
Sistemas de reacción-difusión

Dinámica espacio-temporal, patrones.

https://www.youtube.com/watch?v=0cgaUm5LPcU

https://www.youtube.com/watch?v=JOJ3ryFtMBw

https://www.youtube.com/watch?v=0cgaUm5LPcU
https://www.youtube.com/watch?v=JOJ3ryFtMBw


Describen la variación en la concentración de especies 
que difunden y reaccionan con otras. 



Dada la reacción 

Las ecuaciones

describen la variación de las concentraciones suponiendo 
que no varían en el espacio. 



La ecuación de diffusion describe la variación de la 
concentración en el espacio y en el tiempo debido al 
transporte (difusivo) de las partículas cuya concentración 
describe la ecuación:



Las ecuaciones de reacción-difusión describen la variación 
local (punto a punto en el espacio) de las concentraciones 
debido al transporte difusivo de las partículas y las 
reacciones entre ellas.  

[A], [B] y [C] son funciones de la posición y del tiempo. 
[A][B] significa [A](x,y,z,t) [B](x,y,z,t) (encuentro en el 
mismo punto espacial descripción. 



Pueden describer 
patrones (pattern)

Que hay en todas partes!

Estacionarios o 
variables en el 
tiempo



How does structure arise from an unpatterned background?
How do cells differentiate?



One of the first persons that tried to 
address this question, from a mathematical 
point of view, was:      Alan Turing
who came up with a simple model that 
could explain the apperance of structure in 
a spatially homogeneous system.

He proposed that a reaction-diffusion 
system in which species diffused at 
unequal rates could develop stationary 
patterns.

Turing, A.M. (1952). 
The chemical basis of morphogenesis. 
Phil. Trans. Roy. Soc. London B 237: 37 



Alan W. Turing
• "universal machine" (1935)

(finite automata) 
• "B-type unorganized 

machine" (1948)
(neural network)

• "Chemical morphogenesis" 
(1952)
(reaction-diffusion instability)



Breaking the Codebook of Nature
(fde una vieja página “The Alan Turing Home Page”, 
mantenida por Andrew Hodges. Ahora: 
https://www.turing.org.uk/).
Alan Turing's programme for mathematical biology was 
so far ahead that only in the 1980s did computers really 
become fast enough to do justice to what he had in mind. 
Even now, people are investigating models not much 
more complicated than those he set out. 

Compiled by J. E. Pearson, 
LANL



Reaction-diffusion model
Turing, A.M. (1952). “The chemical basis of morphogenesis“.

Phil. Trans. Roy. Soc. London B 237: 37

¶a
¶t

= F(a,b) +DaÑ
2a

¶b
¶t

=G(a, b)+ DbÑ
2b

reaction diffusion

a,b: concentrations of chemicals that can react and diffuse in a 
solution 



About the system:
•One of the chemicals, a, is an activator, and the other, b, an inhibitor
•The inhibitor diffuses faster than the activator, Da<Db or equivalently, 
d= Db / Da > 1 

Conditions for Turing patterns

About the solutions:
•There is a stationary and uniform solution of these equations: (a*, b*)
•(a*, b*) is stable for d < dc and becomes unstable for d > dc  (dc  >1) 

This bifurcation corresponds to the appearance of a Turing 
pattern, when the instability is such that the fastest growing 
mode has finite wavelength and zero frequency. This can 
occur for systems that satisfy the conditions stated above.

Under all these conditions, a stable pattern exists for dc  >1 .
The wavelength of the pattern is intrinsic to the system 
(determined by the balance of diffusion and reactions).



reaction diffusion

The reaction-diffusion model

Turing, A.M. (1952). The chemical basis of morphogenesis. 
Phil. Trans. Roy. Soc. London B 237: 37 

¶a
¶t

= F(a,b) +DaÑ
2a

¶b
¶t

=G(a, b)+ DbÑ
2b

reaction

A

B

diffusion

-+



Autovalor como función del número de onda, k~1/longitud

Los modos inestables tienen una longitud de onda característica, dada 
por los parámetros del problema, no por el tamaño del sistema



Chemical morphogenesis
• Two or more chemical 

species
• Different rates of 

diffusion
• Asymmetric chemical 

interactions
• Dissipative system 

kept out of equilibrium

energy
matter

energy
matter

Long range inhibition
Short range activation

Simulation from H. Meinhardt’s web page



J. D. Murray, Mathematical Biology, Springer, (1989)

The paper by Turing stimulated a large body of work, in 
particular, a variety of modeling efforts.

Effect of body surface scale on spatial pattern. 
Left: Domain size increases from (a) to (g). 
Right: (d) adult cheetah, (e) adult jaguar, (f) 
prenatal tail, (g) adult leopard

Turing Patterns in Animal Coats



Kondo S. and Asai R., "A viable reaction-
diffusion wave on the skin of Pomacanthus, a 
marine angelfish"
Nature 376, 765-768 (1995).

Modeling Pigmentation Patterns
Heriot-Watt University, Edinburgh



Other examples of Turing Patterns in biological 
models

Algae (Murray, Mathematical Biology, (1989)) 
Dictyostelium (Byrne et al, PNAS, 84, (1987))

Glycolysis  (Hasslacher et al, Chaos, (1993))

The paper by Hasslacher et al:
Are Turing patterns robust against fluctuations?  Can Turing patterns 
arise inside a small (and highly fluctuating) region, such as, the cytosol 
of a cell?  
Tool of study: lattice gas. Model: 2 variable Selkov model

Simulation 
using the Gray-
Scott model by
Gerald Jay
Sussman



Turing patterns in chemical systems
First observed by De Kepper’s group in 1990!!, why did it take so long?

Pictures from P. De Kepper’s web page



Why are the experimentally observed patterns 
Turing patterns?

System Chemicals DV/DU dc
(according 
to model)

CIMA 
(exp)

Iodine-
Chloride

~ 1 ~10

Fish 
(model)

Unknown -- ~14

Alga 
(model)

cAMP-
Ca++

< 1 ~6

Glycolysis 
(model)

ATP-ADP ~ 1 ~16

Can the biological models described before 
really support Turing patterns?

charla_recife.ppt


Explanation for the CIMA reaction
(Lengyel and Epstein, Science, 251, (1991))

The selective interaction of the activator (iodine) with 
immobile species, such as the starch used for 
visualization purposes and the gel, reduces its diffusion 
coefficient. In this way, the effective diffusion coefficient 
of iodine becomes smaller than that of the other relevant 
species, allowing the formation of Turing patterns.



Figure from Allbritton et 
al, Science’92.

The idea that diffusion is 
rescaled by reactions with 
unknown species is very 
common in biology.

For example, calcium is 
highly “buffered” inside 
cells, and this is how the 
relatively small diffusion 
coefficient of calcium in 
cells is explained.



Is there an example of a biochemical pathway that can 
give rise to the appearance of Turing patterns?
Candidate: the glycolytic pathway.

Previous studies of Turing patterns in glycolysis by Prigogine et 
al (1969) and Hasslacher et al (1993) used 2-variable models 
with ad hoc diffusion coefficients (to guarantee dc>1). 

Results: we show that a 5-variable model of (part of) the 
glycolytic pathway can support Turing patterns for realistic 
diffusion coefficients due to the action of the enzymes that 
catalyze a step of the reaction. The patterns can fit in a cell.

Glycolytic oscillations have been observed in different cell types and it has been 
established that it is the individual cell concentrations that oscillate. This is an 
indication that there is a positive feedback along the pathway. Some type of 
“autocatalytic” behavior is necessary for Turing patterns to exist. 

Questions that we try to answer with our work:
•Can the glycolytic pathway give rise to Turing patterns 
for realistic diffusion coefficients and reaction rates? 
•Can the patterns fit inside a typical cell?



The enzymatic breakdown of the 
macromolecules that come with 
food (catabolism) occurs in three 
stages.

The most important process of the 
second stage is GLYCOLYSIS, 
which can generate ATP in the 
absence of oxygen. 

Remember glycolysis & the 
relevant steps for glycolytic 
oscillations



Glycolysis :
the breakdown of glucose
occurs in the cytoplasm
10 steps

1) Start with 6 carbon sugar
2) Two phosphorylations (ATP->ADP)
3) Cleave into 2 3-carbon molecules 

One reduction of NADH, 2 ATP
formed per 3-C unit

Figure 4-3

Net per 6 carbons:
2 ATP
1 NADH



Hexokinase - phosphorylates glucose
trapping it in the cell

Phosphofructokinase (PFK)–
sets molecule up for cleavage

Crucial step for oscillations:
The one catalyzed by PFK.



From S.DANØ et al, Nature 402, 320 - 322 (1999)

The reactions involved in the glycolytic pathway can give rise to 
oscillations in the concentrations of some of the reactants (observed in the 
50’s for the first time):

This means that there 
is a positive feedback 
at some step of the 
pathway. 

Oscillations appear when either glucose 6-phosphate or fructose 6-phosphate 
are injected, which are reactants that participate upstream the step that is 
catalyzed by PFK.  PFK is a key factor, because oscillations disappear when it’s 
inhibited. 



E. Selkov developed a model (published in 
1968) to explain these oscillations. 
It describes only one step of this chain (the 
one catalyzed by PFK). 

The activation of PFK by ADP provides the 
positive feedback that can explain the 
oscillations.

E=PFK; S1=ATP (injected at rate n1);
S2=ADP (removed at rate n2 [ADP])



Taking into account that the total enzyme concentration (e0) remains constant and 
assuming that the enzymes are practically immobile, the evolution equations that
describe the reaction-diffusion Selkov’s model can be written (using dimensionless
quantities) as:  

where:
s1 ~ [ATP]
s2 ~ [ADP]
u2 ~ [S1ES2

g]
u1 ~ [ES2

g]
u3=1-(u2+u1)
e~ e0
g=2; n ~ n1 ;
h ~ n2

In most experiments that are done to determine the activity of 
enzymes, e is very small. In fact, Selkov, who only looked at 
the spatially uniform version of this system, used an adiabatic 
approximation and reduced it to two equations:

For this two variable system he showed that there was a 
Hopf bifurcation and that the frequency of the
oscillations was similar to the experimental one. 

Here we see that increasing [ADP] the growth of [ATP] 
decreases and viceversa: ADP:inhibitor; ATP: activator



Prigogine et al added diffusion terms to these two equations with 
diffusion coefficient values as needed to show that they could support 
Turing patterns (DADP>DATP). 
The work of Hasslacher et al followed a similar approach but for a 
closely related model (developed by Richter et al). 

Simulation 
using the 
Gray-Scott 
model by
Gerald Jay
Sussman

The paper by Hasslacher et al tried to answer the following:
Are Turing patterns robust against fluctuations?  
Can Turing patterns arise inside a small (and highly fluctuating) 
region, such as, the cytosol of a cell?  
Tool of study: lattice gas.  Positive answer for dc=DADP/DATP ~16.



However: how do we know that ADP is differentially slowed down by the 
enzymes with respect to ATP? On the other hand, establishing the existence of a 
fast reaction that can rescale the diffusion coefficient of a chemical is not 
enough to guarantee the existence of Turing patterns, since the slow reactions 
are rescaled too.

How could ATP and ADP diffuse at such different rates so that dc~16 if 
the two molecules are so similar?
Hasslacher et al argued that a mechanism similar to the one at work in the
CIMA reaction could also exist in glycolysis. Namely, the reactions of ATP and 
ADP with some of the enzymes involved in the glycolytic pathway could
rescale the diffusion coefficients of ATP and ADP so as to provide the “correct” 
ratio of diffusion coefficients.

Our first strategy: take the 5-variable reaction-diffusion Selkov model, assume 
that the reactions with the immobile enzymes occur on a fast timescale and 
perform an adiabatic approximation to get a 2-variable reaction-diffusion 
model. Analyze whether this reduced system could support Turing patterns. 
(JChemPhys,2000)
We did find that ADP (the activator) had a smaller diffusion coefficient than 
ATP (the inhibitor), but couldn’t find Turing patterns for a long time! 



We decided to work directly with the 5-variable Selkov model (with no 
reduction whatsoever) (PLoS,2007)

“New” strategy

But we did not know which could be realistic parameter values in this model! 
(it has many more than the reduced 2-variable model analyzed by Selkov and 
others!)
So, first we studied the spatially homogenous system and fixed as many 
parameter values as we could so as to agree with the experimental evidence on 
glycolytic oscillations.
Experiments on yeast extracts: n1* = 5.8 uM-1s-1, n2*=0.04s-1 , 3uM<e0<10uM, 
[ATP]~600uM, [ADP]~150uM, period of oscillations~ 3-5 min

Our values for the 5-variable Selkov model imply: n1* = 5.8 uM-1s-1, n2*=0.04s-1 , 
e0~7.9uM, [ATP]~150uM, [ADP]~145uM, period of oscillations~ 2.7 min

Then, we went back to the reaction-diffusion system with equal diffusion
coefficients for ATP and ADP. We kept fixed the purely kinetic parameters at 
the previously determined values (our parameters: a, K1 and K3) and varied the 
fluxes and enzyme concentration (our parameters: n, h, and e) looking for a 
“Turing” bifurcation. We found it!



Result
s

(a) Glycolytic oscillations 
in [ATP] and [ADP] for 
h=0.15, n=0.00345, e=10-

6, a=15, K1=1500, K3=1. 
(b) Linear growth rate of 
the unstable modes for 
h=1.215, n=0.03, 
e=0.0003, a=15, 
K1=1500, K3=1, and 
d1=d2=0.01. Inset: 
Evolution of [S1] (c) 
Turing space as a function 
of the (dimensionless) 
input and output rates of 
ATP (n) and ADP (h), 
parameters as in (b). (d) 
Corresponding wave-
length of the most 
unstable mode. 

The patterns could fit in a cell!!! The characteristic size gets smaller as the rate 
of product removal, n2, becomes larger. 

Bounded band of unstable modes for k ¹ 0 & stable fixed point 
for k = 0. Pattens may exist for larger values of n1 as n2 also 
gets larger. No pattern is possible at low enzyme concentration 
(e0³800µM for the Turing instability to occur)



Turing pattern that appears after 10 minutes in a 2D numerical simulation 
done using a square domain of size 8Lx8L con L =10.6µm. The critical 
wavelength is: lc= 11µm

[ATP];   black = 2.47mM ;   white= 1.1mM

The pattern size decreases as the glycolytic flux is decreased (n1 or n2). 
More spots fit into the domain (the “cell”) as the “cell” gets larger.  

Pattern properties:

Beyond the linear stability analysis



Although the model is highly idealized, its ability to reproduce a variety 
of observations allows us to think that its basic dynamical features 
should be common to those of the real system. 

Summary
The 5-variable Selkov model is able to support Turing patterns for 
realistic parameter values and for equal diffusion coefficients for ATP 
and ADP. 

The interactions involved in the PFK catalyzed step of the glycolytic 
pathway change the “effective” diffusion coefficients of ATP and ADP in 
the necessary direction for Turing pattern formation.
The patterns can fit inside a typical cell size and it takes a time of the 
order of minutes for them to form. 

At fixed cell size, more spots fit in the cell as the glycolytic flux is 
decreased (n1 or n2). 

More spots fit in the cell as the cell gets larger.  



Is there anything that could be related to this Turing 
pattern in a cell? (very speculative!)

Cells contain a network of filaments that form its 
cytoskeleton. Among them, MICROTUBULES, which are 
long and stiff polymers.

In vivo, microtubules nucleate at the 
centrosome or MTOC. 

Figure from the web page of 
Mitchison’s lab; MT in green, 
DNA in blue



Microtubules (green) and DNA (blue) at various stages during the cell cycle.
Figures from the web page of Mitchison’s lab

During the cell division cycle, 
centrosomes replicate and 
microtubules grow from them. 
After cell division is completed, 
the replicated centrosomes 
become the “organizing centers” 
of the two daughter cells.



The region occupied by MTOC’s seems to have a fixed 
lengthscale: 
When cells grow in size during the cell division cycle, two 
centrosomes are formed out of the original one. 
This is similar to the way spots on animal skins divide as 
animals grow in size, or the way Turing patterns behave 
as the spatial domain grows in size (which occurs 
because they have an intrinsic lengthscale).

Could centrosome location be related to an underlying 
Turing pattern of some relevant substance (e.g., ATP)?
Even if we cannot answer this question, at least we have 
a mechanism that could explain the appearance of an 
inhomogeneous pattern in the ATP distribution inside a 
cell.

Los patterns de Turing son ejemplos de 
patterns estacionarios en sistemas de RD



Si bien intervienen procesos de transporte (en muchos casos 
difusivos) y reacciones químicas en la formación de gradientes de 
sustancias dentro de la célula (en particular, en el citosol), en 
general no son explicados en términos de patterns de Turing. 

En muchos casos se explican en términos de propagación de 
frentes que estabilizan una distribución inhomogénea de alguna
sustancia. Hay además otros procesos (hidrodinámicos, 
mecánicos o eléctricos) que, en combinación con las reacciones
químicas, pueden inducir una ruptura de simetría

Sí se explican como patterns de Turing los dibujos en la 
piel de peces y otros animals.

La propagación de frentes es típica de los sistemas de RD 
con dinámica subyacente biestable (y se extiende a la 
excitable). 



Recordemos modelo de FitzHugh-Nagumo (típico de excitabilidad)

Que si
w=const, era 
biestable

Pasemos al pizarrón
para analizar
propagación de 
frentes


