Sistemas de reaccion-difusion

Dinamica espacio-temporal, patrones.

https://www.youtube.com/watch?v=0cegaUmSLPcU

https://www.youtube.com/watch?v=JOJ3ryFtMBw



https://www.youtube.com/watch?v=0cgaUm5LPcU
https://www.youtube.com/watch?v=JOJ3ryFtMBw

Describen la variacion en la concentracion de especies
que difunden y reaccionan con otras.
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Figure 1 (b)




Dada la reaccion
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Las ecuaciones

describen la variacion de las concentraciones suponiendo
gque no varian en el espacio.




La ecuacion de diffusion describe la variacion de la

concentracion en el espacio y en el tiempo debido al
transporte (difusivo) de las particulas cuya concentracion

describe la ecuacion:




Las ecuaciones de reaccion-difusion describen la variacion
local (punto a punto en el espacio) de las concentraciones
debido al transporte difusivo de las particulas y las
reacciones entre ellas.

[A], [B] Yy [C] son funciones de la posicion y del tiempo.
[A][B] significa [A](X,y,z,t) [B](X,Y,z,t) (encuentro en el
mismo punto espacial descripcion.



Pueden describer
patrones (pattern)
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How does structure arise from an unpatterned background?
How do cells differentiate?




One of the first persons that tried to
address this question, from a mathematical
point of view, was:  Alan Turing
who came up with a simple model that
could explain the apperance of structure in
a spatially homogeneous system.

He proposed that a reaction-diffusion
system in which species diffused at
unequal rates could develop stationary
patterns.

Turing, A.M. (1952).
The chemical basis of morphogenesis.
Phil. Trans. Roy. Soc. London B 237: 37
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Alan W. Turing

e '"universal machine" (1935)
(finite automata)

* "B-type unorganized
machine" (1948)
(neural network)

e "Chemical morphogenesis"
(1952)
(reaction-diffusion instability)
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(fde una vieja pagina “The Alan Turing Home Page”,
mantenida por Andrew Hodges. Ahora:
https://www.turing.org.uk/).

Alan Turing's programme for mathematical biology was
so far ahead that only in the 1980s did computers really

become fast enough to do justice to what he had in mind.
Even now, people are investigating models not much
more complicated than those he set out.

Citation Histogram for Turing’s Article:

Compiled by J. E. Pearson,
LANL
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Reaction-diffusion model

Turing, A.M. (1952). “"The chemical basis of morphogenesis".
Phil. Trans. Roy. Soc. London B 237: 37

reaction diffusion




Conditions for Turing patterns

About the system:
*One of the chemicals, a, is an activator, and the other, b, an inhibitor

*The inhibitor diffuses faster than the activator, D,<D, or equivalently,
d: Db / ]:)a > ]

About the solutions:
*There is a stationary and uniform solution of these equations: (a*, b*)
*(a*, b*) 1s stable for d < d_and becomes unstable ford >d_. (d, >1)

This bifurcation corresponds to the appearance of a Turing
pattern, when the instability 1s such that the fastest growing
mode has finite wavelength and zero frequency. This can
occur for systems that satisfy the conditions stated above.

Under all these conditions, a stable pattern exists for d. >1 .

The wavelength of the pattern is intrinsic to the system
(determined by the balance of diffusion and reactions).




The reaction-diffusion model

: DaVZc
- DbVZb

reaction diffusion reactlon ‘ ‘dlffusmn

Turing, A.M. (1952). The chemical basis of morphogenesis.
Phil. Trans. Roy. Soc. London B 237: 37/




Autovalor como funcion del numero de onda, k~1/longitud

Los modos inestables tienen una longitud de onda caracteristica, dada
por los parametros del problema, no por el tamano del sistema



Chemical morphogenesis

Long range inhibition
Short range activation

e Two or more chemical
species

e Different rates of
diffusion

e Asymmetric chemical
Interactions

e Dissipative system

kept out of equilibrium
energy
matter
AN >T

W
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energy
matter

Simulation from H. Meinhardt’s web page




The paper by Turing stimulated a large body of work, in
partig:ular, a variety of modeling efforts.
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Effect of body surface scale on spatial pattern.
Left: Domain size increases from (a) to (g).
Right: (d) adult cheetah, (e) adult jaguar, (f)
prenatal tail, (g) adult leopard

J. D. Murray, Mathematical Biology, Springer, (1989)



Namre

INTERNATIONAL WEEKLY JOURNAL OF SCIENCE
Volume 376 No. 6543 31 August 1995 £4.00 FFr44 DM17.5 Lire 13000

Stationary Wave

Time = 1 months

Kondo S. and Asai R., "A viable reaction-
diffusion wave on the skin of Pomacanthus, a

marine angelfish"
Nature 376, 765-768 (1995).



Other examples of Turing Patterns 1in biological

models
Algae (Murray, Mathematical Biology, (1989))
Dictyostelium (Byrne et al, PNAS, 84, (1987))
Glycolysis (Hasslacher et al, Chaos, (1993))

The paper by Hasslacher et al:
Are Turing patterns robust against fluctuations? Can Turing patterns
arise inside a small (and highly fluctuating) region, such as, the cytosol

of a cell?
Tool of study: lattice gas. Model: 2 variable Selkov model

Simulation
using the Gray-
Scott model by
Gerald Jay

Sussman




Turing patterns 1n chemical systems

First observed by De Kepper’s group in 1990!!, why did it take so long?

a) sorﬁe.
entrée de
réactifs A

¢) réacteur &
W, disque
g, de gel

b)
réacteur & ruban
plat de gel

Pictures from P. De Kepper’s web page



Why are the experimentally observed patterns
Turing patterns?

Can the biological models described before

really support Turing patterns?

System | Chemicals| D,/Dy d.
(according
to model)

CIMA Iodine- ~ ] ~10
(exp) Chloride

Fish Unknown ~14
(model)

Alga CAMP- <1 ~6
(model) Ca++
(model)



charla_recife.ppt

Explanation for the CIMA reaction
(Lengyel and Epstein, Science, 251, (1991))

Figure 1 () Figure 1 (b)
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Fig. 3. Dependence of D for Ca?* on lhe
concentralion of free Ca®* and lhe amount of
added Ca®*. The concentralion of free Ca?*
was delermined as described in the text. The
average concentralion of added Ca** was de-
termined as described (28). The concentration
ol “%Ca?* was calculated from the amount
loaded and the volume over which it diffused.
The dashed line was drawn empirically.

Figure from Allbritton et
al, Science’92.

The 1dea that diffusion 1s
rescaled by reactions with
unknown species 1s very
common in biology.



Is there an example of a biochemical pathway that can

give rise to the appearance of Turing patterns?
‘Candidate: the glycolytic pathway.

Glycolytic oscillations have been observed in different cell types and it has been
established that it is the individual cell concentrations that oscillate. This is an
indication that there is a positive feedback along the pathway. Some type of
“autocatalytic” behavior is necessary for Turing patterns to exist.

Previous studies of Turing patterns in glycolysis by Prigogine et
al (1969) and Hasslacher et al (1993) used 2-variable models
with ad hoc diffusion coefficients (to guarantee d.>1).

Questions that we try to answer with our work:
*Can the glycolytic pathway give rise to Turing patterns

for realistic diffusion coefficients and reaction rates?
*Can the patterns fit inside a typical cell?

Results: we show that a 5-variable model of (part of) the
glycolytic pathway can support Turing patterns for realistic
diffusion coefficients due to the action of the enzymes that
catalyze a step of the reaction. The patterns can fit in a cell.



The enzymatic breakdown of the
macromolecules that come with
food (catabolism) occurs in three

stages.

:

STAGE 1:
BREAKDOWN

OF LARGE
MACROMOLECULES
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SUBUNITS
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Glycolysis :

the breakdown of glucose
occurs 1n the cytoplasm
10 steps

1) Start with 6 carbon sugar
2) Two phosphorylations (ATP->ADP)
3) Cleave into 2 3-carbon molecules

One reduction of NADH, 2 ATP
formed per 3-C unit

Net per 6 carbons:
2 ATP
1 NADH

Figure 4-3
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The reactions involved in the glycolytic pathway can give rise to
oscillations 1n the concentrations of some of the reactants (observed in the

50’s for the first time): 3 g ' ' '
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From S.DAN® et al, Nature 402, 320 - 322 (1999)

Oscillations appear when either glucose 6-phosphate or fructose 6-phosphate
are injected, which are reactants that participate upstream the step that 1s

catalyzed by PFK. PFK is a key factor, because oscillations disappear when it’s
inhibited.



E. Selkov developed a model (published in

glucose Glycolysis starts with
o 5 c 7 the phosphorylation of
1968) to explain these oscillations. ‘*ﬂ\, App  glucose (a6 carbon
molecule).

It describes only one step of this chain (the
one catalyzed by PFK).

glucose 6-phosphate

fructose 6-phosphate
—
7] ﬂ\,m

fructose-1,6-bisphosphate
Each of the steps below
occurs twice for each

PGAL «<—— DHAP Mmolecule of glucose being
metabolized.

"1 K:
—=3+ES, < SES

SES,

y S+ E

E=PFK; §;=ATP (injected at rate v;);
S,=ADP (removed at rate v, [ADP])

3-phosphoglycerate

2-phosphoglycerate
ﬂ\» H,0

PEP
The activation of PFK by ADP provides the o 1\, —
positive feedback that can explain the pyruvate

oscillations.




Taking into account that the total enzyme concentration (e,) remains constant and
assuming that the enzymes are practically immobile, the evolution equations that
describe the reaction-diffusion Selkov’s model can be written (using dimensionless
quantities) as:

SN = v+ K)oy + K, + dVZo, where:

c; ~ [ATP]
c,~ [ADP]
u, ~ [S;ES,yY]
u; ~ [ES,]
u;=1-(u,+u,)
e~ €

Y=2; V=~V

n~v,

0‘[“2 - yKz05Us + YK3‘*4] -10,+ AV 0y,

For this two variable system he showed that there was a
Hopf bifurcation and that the frequency of the
oscillations was similar to the experimental one.

Y
0,0,

ar 0,0, +0, +1
do 0.0,
‘ Yoot 1+ é 1 10 Here we see that increasing [ADP] the growth of [ATP]
L decreases and viceversa: ADP:inhibitor; ATP: activator




Prigogine et al added diffusion terms to these two equations with

diffusion coefficient values as needed to show that they could support
Turing patterns (D spp>Darp)-

The work of Hasslacher et al followed a similar approach but for a
closely related model (developed by Richter et al).

The paper by Hasslacher et al tried to answer the following:

Are Turing patterns robust against fluctuations?

Can Turing patterns arise inside a small (and highly fluctuating)
region, such as, the cytosol of a cell?

Tool of study: lattice gas. Positive answer for d.=Dpp/Datp ~16.

Simulation
using the
Gray-Scott
model by

Gerald Jay
Sussman



How could ATP and ADP diffuse at such different rates so that d.~16 1f
the two molecules are so similar?

Hasslacher et al argued that a mechanism similar to the one at work 1n the
CIMA reaction could also exist in glycolysis. Namely, the reactions of ATP and
ADP with some of the enzymes involved in the glycolytic pathway could
rescale the diffusion coefficients of ATP and ADP so as to provide the “correct”
ratio of diffusion coefficients.

However: how do we know that ADP is differentially slowed down by the
enzymes with respect to ATP? On the other hand, establishing the existence of a
fast reaction that can rescale the diffusion coefficient of a chemical is not
enough to guarantee the existence of Turing patterns, since the slow reactions
are rescaled too.

Our first strategy: take the 5-variable reaction-diffusion Selkov model, assume
that the reactions with the immobile enzymes occur on a fast timescale and
perform an adiabatic approximation to get a 2-variable reaction-diffusion
model. Analyze whether this reduced system could support Turing patterns.

We did find that ADP (the activator) had a smaller diffusion coefficient than

ATP (the inhibitor), but couldn’t find Turing patterns for a long time!



"New” strategy

We decided to work directly with the 5-variable Selkov model (with no
reduction whatsoever) (PL0S,2007)

But we did not know which could be realistic parameter values in this model!
(it has many more than the reduced 2-variable model analyzed by Selkov and
others!)

So, first we studied the spatially homogenous system and fixed as many
parameter values as we could so as to agree with the experimental evidence on
glycolytic oscillations.

Experiments on yeast extracts: v;* = 5.8 uM-!s!, v,*=0.04s! | 3uM<e,<10uM,
[ATP]~600uM, [ADP]~150uM, period of oscillations~ 3-5 min

Our values for the 5-variable Selkov model imply: v,* = 5.8 uM-!s"!, v,*=0.04s! ,
ey~7.9uM, [ATP]~150uM, [ADP]~145uM, period of oscillations~ 2.7 min

Then, we went back to the reaction-diffusion system with equal diffusion
coefficients for ATP and ADP. We kept fixed the purely kinetic parameters at
the previously determined values (our parameters: o, K; and K;) and varied the
fluxes and enzyme concentration (our parameters: v, 1, and €) looking for a
“Turing” bifurcation. We found it!
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Beyond the linear stability analysis

Turing pattern that appears after 10 minutes in a 2D numerical simulation
done using a square domain of size 8Lx8L con L =10.6um. The critical
wavelength 1s: Z= 11um

0

(8]

ra

[ATP]; black =2.47mM ; white=1.1mM

The pattern size decreases as the glycolytic flux is decreased (v, or v,).
More spots fit into the domain (the “cell”) as the “cell” gets larger.



Summary

The 5-variable Selkov model is able to support Turing patterns for

realistic parameter values and for equal diffusion coefficients for ATP
and ADP.

Although the model is highly idealized, its ability to reproduce a variety
of observations allows us to think that its basic dynamical features
should be common to those of the real system.

The interactions involved in the PFK catalyzed step of the glycolytic
pathway change the “effective” diffusion coefficients of ATP and ADP in
the necessary direction for Turing pattern formation.

The patterns can fit inside a typical cell size and it takes a time of the

order of minutes for them to form.

At fixed cell size, more spots fit in the cell as the glycolytic flux is
decreased (v, or v,).

More spots fit in the cell as the cell gets larger.
D



Is there anything that could be related to this Turing
pattern 1n a cell? (very speculative!)

Cells contain a network of filaments that form its
cytoskeleton. Among them, MICROTUBULES, which are
long and stiff polymers.

In vivo, microtubules nucleate at the \ MTOC
centrosome or MTOC. _?
nucleus i-,() 5
Interphase \\

nncrotubul es

Figure from the web page of
Mitchison’s lab; MT in green,
DNA 1n blue




During the cell division cycle,
centrosomes replicate and
microtubules grow from them.
After cell division 1s completed,

the replicated centrosomes
become the “organizing centers’
of the two daughter cells.

9

Metaphase

Anaphase

Telophase

Microtubules (green) and DNA (blue) at various stages during the cell cycle.

Figures from the web page of Mitchison’s lab



The region occupied by MTOC’s seems to have a fixed
lengthscale:

When cells grow in size during the cell division cycle, two
centrosomes are formed out of the original one.

Could centrosome location be related to an underlying
Turing pattern of some relevant substance (e.g., ATP)?

Even if we cannot answer this question, at least we have
a mechanism that could explain the appearance of an

inhomogeneous pattern in the ATP distribution inside a
cell.

Los patterns de Turing son ejemplos de
patterns estacionarios en sistemas de RD




Si bien intervienen procesos de transporte (en muchos casos
difusivos) y reacciones quimicas en la formacion de gradientes de
sustancias dentro de la célula (en particular, en el citosol), en
general no son explicados en terminos de patterns de Turing.

En muchos casos se explican en terminos de propagacion de
frentes que estabilizan una distribucion inhomogénea de alguna
sustancia. Hay ademas otros procesos (hidrodinamicos,

mecanicos o eléctricos) que, en combinacion con las reacciones
quimicas, pueden inducir una ruptura de simetria

Si se explican como patterns de Turing los dibujos en la
piel de peces y otros animals.

La propagacion de frentes es tipica de los sistemas de RD

con dinamica subyacente biestable (y se extiende a la
excitable).




Recordemos modelo de FitzHugh-Nagumo (tipico de excitabilidad)

dv .
GE =fv)—w+ Iapp»
dw
— =V — YW,
dt
con f(v) =v(l —v)(v —a), for0 <« < 1,e <« 1.
W N glvvw)=0
Y nulclinas:
Que si few) =0, Wiemmmmmemfemmee
w=const, era \
b | eSta b I (S V_(w) Vo(w) Viw)
Pasemos al pizarron / \ .
para analizar \ \ v
propagacion de W,

frentes



