burst by going from state AT to state T. Hence,

P(N openings) =
(

β

β + k−1

)N−1 ( k−1

β + k−1

)
, (3.141)

where N ≥ 1, which has mean 1 + β/k−1.
To determine the closed time distribution for gaps, we observe that a gap begins in

state AT and then moves back and forth between states T and AT before finally exiting
into state AR. The waiting-time distribution for leaving state AT into state T is

φ23(t) = k−1e−k−1t. (3.142)

The transition time from state T to state AR is φ31 = d.1
dt , determined as the solution

of the system (3.137)–(3.139), subject to initial conditions .1(0) = 0, .2(0) = 0, and
.3(0) = 1. One readily determines that

φ31 = β
(λ2 + ak1)(λ1 + ak1)

k−1(λ2 − λ1)
(eλ1t − eλ2t). (3.143)
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Now, to calculate the gap time distribution, we observe that the time in a gap is the
sum of two times, namely the time in state AT before going to state T and the time to
go from state T to state AR. Here we invoke a standard result from probability theory
regarding the distribution for the sum of two random variables. That is, if p1(t1) and
p2(t2) are the probability densities for random variables t1 and t2, then the probability
density for the sum of these is the convolution

psum(t) =
∫ t

0
p1(s)p2(t− s) ds. (3.144)

Thus, in this problem, the probability density for the gap time is

φgap(t) =
∫ t

0
φ23(s)φ31(t− s) ds. (3.145)

It is again straightforward to determine (use Laplace transforms and the convolution
theorem) that

φgap(t) = β
(λ2 + ak1)(λ1 + ak1)

(λ2 − λ1)

(
eλ1t

λ1 + k−1
− eλ2t

λ2 + k−1
+ (λ1 − λ2)e−k−1t

(λ1 + k−1)(λ2 + k−1)

)

,

a sum of three exponentials.
Making use of these distributions is tricky, because it is not clear how to distinguish

between a short gap and a long closed interval during a burst. In fact, if a is large enough
and k−1 is not too small, then the mean gap length is shorter than the mean burst closed
time, so that errors of classification are likely.

3.6.3 Comparing to Experimental Data

Experimental data typically come in lists of open and closed times. They are then
displayed in a histogram, where the area under each histogram bar corresponds to the
number of events in that interval.

However, it can be very difficult to determine from a histogram how many expo-
nential components are in the distributions; an exponential distribution with three
exponentials can look very similar to one with two exponentials, even when the time
constants are widely separated.

This problem is sometimes avoided by first taking the log of the times, and plotting a
histogram of the log(time) distributions. Since the log function is monotone increasing,
we know that

P[t < t1] = P[log(t) < log(t1)], (3.146)

and thus the cumulative distributions are the same, whether functions of the log or the
linear times. However, the functions that are of interest to us are the probability density
functions, which are the derivatives of the cumulative distribution functions. Suppose
.(t) is a cumulative distribution function with corresponding probability density func-
tion φ(t) = d.

dt . For any monotone increasing function g(x),.(g(x)) is also a cumulative
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Figure 3.15 Two exponential distributions, transformed according to (3.147), and plotted
against log(time). Solid line: f1(t ) = 0.5e−0.5t . Dotted line: f2(t ) = 0.5e−0.5t + 10e−10t .

distribution function in x. However, the corresponding probability density function is

d.(g(x))

dx
= g′(x)φ(g(x)). (3.147)

Thus, to use a log(time) transformation, x = ln(t), for a given probability density
function, φ(t), we plot exφ(ex) and fit this to the histogram of the log(time).

There are significant advantages to this scaling of time, especially for exponential
distributions, illustrated in Fig. 3.15. The solid line in Fig. 3.15 corresponds to the dis-
tribution φ1(t) = 0.5e−0.5t, transformed according to (3.147). In other words, this is
the plot of the function 0.5exe−0.5ex

against x. Notice that the maximum of the curve
occurs at the mean of the distribution, t = 2 (x = log 2 = 0.69) (see Exercise 21). The
dotted line is the distribution f2(t) = 0.5e−0.5t + 10e−10t, again transformed according
to (3.147). (This is not a true probability density function since the area under the
curve is 2, rather than 1.) The two peaks occur at the means of the individual com-
ponent exponential distributions, i.e., at t = 2 and t = 0.1 (x = 0.69 and x = −2.3
respectively).

Modern methods of fitting models to single-channel data are considerably more
sophisticated than merely fitting histograms, as described above. Fitting directly to the
set of open and closed times using the log likelihood is a common approach, but, more
recently, methods to fit the model directly to the single-channel time course raw data
(not simply to a list of open and closed times), using Markov chain Monte Carlo and
Bayesian inference, have been developed (Fredkin and Rice, 1992; Ball et al., 1999;
Hodgson and Green, 1999).
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3.7 Appendix: Reaction Rates

In Section 3.4 we made extensive use of the formula (3.43), i.e.,

ki = κ exp
(−)Gi

RT

)
, (3.148)

which states that the rate, ki, at which a molecule leaves a binding site is proportional
to the exponential of the height of the energy barrier )Gi that must be crossed to exit.
This is called the Arrhenius equation, after Svante Arrhenius, who first discovered it
experimentally in the late 1800s (Arrhenius received the 1903 Nobel Prize in Chem-
istry). Arrhenius determined, not the dependence of ki on )Gi, but its dependence on
temperature T. He showed experimentally that the rate of reaction is proportional to
exp(−B/T), for some positive constant B. He then used the Boltzmann distribution to
argue that B = )Gi/R, as discussed below.

As was described in Section 1.2, the equilibrium constant, Keq, for a reaction is
related to the change in free energy, )G0, by

Keq = e
)G0
RT . (3.149)

Note that if κ is independent of )Gi, then (3.148) is consistent with (3.149). Given
the potential energy profile in Fig. 3.16, it is clear that if k1 = κ exp

(
−)G1

RT

)
and k−1 =

κ exp
(−)G−1

RT

)
, then Keq = k−1/k1 = exp

(
)G1−)G−1

RT

)
= exp

(
)G0

RT

)
, where)G0 = )G1−

)G−1.
However, despite this consistency, (3.148) does not follow from (3.149); the equilib-

rium relationship tells us nothing about how each rate constant might depend on T or
)Gi. Although the derivation of the equilibrium condition depends only on fundamen-
tal thermodynamical principles, derivation of a rate expression is much more difficult,
and the exact rate expression depends, in general, on the choice of model. There is still
enormous controversy over exactly how to derive rate equations, and which is most

 G1

 G-1

 G-1 -  G1

reactants

products

Figure 3.16 Schematic diagram of a potential energy profile of a hypothetical reaction.
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suitable in any given situation. Here we give only a brief discussion of this important
problem, enough to give a plausible derivation of the general form of (3.148). The expo-
nential dependence occurs in every rate equation; it is the prefactor, κ, and its possible
functional dependences, that is the source of so much discussion.

3.7.1 The Boltzmann Distribution

To show that B = )G/R (or )G/k, depending on whether )G has units of per mole or
per molecule; we have dropped the subscript i for this discussion), Arrhenius assumed
that the rate of reaction was proportional to the fraction of molecules with energy
greater than some minimum amount. Given this assumption, the Arrhenius equation
follows from the Boltzmann distribution, which we now derive.

We begin with a brief digression. It is intuitively clear that were we to toss a fair
coin 1020 times, the chance of obtaining any distribution of heads and tails significantly
different from 50:50 is insignificant. We might, of course, get 1020

2 − 100 heads and
1020

2 + 100 tails, but the relative deviation from 50:50 is inconsequential.
To express this mathematically, suppose that we toss a fair coin n times to get a

sequence of heads and tails. Of all the possible sequences, the total number that have
h heads and n − h tails (in any order) is n!

h!(n−h)! , and thus, since there are 2n possible
sequences, the probability of getting h heads and n− h tails is given by

Prob[n heads, n− h tails] = n!
2nh!(n− h)! . (3.150)

As n gets very large, the graph of (3.150) becomes sharply peaked, with a maximum of
1 at h = n/2. (This can be shown easily using Stirling’s formula, ln(n!) ≈n ln(n) − n
for n large). In other words, the probability of obtaining any sequence that does not
contain an equal number of heads and tails is vanishingly small in the limit of large n.

An identical argument underlies the Boltzmann distribution. Suppose we have n
particles each of which can be in one of k states, where state i has energy Ui. Let ni
denote the number of particles in state i. We assume that the total energy, Utot, is fixed,
so that

k∑

i=1

ni = n, (3.151)

k∑

i=1

Uini = Utot. (3.152)

The number of ways, W, that these n particles can be partitioned into k states, with
ni particles in the state i, is given by the multinomial factor

W = n!
/k

i=1ni!
. (3.153)
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Now, like the function for the probability of heads and tails for a coin toss, the function
W is sharply peaked when n is large, and the distribution corresponding to the peak
is the one most likely to occur. Furthermore, the likelihood of distributions other than
those near the peak is vanishingly small when n is large. Thus, to find this overwhelm-
ingly most likely distribution we maximize W subject to the constraints (3.151) and
(3.152). That is, we seek to maximize (using Lagrange multipliers)

F = ln W − λ

⎛

⎝
k∑

i=1

ni − n

⎞

⎠− β

⎛

⎝
k∑

i=1

Uini −Utot

⎞

⎠ . (3.154)

(It is equivalent, and much more convenient, to use ln W rather than W.) According to
(3.153),

ln W = ln(n!)−
k∑

i=1

ln(ni!)

≈n ln(n)− n +
k∑

i=1

ni −
k∑

i=1

ni ln(ni)

= n ln(n)−
k∑

i=1

ni ln(ni), (3.155)

where we have used Stirling’s formula, assuming all the ni’s are large. Thus,

∂F
∂ni

= − ln(ni)− 1− λ− βUi, (3.156)

which is zero when

ni = αe−βUi , (3.157)

for positive constants α and β, which are independent of i. This most likely distribution
of ni is the Boltzmann distribution.

How does this relate to reaction rates? Suppose that we have a population of parti-
cles with two energy levels: a ground energy level U0 and a reactive energy level Ur > U0.
If the particles are at statistical equilibrium, i.e., the Boltzmann distribution, then the
proportion of particles in the reactive state is

eβ(U0−Ur) = e−β)U . (3.158)

Since this is also assumed to be the rate at which the reaction takes place, we have that

k ∝ eβ(U0−Ur) = e−β)U . (3.159)

To obtain the Arrhenius rate equation it remains to show that β = 1
RT . To do so

rigorously is beyond the scope of this text, but a simple dimensional argument can at
least demonstrate plausibility. Recall that it is known from experiment that

k ∝ e−B/T , (3.160)
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for some constant B > 0. Thus, from (3.159), β must be proportional to 1/T, and to get
the correct units, β ∝ 1/(RT) or 1/(kT), depending on whether the units of U are per
mole or per molecule.

3.7.2 A Fokker–Planck Equation Approach

The above derivation relies on the assumption that there is a large number of particles,
each of which can be in one of a number of different states. It is less obvious how such
a derivation can be applied to the behavior of a small number of molecules, or a single
molecule. To do this, we need to use the methods developed in Appendix 2.9, and turn
to a Fokker–Planck description of molecular motion.

Suppose that a molecule moves via Brownian motion, but also experiences a force
generated by some potential, U(x), and is subject to friction. If x(t) denotes the position
of the molecule, the Langevin equation for the molecular motion (Section 2.9.5) is

m
d2x
dt2 + ν

dx
dt

+ U′(x) =
√

2νkTW(t), (3.161)

where W is a Wiener process. Here, ν is the friction coefficient, and is analogous to
friction acting on a mass–spring system. If inertial effects can be neglected, which they
can in most physiological situations, this simplifies to

ν
dx
dt

= −U′(x) +
√

2νkTW(t). (3.162)

Hence, the probability distribution that the particle is at position x at time t is given
by p(x, t), the solution of the Fokker–Planck equation

ν
∂p
∂t

= ∂

∂x
(U′(x)p) + kT

∂2p
∂x2 . (3.163)

At steady state, i.e., when ∂p
∂t = 0, (3.163) can be readily solved to give

p(x) = 1
A

exp
(
−U(x)

kT

)
, (3.164)

where A =
∫∞
−∞ exp(−U(x)

kT ) dx is chosen so that
∫∞
−∞ p(x) dx = 1. We have thus regained

a continuous version of the Boltzmann distribution; if U(x) is a quadratic potential well
(U(x) = Ax2), then p(x) is a Gaussian distribution.

If U(x) is a double well potential with its maximum at x = 0 separating the two
wells, then the ratio of the probability of finding the particle on the left to the probability
of finding the particle on the right is

Keq =
∫ 0
−∞ p(x) dx
∫∞

0 p(x) dx
. (3.165)

Since it is difficult to calculate Keq for general functions U(x), it is useful to dis-
cretize the state space into a finite number of states j= 1, 2, . . . , n with energies Uj. For



166 3: Membrane Ion Channels

this, we know that the Boltzmann distribution is

pj= 1
A

exp
(
−Uj

kT

)
, (3.166)

where

A =
n∑

j

exp
(
−Uj

kT

)
. (3.167)

We can make the association between the discrete case and the continuous case precise
if we determine Ujby requiring

exp
(
−Uj

kT

)
=
∫ xj

xj−1

exp
(
−U(x)

kT

)
dx, (3.168)

where xjseparates the j−1st from the jth potential well. Furthermore, if there are only
two energy wells, the ratio of the probability of finding the particle in state one to the
probability of finding the particle in state two is

Keq = p1

p2
= exp

(
)U
kT

)
= exp

(
)G0

RT

)

, (3.169)

where )U = U2 − U1 is the change in energy per molecule, so that )G0 is the change
in energy per mole. Here we have recovered (3.149) for the equilibrium distribution of
a reaction in terms of the difference of standard free energy. However, one should note
that with this identification, Ujis approximately, but not exactly, the value of U at the
bottom of the jth potential well.

3.7.3 Reaction Rates and Kramers’ Result

As noted in Chapter 1, equilibrium relationships give information only about the ratio
of rate constants, not their individual values. To derive an expression for a rate constant,
one must construct a model of how the reaction occurs. The consequent expression for
the rate constant is only as good as the assumptions underlying the model.

One common model of a reaction rate is based on the mean first exit time of the
time-dependent Fokker–Planck equation (3.163). (Mean first exit times are discussed
in Section 2.9.6). This model assumes that a reactant particle can be modeled as a
damped oscillator driven by a stochastic force, and that the reaction occurs once the
particle reaches the peak of the energy profile between the reactant and product states.
Although this model is based on a number of crude assumptions, it gives reasonably
good results for a range of potential energy profiles, particularly those for which the
energy wells are deep.

The mean first exit time is found from the solution of the ordinary differential
equation

−U′(x)
dτ
dx

+ kT
d2τ

dx2 = −ν, (3.170)
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Figure 3.17 Potential energy profiles. A: a cubic profile, U(x ) = )G(2x2(3/2 − x )), plotted
for )G = 1. B: a double well potential, U(x ) = )G0( 19
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9 x2),
plotted for )G0 = 1.

subject to τ (x0) = 0 at any boundary point x0 where escape is allowed, or τ ′(x1) = 0 at
any boundary point x1 where escape is not allowed, but instead there is reflection. The
off-rate, or unbinding rate, is defined as the inverse of the mean first exit time from the
bottom of the potential well.

To be specific, consider a potential U(x) such as shown in Fig. 3.17A. Here U(x) is a
cubic polynomial, with a minimum at x = 0 and a maximum at x = 1, with U(1) = )G.
We expect the particle to spend most of its time near x = 0. However, if the particle
gets to x = 1 it can escape to x =∞, and is assumed to have reacted. Thus, the time to
react (the inverse of the reaction rate) is approximated by the mean first passage time
from x = 0 to x = 1.

More generally, suppose U(x) = )Gu( x
L ), where u′(0) = u′(1) = u(0) = 0 and

u(1) = 1, so that x = 0 is a local minimum and x = L is a local maximum, and the
height of the energy barrier is)G. The mean first passage time is the solution of (3.170)
together with the boundary conditions τ (−∞) = 0 and τ (L) = 0.

To find the solution it is useful to nondimensionalize (3.170). We set y = x
L and

σ = ατ and obtain

−au′(y)
dσ
dy

+ d2σ

dy2 = −1, (3.171)

where a = )G
kT and α = νL2

kT . Using an integrating factor, it is easily shown that

σ (y) =
∫ 1

x
eau(s′)

(∫ s′

−∞
e−au(s) ds

)

ds′, (3.172)

and thus the time to react is τ (0) = νL2

kT σ (0), where

σ (0) =
∫ 1

0
eau(s′)

(∫ s′

−∞
e−au(s) ds

)

ds′. (3.173)
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As we demonstrate below, this formula does not agree with the Arrhenius rate law
for all parameter values. However, when the potential well at x = 0 is deep (i.e., when
a = )G/(kT)≫ 1), the two are in agreement. Here we provide a demonstration of this
agreement.

Notice first that

σ (0) =
∫ 1

0
eau(s′)

(∫ 1

−∞
e−au(s) ds−

∫ 1

s′
e−au(s) ds

)

ds′. (3.174)

Clearly,
∫ 1

0
eau(s′)

(∫ 1

s′
e−au(s) ds

)

ds′ =
∫ 1

0

(∫ 1

s′
ea(u(s′)−u(s)) ds

)

ds′

<

∫ 1

0

(∫ 1

s′
ds

)

ds′ = 1
2

. (3.175)

In fact, with a bit of work one can show that this integral approaches zero as a→∞.
Thus,

σ (0)≈
(∫ 1

0
eau(s′) ds′

)(∫ 1

−∞
e−au(s) ds

)

. (3.176)

We now use the fact that y = 0 and y = 1 are extremal values of u(y) to approximate
these integrals. When a is large, the integrands are well approximated by Gaussians,
which decay to zero rapidly. Thus, near y = 0, u(y)≈ 1

2u′′(0)y2, so that
∫ 1

−∞
e−au(s) ds≈

∫ 1

−∞
e−

1
2 au′′(0)s2

ds

≈
∫ ∞

−∞
e−

1
2 au′′(0)s2

ds

=
√

2π
au′′(0)

. (3.177)

Similarly, near y = 1, u(y)≈1− 1
2 |u′′(1)|(y− 1)2, so that

∫ 1

0
eau(s) ds≈ea

∫ 1

0
e−

1
2 |u′′(1)|(s−1)2

ds

≈ea
∫ 0

−∞
e−

1
2 |u′′(1)|s2

ds

= 1
2

ea

√
2π

a|u′′(1)| . (3.178)

Combining (3.176), (3.177), and (3.178) gives

τ (0)≈ πνL2

)G
√

u′′(0)|u′′(1)|e
)G
kT . (3.179)
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Since the reaction rate is the inverse of the mean first passage time, this gives the
Arrhenius rate expression with

κ = )G
√

u′′(0)|u′′(1)|
πνL2 , (3.180)

which is independent of T, but not )G. This formula was first derived by Kramers
(1940).

A Double Well Potential Profile
Now suppose that U(x) is a double well potential, such as that shown in Fig. 3.17B. In
particular, suppose that U(x) = )G0u( x

L ), where u(x) has two local minima at x = 0 and
x = b > 1, with a local maximum at x = 1. For the example in Fig. 3.17B, )G0 = L = 1
and b = 2. Note also that the potential profile is such that )G−1 = 2)G0, )G1 = )G0.

According to Kramers’ rate theory,

k1 ≈
)G1
√

u′′(0)|u′′(1)|
πνL2 e−

)G1
kT , (3.181)

k−1 ≈
)G−1

√
u′′(b)|u′′(1)|

πνL2(b− 1)2 e−
)G−1

kT . (3.182)

To compare these with the exact solutions, in Fig. 3.18A we plot k−1 and k1 for the
double well potential shown Fig. 3.17B, calculated by numerical integration of (3.173),
and using the approximations (3.181) and (3.182). Note that the reaction rates (both ex-
act and approximate) are not exactly exponential functions of)Gi, and thus the curves
in Fig. 3.18A are not straight lines (on a log scale). For the approximate rate constants
this is because the prefactor is proportional to )Gi. Interestingly, the approximate

  

Figure 3.18 Reaction rates for the potential profile shown in Fig. 3.17B. A: exact (solid lines)
and approximate (dashed lines) solutions for k1 and k−1, plotted as functions of )G0/kT .
The exact solutions are calculated from (3.173), while the approximations are calculated from
(3.179). For simplicity, we set νL2/kT = 1. B: exact and approximate calculations of k−1/k1. As
in A, the exact solution is plotted as a solid line.
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solutions agree exactly with the Arrhenius rate law, when viewed as functions of T,
while the exact solutions do not.

Next, we observe that, using Kramers’ formula, the equilibrium constant is

Keq = k−1

k1
= 1

(b− 1)2
u(1)− u(b)

u(1)− u(0)

√
u′′(b)

u′′(0)
e−

)G0
kT . (3.183)

In Fig. 3.18B we plot k−1
k1

for the double well potential shown in Fig. 3.17B, with the exact
ratio shown as a solid curve and the approximate ratio from (3.183) shown as a dashed
curve. As before, the exact ratio k−1/k1 (solid line, Fig. 3.17B) is not an exact exponential
function of )G0, and thus does not give the correct equilibrium behavior. This results
from the fact that, for small)G0, the mean first exit time of the Fokker–Planck equation
is not a good model of the reaction rate.

However, the ratio of the approximate expressions for the rate constants (3.183) is a
true exponential function of)G0, since the dependence of)G0 in the prefactors cancels
out in the ratio. Hence, the dashed line in Fig. 3.18B is straight. Thus, paradoxically, the
approximate solution gives better agreement to the correct equilibrium behavior than
does the exact solution. However, one must be somewhat cautious with this statement,
since there is a factor multiplying the exponential that is not equal to one (as it should be
for correct equilibrium behavior), but depends on the details of the shape of the energy
function. Thus, if the shape of the potential energy function is modified by, for example,
an external voltage potential, this factor is modified as well, in a voltage-dependent way.

3.8 Exercises
1. Show that the GHK equation (3.2) satisfies both the independence principle and the Ussing

flux ratio, but that the linear I–V curve (3.1) satisfies neither.

2. Using concentrations typical of Na+ , determine whether the long channel limit or the short
channel limit for (3.25) is the most appropriate approximation for Na+ channels. (Estimate
λ where λ2 = L2qFNac̃/(ϵRT), for Na+ ions.)

3. In Section 3.3.1 the PNP equations were used to derive I–V curves when two ions with
opposite valence are allowed to move through a channel. Extend this analysis by assuming
that two types of ions with positive valence and one type of ion with negative valence are
allowed to move through the channel. Show that in the high concentration limit, although
the negative ion obeys a linear I–V curve, the two positive ions do not. Details can be found
in Chen, Barcilon, and Eisenberg (1992), equations (43)–(45).

4. (a) Show that (3.66) satisfies the independence principle and the Ussing flux ratio.

(b) Show that (3.66) can be made approximately linear by choosing g such that

ng = ln
(

cn
c0

)
. (3.184)

Although a linear I–V curve does not satisfy the independence principle, why does this
result not contradict part (a)?
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5. Show that (3.86) does not satisfy the independence principle, but does obey the Ussing flux
ratio.

6. Derive (3.86) by solving the steady-state equations (3.84) and (3.85). First show that

J = x
k0c0 − k−ncnπn−1

φn−1
. (3.185)

Then show that

k0c0x = kn−1cn−1φn−1 − xk−ncnφn−2, (3.186)

kjcj= kn−1cn−1
πj

(φn−1 − φj−1)− k−ncnx
πj

(φn−2 − φj−1), (3.187)

for j= 1, . . . , n − 1. Substitute these expressions into the conservation equation and solve
for x.

7. Draw the state diagrams showing the channel states and the allowed transitions for a multi-
ion model with two binding sites when the membrane is bathed with a solution containing:

(a) Only ion S on the left and only ion S′ on the right.

(b) Ion S on both sides and ion S′ only on the right.

(c) Ions S and S′ on both the left and right.

In each case write the corresponding system of linear equations that determine the steady-
state ionic concentrations at the channel binding sites.

8. Using an arbitrary symmetric energy profile with two binding sites, show numerically that
the Ussing flux ratio is not obeyed by a multi-ion model with two binding sites. (Note that
since unidirectional fluxes must be calculated, it is necessary to treat the ions on each side
of the membrane differently. Thus, an eight-state channel diagram must be used.) Hodgkin
and Keynes predicted that the flux ratio is the Ussing ratio raised to the (n + 1)st power (cf.
(3.16)). How does n depend on the ionic concentrations on either side of the membrane,
and on the energy profile?

9. Choose an arbitrary symmetric energy profile with two binding sites, and compare the I–V
curves of the one-ion and multi-ion models. Assume that the same ionic species is present
on both sides of the membrane, so that only a four-state multi-ion model is needed.

10. Suppose the Na+ Nernst potential of a cell is 56 mV, its resting potential is −70 mV, and
the extracellular Ca2+ concentration is 1 mM. At what intracellular Ca2+ concentration is
the flux of a three-for-one Na+ –Ca2+ exchanger zero? (Use that RT/F = 25.8 mV at 27◦ C.)

11. Modify the pump–leak model of Chapter 2 to include a Ca2+ current and the 3-for-1 Na+ –
Ca2+ exchanger. What effect does this modification have on the relationship between pump
rate and membrane potential?

12. Because there is a net current, the Na+ –K+ pump current must be voltage-dependent.
Determine this dependence by including voltage dependence in the rates of conformational
change in expression (2.100). How does voltage dependence affect the pump–leak model of
Chapter 2?

13. Intestinal epithelial cells have a glucose–Na+ symport that transports one Na+ ion and
one glucose molecule from the intestine into the cell. Model this transport process. Is the
transport of glucose aided or hindered by the cell’s negative membrane potential?



172 3: Membrane Ion Channels

14. Suppose that a channel consists of k identical, independent subunits, each of which can be
open or closed, and that a current can pass through the channel only if all units are open.

(a) Let Sjdenote the state in which jsubunits are open. Show that the conversions between
states are governed by the reaction scheme

S0

kα
−→←−
β

S1 . . . Sk−1

α

−→←−
kβ

Sk. (3.188)

(b) Derive the differential equation for xj, the proportion of channels in state j.

(c) By direct substitution, show that xj=
(k

j
)
nj(1−n)k−j, where

(k
j
)

= k!
j!(k−j)! is the binomial

coefficient, is an invariant manifold for the system of differential equations, provided
that

dn
dt

= α(1− n)− βn. (3.189)

15. Consider the model of the Na+ channel shown in Fig. 3.11. Show that if α and β are large
compared to γ and δ, then x21 is given (approximately) by

x21 =
(

α

α + β

)2
h, (3.190)

dh
dt

= γ (1− h)− δh, (3.191)

while conversely, if γ and δ are large compared to α and β, then (approximately)

x21 = m2
(

γ

γ + δ

)
, (3.192)

dm
dt

= α(1−m)− βm. (3.193)

16. Show that (3.122) has two negative real roots. Show that when β = 0 and a ≤ −λ1
λ1−λ2

, then
(3.123)–(3.125) have two possible solutions, one with α + δ = −λ1, γ = −λ2, the other with
α + δ = −λ2, γ = −λ1. In the first solution inactivation is faster than activation, while the
reverse is true for the second solution.

17. Write a computer program to simulate the behavior of the stochastic three-state Na+ chan-
nel shown in Fig. 3.12, assuming it starts in the closed state. Use α = 1/ms, β = 0.4/ms,
γ = 1.6/ms and δ = 1/ms. Take the ensemble average of many runs to reproduce its macro-
scopic behavior. Using the data from simulations, reconstruct the open time distribution,
the latency distribution, and the distribution of N, the number of times the channel opens.
From these distributions estimate the rate constants of the simulation and compare with
the known values.

18. Consider the Markov model of a Na+ channel (Patlak, 1991) shown in Fig. 3.19. Write a
computer program to simulate the behavior of this stochastic channel assuming it starts in
state C1. Take the ensemble average of many runs to reproduce its macroscopic behavior.
Using the data generated by these simulations, determine the open time distribution, the
latency distribution, and the distribution of N, the number of times the channel opens.
Compare these with the analytically calculated distributions.

19. Construct a set of differential equations that models the interaction of a two-state channel
with a use-dependent blocker.
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Figure 3.19 The Na+ channel model of Exercise 18. Parameter values are k2 = 0.24 ms−1,
k3 = 0.4 ms−1, kO = 1.5 ms−1, α = 1 ms−1, and β = 0.4 ms−1.

20. Write a computer program to simulate the behavior of the stochastic three-state agonist-
binding channel of (3.127) Use α = 1/ms, β = 0.4/ms, k−1 = 0.5/ms, and ak1 = 0.2/ms. Using
the data from simulations, plot the open time distribution and the closed time distribution
and estimate the parameters of the model. Is the closed time distribution obviously a double
exponential distribution? Repeat this experiment for several different values of ak1.

21. Show that for an exponential distribution φ(t) = α exp(−αt) the plot of the correspond-
ing distribution function on the ln(t) scale has a maximum at the expected value of the
distribution, t = −1

a .

22. Find the distribution for the length of a burst in the model of (3.127).
Hint: The apparent length of the burst is the time taken to get from AR to T, minus the
length of one sojourn in AT. Use the Laplace transform and the convolution theorem.

23. Find the mean first exit time from the piecewise-linear potential

U(x) =
{
−)Gx

L , −L < x < 0,
)Gx

L , 0 < x < L,
(3.194)

with a reflecting boundary at x = −L and absorbing boundary at x = L.

24. Find the most likely event for the binomial distribution

P(h) = n!
h!(n− h)!p

h(1− p)(n−h) (3.195)

when n is large. Show that the probability of this event approaches 1 in the limit n→∞.


