Algunas cosas que quedaron un poco sueltas en las últimas clases

Distribución conjunta de dos (o más) variables aleatorias

Dadas dos variables aleatorias, X e Y, su distribución conjunta es la distribución de probabilidad de que X tome un valor, x, e Y tome un valor, y, simultáneamente (o sea, es la probabilidad de la intersección X=x e Y=y).

Podemos escribirlo en términos de la probabilidad condicional.

$$P(X = x y Y = y) = P(Y = y | X = x) \cdot P(X = x)$$

= $P(X = x | Y = y) \cdot P(Y = y)$.

Yes

$$\sum_{x} \sum_{y} P(X = x y Y = y) = 1.$$

Caso continuo

$$f_{X,Y}(x,y) = f_{Y|X}(y|x) f_X(x) = f_{X|Y}(x|y) f_Y(y)$$

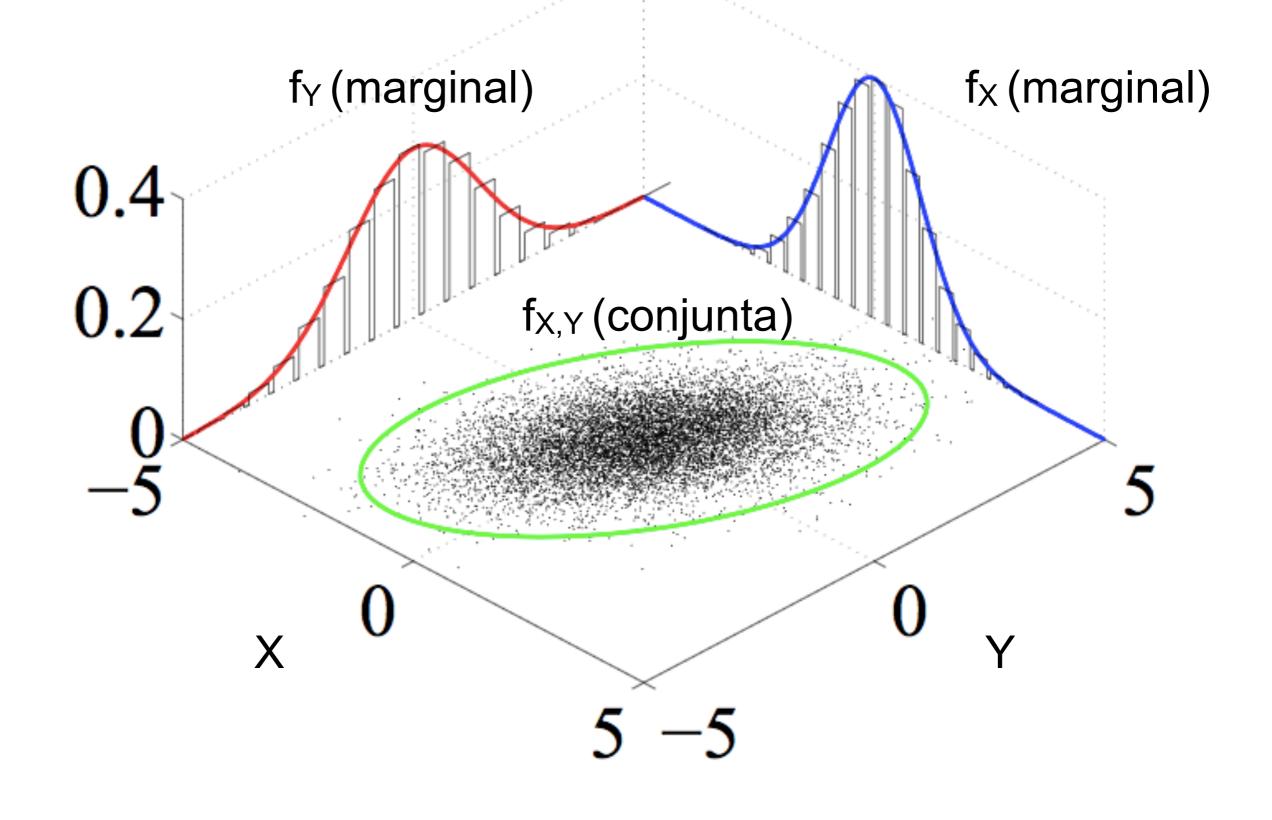
Y es

con $f_{X,Y}(x,y)$ dx dy la probabilidad de que X esté entre x y x+dx e Y esté entre y y y+dy $\int_x \int_y f_{X,Y}(x,y) \ dy \ dx = 1.$

$$\int_x \int_y f_{X,Y}(x,y) \; dy \; dx = 1$$

Distribuciones marginales

$$f_X(x) = \int f_{X,Y}(x,y) \; dy$$
 , $f_Y(y) = \int f_{X,Y}(x,y) \; dx$



By IkamusumeFan - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30432580

Covarianza y correlación.

Recordemos: varianza de una variable, X, con distribución f:

$$\mathrm{Var}(X) = \mathrm{E}ig[(X - \mathrm{E}[X])^2ig]$$
 $\mathrm{E}[X] = \int_{\mathbb{R}} x f(x) \, dx,$

Llamando μ =E[X], entonces es:

$$\mathrm{Var}(X) = \sigma^2 = \int_{\mathbb{R}} (x - \mu)^2 f(x) \, dx$$

Supongamos dos variables aleatorias continuas, X e Y, con distribución conjunta, $f_{X,Y}$ (x,y). Var y E de cada una de ellas se calcula usando la correspondiente distribución marginal (equivalente a "sumar pesadamente" sobre todos los valores de la distribución conjunta).

$$E[X] = \langle X \rangle = \int dx \, x \int dy \, f_{X,Y}(x,y) = \int dx \, x \, f_X(x)$$
$$Var(X) = \int dx \, \int dy \, (x - \langle x \rangle)^2 \, f_{X,Y}(x,y) = \int dx \, (x - \langle x \rangle)^2 \, f_X(x)$$

Análogamente, se define la covarianza:

$$cov(X,Y) = \int dx \int dy (x - \langle x \rangle) (y - \langle y \rangle) f_{X,Y}(x,y)$$

Covarianza y correlación.

Covarianza:

$$cov(X,Y) = \int dx \int dy (x - \langle x \rangle) (y - \langle y \rangle) f_{X,Y}(x,y)$$
$$= E[(X - E[X]) (Y - E[Y])]$$

Correlación:

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Con:
$$\sigma_X = \sqrt{\operatorname{Var}(X)}, \quad \sigma_Y = \sqrt{\operatorname{Var}(Y)}$$

X e Y independientes $\Rightarrow \rho_{X,Y}=0$, pero la implicación al revés no siempre es cierta.

Algo más (que usamos un poco con el ejemplo de la fluorescencia y que mencioné con las simulaciones)

¿Qué pasa con la funciones de variables aleatorias?

Son variables aleatorias

¿Qué distribución tienen?

Pasemos al pizarrón

Entonces, si tenemos una variable aleatoria continua, X, con densidad de probabilidad, f_X y una función Y = g(X), resulta

$$f_Y(y=g(x)) dy = f_X(x) dx$$
 con $dy = g'(x) dx = dg/dx(x) dx$.

Es decir: $f_Y(y=g(x)) g'(x) = f_X(x)$

O equivalentemente:

$$f_Y(y) = f_X(x=g^{-1}(y)) / g'(x=g^{-1}(y))$$

Derivadas de funciones de una o más variables

Dada una función, f(x), su derivada en x=a es:

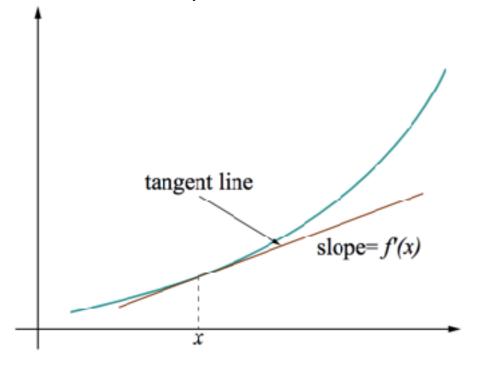
$$f'(a) = \lim_{h o 0} rac{f(a+h)-f(a)}{h}.$$

O sea, es el cociente de la variación en el límite en que la variación tiende a 0. $\frac{\Delta f(a)}{\Delta a} = \frac{f(a+h) - f(a)}{(a+h) - (a)} = \frac{f(a+h) - f(a)}{h}$

$$\frac{\Delta f(a)}{\Delta a} = \frac{f(a+h) - f(a)}{(a+h) - (a)} = \frac{f(a+h) - f(a)}{h}$$

Por eso, la derivada de una función de una variable es la pendiente de la tangente a la curva en el punto donde se calcula la derivada

By derivative work: Pbroks13 (talk)Tangent-calculus.png: Rhythm - Tangent-calculus.png, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4369975



Dada una función de dos o más variables, f(x,y,...), la derivada parcial respecto de una de ellas, x, se calcula dejando fijas a todas las variables, salvo x, como si fueran constantes, y haciendo la derivada como si se tratara de una función solo de x.

Notaciones posibles para la derivada parcial respecto de x:

$$f_x$$
, $\partial_x f$, $D_x f$, $D_1 f$, $\frac{\partial}{\partial x} f$, or $\frac{\partial f}{\partial x}$.

Desarrollo en serie de Taylor

Dada f(x) una función continua y derivable en x=a, se la puede escribir como:

$$f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

"cerca" de x=a (donde las 'corresponden a derivadas).

O sea, para
$$x = a$$
 es
 $f(x) = f(a) + f'(a) (x-a) + f''(a) (x-a)^2/2$

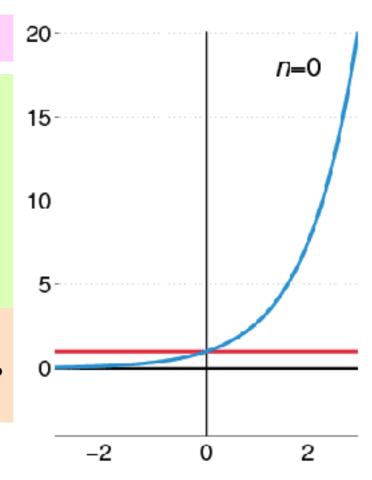
Para funciones de varias variables se hace algo similar usando derivadas parciales.

Por ejemplo, para f(x,y) es:

Ejemplo:

En azul está graficada la función f(x) = e^x y en rojo se van mostrando estos desarrollos con un solo término (n=0), 2 (n=1), etc.

By Oleg Alexandrov - self-made with MATLAB., Public Domain, https://commons.wikimedia.org/w/index.php?



$$f(x,y) =$$

$$f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + \frac{1}{2!}\Big((x-a)^2f_{xx}(a,b) + 2(x-a)(y-b)f_{xy}(a,b) + (y-b)^2f_{yy}(a,b)\Big)$$

Ahora sí pasemos al pizarrón para terminar lo del otro día