


Chapter 11

Machines in membranes

In going on with these Experiments how many pretty Systems

do we build which we soon find ourselves oblig’d to destroy! If

there is no other Use discover’d of Electricity this however is

something considerable, that it may help to make a vain man

humble. – B. Franklin to P. Collinson, 1747

Chapter 12 will discuss the question of nerve impulses, the electrical signals running along
nerve fibers that make up the ghostly fabric of thought. Before we can discuss nerve impulses,
however, this penultimate chapter must look at how living cells generate electricity in the first
place. Chapter 4 skirted this question in the discussion of the Nernst formula; we are now ready to
return to this question as a matter of free energy transduction, armed with a general understanding
of molecular machines. We will see how indirect, physical arguments led to the discovery of a
remarkable class of molecular machines, the active ion pumps, long before the precise biochemical
identity of these devices was known. The story may remind you of how Muller, Delbrück, and their
colleagues characterized the nature of the genetic molecule, using physical experiments and ideas,
many years before others identified it chemically as DNA (Section 3.3.3). The interplay of physical
and biochemical attack on life-science problems will continue to bear fruit as long as both sets of
researchers know about each others’ work.

The Focus Question for this chapter is:
Biological question: The cytosol’s composition is very different from that of the outside world. Why
doesn’t osmotic flow through the plasma membrane burst (or shrink) the cell?
Physical idea: Active ion pumping by molecular machines can maintain a nonequilibrium, osmoti-
cally regulated state.

11.1 Electro-osmotic effects

11.1.1 Before the ancients

The separation of the sciences into disciplines is just a modern aberration. Historically there was a
lively interplay between the study of bioelectric phenomena and the great project of understanding

c⃝2000 Philip C. Nelson

409



410 Chapter 11. Machines in membranes [[Student version, January 17, 2003]]

physically what electricity really was. For example Benjamin Franklin’s famous demonstration in
1752 that lightning was just a very big electrical spark led to much speculation and experimentation
on electricity in general. Lacking sophisticated measurement devices, it was natural for the scientists
of the day to focus on the role of electricity in living organisms, in effect using them as their
instruments. The physicians Albrecht von Haller and Luigi Galvani found that electricity, generated
by physical means and stored in a capacitor, could stimulate strong contraction in animal muscles.
Galvani published his observations in 1791, and speculated that muscles were also a source of
electricity. After all, he reasoned, even without the capacitor he could evoke muscle twitches just
by inserting electrodes between two points.

Alessandro Volta did not accept this last conclusion. He regarded muscles as electrically passive,
receiving electrical signals but not generating any electricity themselves. He explained Galvani’s no-
capacitor experiment by suggesting that an electrical potential could develop between two dissimilar
metals in any electrolyte, alive or not. To prove his point, in 1800 he invented a purely nonliving
source of electricity, merely placing two metal plates in an acid bath. Volta’s device—the “Voltaic
cell”—led to decisive advances in our understanding of physics and chemistry. As technology,
Volta’s device also wins the longevity award: The batteries in your car, flashlight, and so on are
Voltaic cells.

But Volta was too quick to dismiss Galvani’s idea that life processes could also generate elec-
tricity directly. Sections 11.1.2–11.2.3 will show how this can happen. Our discussion will rest
upon many hard-won experimental facts. For example, after Galvani decades would pass before
E. DuBois Reymond, another physician, showed in the 1850s that living frog skin maintained a
potential difference of up to 100 mV between its sides. And the concept of the cell membrane as an
electrical insulator only a few nanometers thick remained a speculation until 1927, when H. Fricke
measured quantitatively the capacitance of a cell membrane and thus estimated its thickness, es-
sentially using Equation 7.26 on page 236.

To understand the origin of resting membrane potentials, we first return to the topic of ions
permeating membranes, a story begun in Chapter 4.

11.1.2 Ion concentration differences create Nernst potentials

Figure 4.14 on page 125 shows a container of solution with two charged plates outside supplying
a fixed external electric field. Section 4.6.3 calculated the concentration profile in equilibrium,
and from this the change in concentration of charged ions between the two ends of the container
(Equation 4.25). We then noted that the potential drop needed to get a significant concentration
jump across the container was roughly comparable to the difference in electrical potential across
the membrane of most living cells. We’re now in a position to see why the results of Section 4.6.3
should have anything to do with cells, starting with some ideas from Section 7.4.

Figure 11.1 shows the physical situation of interest. An uncharged membrane, shown as a long
cylinder, separates the world into two compartments, #1 and #2. Two electrodes, one inside and
one outside, measure the electrical potential across the membrane. The figure is meant to evoke
the long, thin tube, or axon, emerging from the body of a nerve cell. Indeed experimentally one
can literally insert a thin needle-like electrode into living nerve axons, essentially as sketched here,
and connect them to an amplifier. Historically the systematic study of nerve impulses opened up
only when a class of organisms was found with large enough axons for this delicate procedure (the
cephalopods). For example, the “giant” axon of the squid Loligo forbesi has a diameter of about a



11.1. Electro-osmotic effects [[Student version, January 17, 2003]] 411

∆V = V2 − V1

c2

c1

Figure 11.1: (Schematic.) Measurement of membrane potential. The bulk concentration c2 of interior cations

is greater than the exterior concentration, c1, as shown; the corresponding bulk concentrations of negative charges

follow the same pattern (not shown), as required by charge neutrality. The symbol on the left represents a voltmeter.

millimeter, much bigger than the typical axon diameter in your body, about 5–20µm.
Each compartment contains a salt solution, which for simplicity we’ll take to be monovalent—say

potassium chloride. Imagine that the membrane is slightly permeable to K+ ions, but not at all to
Cl− (actually, squid axon membranes are only about twice as permeable to K+ as they are to Cl−).
For now we will also ignore the osmotic flow of water (see Section 11.2.1). We imagine initially
preparing different salt solutions on the inside and outside of the cell: Far from the membrane,
the salt concentration in each compartment is uniform and equals c2 on the inside, and c1 on the
outside. Suppose that c2 > c1 as shown in Figure 11.1.

After the system reaches equilibrium, the concentration c+(r) of potassium ions will not be uni-
form near the membrane, and neither will be the chloride concentration, c−(r) (see Figure 11.2a).
To understand the origin of membrane potential, we must first explain these equilibrium concen-
tration profiles.

The permeant K+ ions face a dilemma: They could increase their entropy by crossing the
membrane to erase the imposed concentration difference. Indeed they will do this, up to a point.
But their impermeant partners, the Cl− ions, keep calling them back by electrostatic attraction.
Thus, far from the membrane on both sides the concentrations of K+ and Cl− will be equal, as
required by overall charge neutrality. Only a few K+ ions will actually cross the membrane, and
even these won’t travel far: They deplete a thin layer just inside the membrane, and cling in a thin
layer just outside (see the c+ curve in Figure 11.2a).

The behavior shown in Figure 11.2 is just what we could have expected from our study of
electrostatic interactions in Section 7.4.3 on page 233. To see the connection, first consider the
region to the right of point C in Figure 11.2. This region is a salt solution in contact with an
“object” of net negative charge. The “object” consists of the membrane plus the interior of the
cylinder in Figure 11.1; it’s negatively charged because some of its positive ions have permeated
the membrane and escaped. But a solution in contact with a negatively charged object develops a
neutralizing positive layer, just as in Figure 7.8a on page 233. This layer is shown in Figure 11.2
as the region between points C and D. Its thickness λ is roughly analogous to x0 in our discussion
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Figure 11.2: (Sketch graphs.) (a) Concentration profiles near a membrane, for the situation sketched in Figure 11.1.

Far outside the membrane the concentrations c± of positive and negative ions must be equal, by charge neutrality;

their common value c1 is just the exterior salt concentration. Similarly, deep inside the cell c+ = c− = c2. The

situation shown assumes that only the positive ions are permeant. Thus some positive ions leak out, enhancing c+
in a layer of thickness λ just outside the membrane and depleting it just inside. c− drops just outside the membrane,

because negative ions move away from the negatively charged cell. The concentrations in the membrane’s hydrophobic

interior (the region between B and C) are nearly zero. (b) The corresponding electrical potential V created by the

charge distribution in (a). In equilibrium, ∆V equals the Nernst potential of the permeant species (in this case the

positive ions).

of the electrical double layer (Equation 7.25 on page 236).1 Unlike Figure 7.8a, however, we now
have both positive and negative mobile charges in the solution. Hence, the layer of enhanced K+

concentration is also depleted of Cl−, since the negative region to the left of point C in the figure
repels anions. The effect of both these disturbances is to create a layer of net positive charge just
outside the membrane.

Just inside the membrane the situation is reversed. Here we have a salt solution facing a positive
object, namely everything to the right of point B in the figure. Thus there is a region relatively
depleted of K+, and enriched in Cl−, a layer of net negative charge just inside the membrane.

We can now turn to the question of finding the electrical potential jump across the membrane.
One way to find it would be to solve the Gauss Law (Equation 7.20 on page 232) for the electric
field E(x) given the charge density shown in Figure 11.2a, then integrate to find V (x). Let’s instead
think physically (see Figure 11.2b). Suppose we bring a positively charged test object in from

1 T2 Or more appropriately, to the Debye length λD (Equation 7.34 on page 250).
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outside (from the right of the figure). At first, everything to the left of our test object has net
charge zero, and so the net force on it is also zero and its potential energy is a constant. Once the
test object enters the outer charge cloud, at point D, however, it starts to feel and be attracted to
the net negative object to the left of point C. Its potential thus begins to decrease. The deeper it
gets into the cloud, the more charge it sees: The slope of its potential curve increases.

The membrane itself was assumed to be uncharged. There will be a few permeant ions inside
it, in transit, but typically very few. Thus while traversing the membrane the test charge feels a
constant force attracting it toward the interior, from the charge of the region to the left of point B.
Its potential thus falls linearly until it crosses point B, then levels off in the neutral interior of the
cylinder.

The potential curve V (r) sketched in Figure 11.2b summarizes the narrative in the preceding
two paragraphs.

Your Turn 11a
Arrive at the same conclusion for the potential V (r) by describing qualitatively the solution to
the Gauss law with the charge density ρq(r) = e(c+(r) − c−(r)), where c±(r) are as shown in
Figure 11.2a.

Your Turn 11b
Repeat the discussion, again assuming that c2 > c1, but this time considering a fictitious mem-
brane permeable to Cl− but not to K+. What changes?

To determine the potential drop ∆V = V2−V1 quantitatively, imagine replacing the voltmeter in
Figure 11.1 by a battery of adjustable voltage, and cranking the voltage until the current through
the system just stops. The permeant ion species is then in equilibrium throughout the system.
Writing its charge q as the proton charge e times an integer z (the ion’s valence), its concentration
must obey the Boltzmann distribution: c(x) = const × e−zeV (x)/kBT . Taking the logarithm and
evaluating on the inside and outside reproduces the Nernst relation:

∆V = VNernst in equilibrium, where

∆V ≡ V2 − V1 and VNernst ≡ −kBT

ze
ln

c2

c1
. (11.1)

In the language of Section 8.1.1, the Nernst relation says that in equilibrium the electrochemical
potential of any permeant ion species must be everywhere the same.

Notice that z in Equation 11.1 is the valence of the permeant species only (in our case it’s +1).
In fact the other, impermeant species in the problem doesn’t obey the Nernst relation at all, nor
should it, since it’s not at all in equilibrium. If we suddenly punched a hole through the membrane,
the impermeant Cl− would begin to rush out, while K+ would not, since we adjusted the battery
to exactly balance its electric force (to the left) against its entropic, diffusive force (to the right).
Similarly, you just found in Your Turn 11b that switching the roles of the two species actually
reverses the sign of the membrane’s equilibrium potential drop.
T2 Section 11.1.2′ on page 437 gives some further comments involving ion permeation through

membranes.
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11.1.3 Donnan equilibrium can create a resting membrane potential

Section 11.1.2 arrived at a simple conclusion:

The Nernst relation gives the potential arising when a permeant species reaches

equilibrium. Equivalently, it gives the potential that must be applied to stop

the net flux of that species, given the concentration jump across a membrane.

(11.2)

In this subsection we begin to explore a slightly more complicated problem, in which there are more
than two ion species. The problem is relevant to living cells, where there are several important small
permeant ions. We will simplify our discussion by considering only three species of small ions, with
concentrations ci, where the label i runs over Na+, K+, Cl−.

Cells are also full of proteins and nucleic acids, huge macromolecules carrying net negative
charge. The macromolecules are practically impermeant, so we expect a situation analogous to
Figure 11.2, and a resulting membrane potential. Unlike the simpler case with just two species,
however, the bulk concentrations are no longer automatically fixed by the initial concentrations and
by the condition of charge neutrality: The cell can import some more Na+ while still remaining
neutral, if at the same time it expels some K+ or pulls in some Cl−. Let’s see what happens.

A typical value for the total charge density ρq,macro of the trapped (impermeant) macromolecules
is the equivalent of 125mM of excess electrons. Just as in Section 11.1.2, small ions can and will
cross the cell membrane, in order to reduce the total free energy of the cell. We will suppose that
our cell sits in an infinite bath with exterior ion concentrations c1,i. (It could be an algal cell in
the sea, or a cell in your blood.) These concentrations, like ρq,macro, are fixed and given; some
illustrative values are c1,Na+ = 140 mM, c1,K+ = 10mM, and c1,Cl− = 150 mM. These values make
sense, since they imply that the exterior solution is neutral:

c1,Na+ + c1,K+ − c1,Cl− = 0.

The cell’s interior is not infinite, and so the concentrations there, c2,i, are not fixed. Instead they
are all unknowns, for which we must solve. Moreover, the membrane potential drop ∆V = V2 − V1

is a fourth unknown. We therefore need to find four equations, in order to solve for these four
unknowns. First, charge neutrality in the bulk interior requires

c2,Na+ + c2,K+ − c2,Cl− + ρq,macro/e = 0. (11.3)

(Section 12.1.2 will discuss neutrality in greater detail.) The other three equations reflect the fact
that the same electrostatic potential function affects every ion species. Thus in equilibrium each
permeant species must separately be in Nernst equilibrium at the same value of ∆V :

∆V = −kBT

e
ln

c2,Na+

c1,Na+
= −kBT

e
ln

c2,K+

c1,K+
= −kBT

−e
ln

c2,Cl−

c1,Cl−
. (11.4)

To solve Equation 11.3–11.4, we first notice that the latter can be rewritten as the Gibbs–Donnan

relations
c1,Na+

c2,Na+
=

c1,K+

c2,K+
=

c2,Cl−

c1,Cl−
in equilibrium. (11.5)

Example a. Why is the chloride ratio in these relations inverted relative to the others?
b. Finish the calculation using the illustrative values for c1,i and ρq,macro listed
above. That is, find c2,i and ∆V .
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Solution: a. The charge on a chloride ion is opposite to that on potassium or
sodium, leading to an extra minus sign in Equation 11.4. Upon exponentiating the
formula, this minus sign turns into an inverse.
b. Let x = [Na+] = c2,Na+/1 M. Use Equation 11.5 and the given values of c1,i to
express c2,K+ and c2,Cl− in terms of x. Substitute into Equation 11.3 and multiply
the equation by x to get

(
1 +

0.01
0.14

)
x2 − 0.15 × 0.14 − 0.125x = 0.

Solving with the quadratic formula gives x = 0.21, or c2,Na+ = 210mM, c2,K+ =
15 mM, c2,Cl− = 100mM. Then Equation 11.4 gives ∆V = −10mV. (Appendix B
gives kBTr/e = (1/40) volt.)

The equilibrium state you just found is called the Donnan equilibrium; ∆V is called the Donnan

potential for the system.
So we have found one realistic way in which a cell can maintain a permanent (resting) electrical

potential across its membrane, simply as a consequence of the fact that some charged macro-
molecules are sequestered inside it. Indeed the typical values of such potentials are in the tens of
millivolts. No energy needs to be spent maintaining the Donnan potential—it’s a feature of an
equilibrium state, a state of minimum free energy. Notice that we could have arranged for charge
neutrality by having only c2,Na+ greater than the exterior value, with the other two concentrations
the same inside and out. But that state is not the minimum of free energy; instead all available
permeant species share in the job of neutralizing ρq,macro.

11.2 Ion pumping

11.2.1 Observed eukaryotic membrane potentials imply that these cells

are far from Donnan equilibrium

The sodium anomaly Thus Donnan equilibrium appears superficially to be an attractive mech-
anism for explaining resting membrane potentials. But a little more thought reveals a problem. Let
us return to the question of osmotic flow through our membrane, which we postponed at the start
of Section 11.1.2. The macromolecules are not very numerous; their contribution to the osmotic
pressure will be negligible. The small ions, however, greatly outnumber the macromolecules and
pose a serious osmotic threat. To calculate the osmotic pressure in the Example on page 414, we
add the contributions from all ion species:

∆ctot = c2,tot − c1,tot ≈ 25 mM. (11.6)

The sign of our result indicates that small ions are more numerous inside the model cell than outside.
To stop inward osmotic flow, the membrane thus would have to maintain an interior pressure of
25 mM · kBTr ≈ 6 · 104 Pa. But we know from Section 7.2.1 on page 219 that eukaryotic cells lyse
(burst) at much smaller pressures than this!

Certainly our derivation is very rough. We have completely neglected the osmotic pressure
of other, uncharged solutes (like sugar). But the point is still valid: The equations of Donnan
equilibrium give a unique solution for electro-osmotic equilibrium and neutrality. There is no reason
why that solution should also coincidentally give small osmotic pressure! To maintain Donnan
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Table 11.1: Approximate ion concentrations inside and outside the squid giant axon. The second line illustrates

the “sodium anomaly”: The Nernst potential of sodium is nowhere near the actual membrane potential of −60 mV.

Ion Valence z Interior c2,i Relation Exterior c1,i Nernst potential VNernst
i

(mM) (mM) (mV)
K+ +1 400 > 20 −75
Na+ +1 50 < 440 +54
Cl− −1 52 < 560 −59

equilibrium you’ve got to be strong. In fact, plant, algal, and fungal cells, as well as bacteria,
surround their bilayer plasma membrane with a rigid wall; thus they can withstand significant
osmotic pressures. Indeed plant tissue actually uses the rigidity resulting from turgor for structural
support, and becomes limp when the plant dehydrates. (Think about eating old celery.) But your
own body’s cells lack a strong wall. Why they don’t burst under osmotic pressure?

Table 11.1 shows the actual (measured) concentration differences across one particular cell’s
membrane. Donnan equilibrium predicts that the presence of trapped, negative macroions will
give c2,Na+ > c1,Na+ , c2,K+ > c1,K+ , c2,Cl− < c1,Cl− , and ∆V < 0. These predictions make sense
intuitively: The trapped negative macroions tend to push out negative permeant ions and pull in
positive ones. But the table shows that of these four predictions, the first one proves to be very
wrong. In thermodynamic equilibrium all the entries in the last column would have to be the same,
according to the Gibbs–Donnan relations. In fact both the potassium and chloride ions roughly
obey this prediction, and moreover the measured membrane potential ∆V = −60mV really is
similar to each of their Nernst potentials. But the Gibbs–Donnan relation fails for sodium, and
even for K+ the quantitative agreement is not very successful.

To summarize:

1. The Nernst potential of potassium is slightly more negative than the actual

membrane potential ∆V .

2. The Nernst potential of sodium is much more positive than ∆V .

(11.7)

All animal cells (not just the squid axon) have a sodium anomaly of this type.2

One interpretation for these results might be that the sodium and other discrepant ions simply
cannot permeate on the time scale of the experiment, so they need not obey the equilibrium rela-
tions. However, we are discussing the steady-state, or resting, potential; the “time scale” of this
measurement is infinity. Any permeation at all would eventually bring the cell to Donnan equilib-
rium, contrary to the actual observed concentrations. More importantly, it’s possible to measure
directly the ability of sodium ions to pass through the axon membrane; the next subsection will
show that this permeability, although small, is not negligible.

We are forced to conclude that the ions in a living cell are not in equilibrium. But why should
they be? Equilibrium is not life, it’s death. Cells at rest are constantly burning food, precisely
to combat the drive toward equilibrium! If the metabolic cost of maintaining a nonequilibrium
ion concentration is reasonable compared to the rest of the cell’s energy budget, then there’s no
reason not to do it. After all, the benefits can be great. We have already seen how maintaining

2Many bacteria, plants, and fungi instead show a similar anomaly involving the concentration of protons; see

Section 11.3.
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Figure 11.3: (Metaphor.) If water is continuously pumped to the upper reservoir, the fountain will come to a

nonequilibrium steady state. If not, it will come to a quasisteady state, which lasts until the reservoir is empty.

electrostatic and osmotic equilibrium could place a cell under large internal pressure, bursting or
at least immobilizing it.

We get a big clue that we’re finally on the right track when we put our nerve cell in the
refrigerator. Chilling a cell to just above freezing doesn’t change the absolute temperature very
much. But it does shut down the cell’s metabolism. Suddenly the cell loses its ability to maintain a
nonequilibrium sodium concentration difference. Moreover, the shut-down cell also loses its ability
to control its interior volume, or osmoregulate. When normal conditions are restored, the cell’s
metabolism starts up again and the interior sodium falls.

Certain genetic defects can also interfere with osmoregulation. For example, patients with
hereditary spherocytosis have red blood cells whose plasma membrane is much more permeable to
sodium than that of normal red cells. The affected cells must work harder than normal cells to pump
sodium out. Hence they are prone to osmotic swelling, which in turn triggers their destruction by
the spleen. Entropic forces can kill.

A look ahead This section raised two puzzles: Eukaryotic cells maintain a far-from-equilibrium
concentration drop of sodium, and they don’t suffer from the immense osmotic pressure predicted
by Donnan equilibrium. In principle both of these problems could be solved if, instead of being in
equilibrium, cells could constantly pump sodium across their membranes, using metabolic energy.
Such active pumping could create a nonequilibrium, but steady, state.

Here is a mechanical analogy: Suppose you visit your friend and see in his garden a fountain. The
fountain could be supplied by a high tank of water (Figure 11.3). In that case it flows, converting
the gravitational potential energy of the water in the tank to kinetic energy (and ultimately heat),
until the tank is empty; that is, it drives to equilibrium. But if you watch the fountain for many
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hours and it never stops, you may begin to suspect that your friend instead recirculates the water
with a pump, using some external source of energy. In that case the fountain is in a steady, but
nonequilibrium, state. Similarly, Section 10.4.1 discussed the steady state of an enzyme presented
with nonequilibrium concentrations of its substrate and product.3

In the context of cells, we are exploring the hypothesis that that cells must somehow be using
their metabolism to maintain resting ion concentrations far from equilibrium. To make this idea
quantitative (that is, to see if it’s right) we now return to the topic of transport across membranes
(introduced in different contexts in Sections 4.6.1 and 7.3.2).

11.2.2 The Ohmic conductance hypothesis

To begin exploring nonequilibrium steady states, first note that the Nernst potential need not equal
the actual potential jump across a membrane, just as we found that the quantity (∆c)kBT need not
equal the actual pressure jump ∆p (Section 7.3.2 on page 228). If the actual pressure jump across
a membrane differs from (∆c)kBT , we found there would be a flux of water across the membrane.
Similarly, if the potential drop differs from the Nernst potential for some ion species, that species
will be out of equilibrium and will permeate, giving a net electric current. In this case, the potentials
obtained from Equation 11.1 for different kinds of ions need not agree with each other.

To emphasize the distinction, Equation 11.1 on page 413 introduced VNernst
i (read “the Nernst

potential of ion species i”) to mean precisely −kBT
ezi

ln(c2,i/c1,i), reserving the symbol ∆V for the
actual potential drop V2−V1. Our sign convention is thus that a positive Nernst potential represents
an entropic force driving positive ions into the cell.

Prior experience (Sects. 4.6.1 and 4.6.4) leads us to expect that the flux of ions through a
membrane will be dissipative, and hence proportional to a net driving force, at least if the driving
force is not too large. Furthermore, according to Idea 11.2 on page 414, the net driving force on
ions of type i vanishes when ∆V = VNernst

i . Thus the net force is given by the sum of an energetic
term, zie∆V (from the electric fields) plus an entropic term, −zieVNernst

i (from the tendency of
ions to diffuse to erase any concentration difference).4 This is just the behavior we have come to
expect from our studies of osmotic flow (Section 7.3.2) and of chemical forces (see the Example on
page 261).

In short we expect that

jq,i = zieji = (∆V − VNernst
i )gi. Ohmic conductance hypothesis (11.8)

Here as usual the number flux ji is the number of ions of type i per area per time crossing the
membrane; the electric charge flux jq,i is this quantity times the charge zie on one ion. We choose
the sign convention that j is positive if the net flux is outward. The constant of proportionality gi

appearing in Equation 11.8 is called the conductance per area of the membrane to ion species i.
It’s always positive, and has units5 m−2 ·Ω−1. A typical magnitude for the overall conductance per
area of a resting squid axon membrane is around 5 m−2 · Ω−1.

3We also encountered steady or quasi-steady nonequilibrium states in Sections 4.6.1, 4.6.2, 10.2.3, 10.4.3, and

10.4.4.
4Equivalently, the net driving force acting on ions is the difference in electrochemical potential ∆µi (see Equa-

tion 8.3 on page 261).
5Neuroscientists use the synonym siemens (symbol S) for inverse ohm; an older synonym is the “mho” (symbol

!). We won’t use either notation, instead writing Ω−1. Note that conductance per area has different units from the

conductivity of a bulk electrolyte (Section 4.6.4 on page 127); the latter has units m−1Ω−1.
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R=1/(gA)

VNernst

I =jqA

∆V =V2−V1

(in)

1

2

(out)

2

Figure 11.4: (Circuit diagram.) Equivalent circuit model for the electrical properties of a small patch of membrane

of area A and conductance per area g, assuming the Ohmic hypothesis (Equation 11.8). The membrane patch is

equivalent to a battery with potential drop VNernst, in series with resistor with resistance R = 1/(gA). For a positive

ion species (z > 0), a positive Nernst potential means that the ion concentration is greater outside the cell; in this

case an entropic force pushes ions upward in the diagram (into the cell). A positive applied potential ∆V has the

opposite effect, pushing positive ions downward (out of the cell). Equilibrium is the state where these forces balance,

or VNernst = ∆V ; then the net current I equals zero. The electric current is deemed positive when it is directed

outward.

Equation 11.8 is just another form of Ohm’s law. To see this, note that the electric current
I through a patch of membrane of area A equals jqA. If only one kind of ion can permeate,
Equation 11.8 gives the potential drop across the membrane as ∆V = IR + VNernst. The first term
is the usual form of Ohm’s law, where R = 1/(gA). The second term corresponds to a battery
of fixed voltage VNernst connected in series with the resistor, as shown in Figure 11.4. The voltage
across the terminals of this virtual battery is the Nernst potential of ion species i.

We must bear in mind, though, that a membrane’s regime of Ohmic behavior, where Equa-
tion 11.8 applies, may be very limited. First, Equation 11.8 is just the first term in a power series
in ∆V −VNernst

i . Since we have seen that sodium is far from its equilibrium concentration difference
(Table 11.1), we can’t expect Equation 11.8 to give more than a qualitative guide to the resting
electrical properties of cells. Moreover, the “constant” of proportionality gi need not be constant
at all; it may depend on environmental variables such as ion concentrations and ∆V itself. Thus,
we can only use Equation 11.8 if both ∆V and the concentration of ion species i are close to their
resting values. From now on, the unadorned symbol gi will refer specifically to the conductance per
area of a membrane to ion species i at resting external conditions. For other conditions we’ll have
to allow for the possibility that the conductance per area changes, for example writing gi(∆V ).
This subsection will consider only small deviations from the resting conditions; Section 12.2.4 will
explore more general situations.

The conductance per area, gi, is related to the ion’s permeability Ps (see Equation 4.20 on page
121):

Your Turn 11c
Find the relation between the conductance per area and the permeability of a membrane to
a particular ion species, assuming that the inside and outside concentrations are nearly equal.
Discuss why your result is reasonable. [Hint: Remember that c1,i − c2,i is small, and use the
expansion ln(1 + ϵ) ≈ ϵ for small ϵ.]

Notice that the conductances per area for various ion species, gi, need not all be the same. Different
ions have different diffusion constants in water; they have different radii and so encounter different
obstructions passing through different channels, and so on. Just as a membrane can be permeable
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to water but not to ions, so the conductances to different ions can differ. If a particular ion species
is impermeant, then its concentration needn’t obey the Nernst formula, just like the Cl− ions in the
example of Section 11.1.2. The impermeant species are important to the problem, however: They
enter the system’s overall charge neutrality condition.
T2 Section 11.2.2′ on page 437 mentions nonlinear corrections to the Ohmic behavior of membrane

conductances.

11.2.3 Active pumping maintains steady-state membrane potentials

while avoiding large osmotic pressures

We can now return to the sodium anomaly in Table 11.1. To investigate nonequilibrium steady
states using Equation 11.8, we need separate values of the conductances per area, gi, of membranes
to various ions. Several groups made such measurements around 1948 using radioactively labeled
sodium ions on one side of a membrane and ordinary sodium on the other side. They then measured
the leakage of radioactivity across the membrane under various conditions of imposed potentials
and concentrations. This technique yields the sodium current, separated from the contributions of
other ions.6 The result of such experiments was that in general nerve and muscle cells indeed behave
Ohmically (see Equation 11.8) under nearly resting conditions. The corresponding conductances
are appreciable for potassium, chloride, and sodium; A. Hodgkin and B. Katz found for the squid
axon that

gK+ ≈ 25gNa+ ≈ 2gCl− . (resting) (11.9)

Thus the sodium conductance is small, but not negligible and certainly not zero.
Section 11.2.1 argued that a nonzero conductance for sodium implies that the cell’s resting state

is not in equilibrium. Indeed, in 1951 Ussing and K. Zehran found that living frog skin, with identical
solutions on both sides, and membrane potential ∆V maintained at zero, nevertheless transported
sodium ions, even though the net force in Equation 11.8 was zero. Apparently Equation 11.8
must be supplemented with an additional term describing the active ion pumping of sodium. The
simplest modification we could entertain is

jNa+ =
gNa+

e
(∆V − VNernst

Na+ ) + jpump
Na+ . (11.10)

The new, last term in this modified Ohm’s law corresponds to a current source in parallel with
the elements shown in Figure 11.4. This current source must do work if it’s to push sodium ions
“uphill” (against their electrochemical potential gradient). The new term distinguishes between the
inner and outer sides of the membrane: It’s positive, indicating that the membrane pumps sodium
outward. The source of free energy needed to do that work is the cell’s own metabolism.

A more detailed study in 1955 by Hodgkin and R. Keynes showed that sodium is not the only
actively pumped ion species: Part of the inward flux of potassium through a membrane also depends
on the cell’s metabolism. Intriguingly, Hodgkin and Keynes (and Ussing, a year earlier) found that
the outward sodium-pumping action stopped even in normal cells, when they were deprived of any
exterior potassium, suggesting that the pump couples its action on one ion to the other. Hodgkin
and Keynes also found that metabolic inhibitors (such as dinitrophenol) reversibly stop the active
pumping of both sodium and potassium in individual living nerve cells (Figure 11.5), leaving the

6An alternative approach is to shut down the permeation of other ions using specific neurotoxins (a class of

poisons).
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Figure 11.5: (Experimental data.) Flux of sodium ions out of a cuttlefish axon after electrical stimulation. At

the beginning of the experiment the axon was loaded with radioactive sodium, then placed in ordinary sea water;

the loss of radioactivity was then monitored. During the interval represented by the arrow, the axon was exposed to

the toxin dinitrophenol (DNP), temporarily shutting down sodium pumping. Later the toxin was washed away with

fresh seawater, and ion pumping spontaneously resumed. The horizontal axis gives the time after end of electrical

stimulation; the vertical scale gives the rate at which radioactively labeled sodium left the axon. [Data from Hodgkin

& Keynes, 1955.]

passive, Ohmic part of the fluxes unchanged. Moreover, even with the cell’s metabolism shut down,
pumping resumes when one injects the cellular energy-storing molecule ATP into the cell.

To summarize, the results described above pointed to a hypothesis:

A specific molecular machine embedded in cell membranes hydrolyzes ATP,

then uses some of the resulting free energy to pump sodium ions out of the cell.

At the same time the pump imports potassium, partially offsetting the loss of

electric charge from the exported sodium.

(11.11)

The pump operates only when sodium and ATP are available on its inner side and potassium is
available on its outer side. If any of these are cut off, the cell slowly reverts to the ion concentrations
appropriate for equilibrium.

Idea 11.11 amounts to a remarkably detailed portrait of the membrane pump, considering that
in 1955 no specific membrane constituent was even known to be a candidate for this job. Clearly
something was pumping those ions, but there are thousands of transmembrane proteins in a living
cell membrane, and it was hard to find for the right one. But in 1957, the physiologist J. Skou
isolated a single membrane protein with ATPase activity from crab leg neurons. Carefully control-
ling the ion content of his solutions, Skou found that to hydrolyze ATP, his enzyme required both
sodium and potassium, the same behavior Hodgkin, Katz, and Ussing had found for whole nerve
axons (Figure 11.6). Skou concluded that his enzyme must have separate binding sites for both
sodium and potassium. For this and other reasons, he correctly guessed that it was the missing
sodium pump.

Additional experiments confirmed Skou’s hypotheses: Remarkably, it is possible to prepare a
pure lipid bilayer, introduce the purified pump protein, the necessary ions, and ATP, then watch as
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Figure 11.6: (Experimental data.) The rate of ATP hydrolysis catalyzed by the sodium–potassium pump, as a

function of the available interior sodium and exterior potassium. The vertical axis gives the quantity of inorganic

phosphate (arbitrary units) generated in a certain time interval. The data show that if either sodium or potassium

is missing, ATP consumption, and hence Pi production, stop. [Data from Skou, 1957.]

the protein self-assembles in the membrane and begins to function in this totally artificial system.
The fact that the pump’s ATPase activity depends on the presence of the pumped ions has an

important implication: The pump is a tightly coupled molecular machine, wasting very little ATP
on futile cycles. Later work showed that in fact the magnitude of the potassium current is always
2/3 as large as that of the sodium ions, maintaining this relation across a range of different ATP
concentrations. In other words, the pump carries out coupled transport of sodium and potassium
ions. We can think of the machine as a special kind of revolving door, which waits for three Na+-
binding sites to be occupied on its interior face. Then it pushes these ions out (or translocates

them), releases them, and waits for two K+-binding sites on the outer face to be occupied. Finally
it translocates the potassiums, releases them on the interior, and begins its cycle anew. Thus each
cycle of this machine causes the net transport of one unit of charge out of the cell; we say that the
pump is electrogenic.7 Specific membrane pumps, or active transporters, of this sort are among
the most important molecular machines in a cell.

Before concluding that the ATPase enzyme discovered by Skou really is (in part) responsible for
resting membrane potentials, we should verify that the proposed pumping process is energetically
reasonable.

Example Compare the free energy gain from hydrolyzing one ATP molecule to the cost of
running the pump through a cycle.
Solution: To pump one sodium ion out of the cell costs both electrostatic potential
energy −e∆V and the free energy cost of enhancing the world’s order (by incremen-
tally increasing the difference in sodium concentration across the membrane). This
entropy is what the Nernst potential measures. Consulting Table 11.1 on page 416,

7Figure 2.30 on page 58 simplified the sodium–potassium pump, sketching only one of each kind of binding site.

A “nonelectrogenic” pump has jpump
K+ + jpump

Na+ = 0. An example of this sort of behavior is the H+/K+ exchanger,

found in the cells lining your stomach. In each cycle it transports two protons out of the cell, helping make your

gastric juices acidic, while importing two potassium ions.
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the total free-energy cost to pump one sodium ion out is thus

−e(∆V − VNernst
Na+ ) = e(60mV + 54 mV) = e × 114 mV.

For inward pumping of potassium, the corresponding calculation gives

+e(∆V − VNernst
K+ ) = e(−60mV − (−75mV)) = e × 15 mV.

which is also positive. The total cost of one cycle is then 3(e × 114 mV) + 2(e ×
15 mV) = 372 eV = 15kBTr. (The unit eV, or “electron volt,” is defined in Ap-
pendix A.) ATP hydrolysis, on the other hand, liberates about 19kBTr (see Prob-
lem 10.3). The pump is fairly efficient; only 6kBTr is lost as thermal energy.

Let us see how the discovery of ion pumping helps make sense of the data presented in Table 11.1
on page 416. Certainly the sodium–potassium pump’s net effect of pushing one unit of positive
charge out of the cell will drive the cell’s interior potential down, away from the sodium Nernst
potential and toward that of potassium. The net effect of removing one osmotically active ion from
the cell per cycle also has the right sign to reduce the osmotic imbalance we found in Donnan
equilibrium (Equation 11.6 on page 415).

To study pumping quantitatively, we first note that a living cell is in a steady state, since it
maintains its potential and ion concentrations indefinitely (as long as it remains alive). Thus there
must be no net flux of any ion; otherwise some ion would pile up somewhere, eventually changing
the concentrations. Every ion must either be impermeant (like the interior macromolecules), or in
Nernst equilibrium, or actively pumped. Those ions that are actively pumped (Na+ and K+ in
our simplified model) must separately have their Ohmic leakage exactly matched by their active
pumping rates. Our model assumes that jpump

K+ = (−2/3)jpump
Na+ and that jpump

Na+ > 0, since our
convention is that j is the flux directed outward. Summarizing this paragraph, in steady state we
must have jNa+ = jK+ = 0, or

jpump
K+ = −jOhmic

K+ = −2
3 jpump

Na+ = −2
3 (−jOhmic

Na+ ).

In this model chloride is permeant and not pumped, so its Nernst potential must agree with
the resting membrane potential. Indeed from Table 11.1, its Nernst potential really is in good
agreement with the actual membrane potential ∆V = −60mV. Turning to sodium and potassium,
the previous paragraph implies that the Ohmic part of the corresponding ion fluxes must be in the
ratio −2/3. The Ohmic hypothesis (Equation 11.8) says that

−2
3

(
∆V − VNernst

Na+

)
gNa+ =

(
∆V − VNernst

K+

)
gK+ .

Solving for ∆V gives

∆V =
2gNa+VNernst

Na+ + 3gK+VNernst
K+

2gNa+ + 3gK+
. (11.12)

We now substitute the Nernst potentials appearing in Table 11.1 on page 416, and the measured
relation between conductances (Equation 11.9), finding ∆V = −72mV. We can then compare our
prediction to the actual resting potential, about −60mV.

Our model is thus moderately successful at explaining the observed membrane potential. In part
the inaccuracy stemmed from our use of the Ohmic (linear) hypothesis for membrane conduction,
Equation 11.8, when at least one permeant species (sodium) was far from equilibrium. Nevertheless,
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we have qualitatively answered our paradox: The membrane potential predicted by Equation 11.12
lies between the Nernst potentials of sodium and potassium, and is much closer to the latter, as
observed in experiments. Indeed Equation 11.12 shows that

The ion species with the greatest conductance per area gets the biggest vote in

determining the steady-state membrane potential. That is, the resting mem-

brane potential ∆V is closer to the Nernst potential of the most permeant

pumped species (here VNernst
K+ ), than it is to that of the less permeant ones (here

VNernst
Na+ ).

(11.13)

Our prediction for ∆V also displays experimentally verifiable, and correct, trends as we change the
ion concentrations on either side of the membrane.

Even more interestingly, if our membrane could suddenly switch from conducting potassium
better than sodium to the other way round, then Idea 11.13 predicts that its transmembrane
potential would change drastically, switching suddenly from a negative value close to VNernst

K+ to a
positive value closer to VNernst

Na+ . And in fact, Chapter 12 will show that the measured membrane
potential during a nerve impulse really does reverse sign and come close to VNernst

Na+ . But this is idle
speculation—isn’t it? Surely the permeabilities of a membrane to various dissolved substances are
fixed forever by its physical architecture and chemical composition—aren’t they? We will come
back to this point in the next chapter.
T2 Section 11.2.3′ on page 437 gives some more comments about active ion pumping.

11.3 Mitochondria as factories

Like kinesin, studied in Chapter 10, the sodium-potassium pump runs on a fuel, the molecule ATP.
Other molecular motors also run on ATP (or in some cases other NTPs). It takes a lot of ATP
to run your body—some estimates are as high as 2 · 1026 ATP molecules per day, all ultimately
derived from the food you eat. That much ATP would weigh 160 kg, but you don’t need to carry
such a weight around: Each ATP molecule gets recycled many times per minute. That is, ATP is
a carrier for free energy.

ATP synthesis in eukaryotic cells also involves active ion pumping, though not of sodium or
potassium. Instead, the last step in oxidizing your food (called respiration) pumps protons across
a membrane.

11.3.1 Busbars and driveshafts distribute energy in factories

Chapter 10 used the term “machine” to denote a relatively simple system, with few parts, doing
just one job. Indeed the earliest technology was of this sort: Turn a crank, and a rope lifts water
out of the well.

As technology developed, it became practical to combine machines into a factory, a loose collec-
tion of several machines with specialized subtasks. The factory was flexible: It could be reconfigured
as needed, individual machines could be replaced, all without disrupting the overall operation. In
particular, some of the machines could specialize in importing energy and converting it into a com-
mon currency to be fed into the other machines. The latter then made the final product, or perhaps
yet another form of energy currency for export.

The graphic on page 1 shows such a factory, circa 1820. The waterwheel converts the weight of
the incoming water to a torque on the driveshaft. The driveshaft runs through the mill, distributing
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Figure 11.7: (Schematic.) An imagined industrial process. (a) Chemical fuel is burned, ultimately creating a

difference in the electrical potential of electrons across two wires. The difference is maintained by electrical insulation
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chemical process, converting low-energy molecules to ones with high stored chemical energy. The latter can then be

loaded into an automobile to generate torque and do useful work. If desired, some of the electrons’ potential energy

can be converted directly to thermal form by placing a resistor (the “heater”) across the power lines.

mechanical energy to the various machines attached to it. Later, the invention of electrical tech-
nology allowed a more flexible energy currency, the potential energy of electrons in a conductor.
With this system, the initial conversion of chemical energy (for example, in coal) to electricity could
occur many kilometers away from the point of use in the factory. Within the factory, distribution
could be accomplished using a busbar, a large conducting bar running through the building, with
various machines attached to it.

Figure 11.7 sketches a factory of a sort that may one day supply hydrogen-powered automobiles.
Some high-energy substrate, like coal or uranium, comes in at the left. A series of transductions
converts the incoming free energy to the potential energy of electrons; the electrons themselves
are recirculated. In the factory, a busbar distributes the electricity to a series of electrolytic cells,
which convert low-energy water molecules to high-energy hydrogen and oxygen. The hydrogen gets
packaged and delivered to cars, which burn it (or convert it directly to electricity) and generate
useful work. In winter, some of the electricity can instead be sent through a resistor, doing no
mechanical work but warming up the factory for the comfort of those working inside it.

The next subsections will discuss the close parallels between the simple industrial process just
described and the activity of mitochondria.

11.3.2 The biochemical backdrop to respiration

The overall biochemical process we wish to study is one of oxidation. Originally this term referred
to the chemical addition of oxygen to something else, and indeed you breathe in oxygen, attach it to
high-energy compounds with carbon and hydrogen, and exhale low-energy H2O and CO2. Chemists
have found it useful, however, to generalize the concept of oxidation, in order to identify individual
subreactions as oxidation or the opposite process, reduction. According to this generalization,
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the key fact about oxygen is the tremendous lowering of its internal energy when it acquires an
additional electron. Thus, as mentioned in Chapter 7, in a water molecule the hydrogen atoms
are nearly stripped of their electrons, having given them almost entirely to the oxygens. Burning
molecular hydrogen in the reaction 2H2 + O2 → 2H2O thus oxidizes it in the sense of removing
electrons.

More generally, any reaction removing an electron from an atom or molecule is said to “oxidize”
it. Because electrons are not created or destroyed in chemical reactions, any oxidation reaction
must be accompanied by another reaction effectively adding an electron to something—a reduction
reaction. For example, oxygen itself gets reduced when we burn hydrogen.

With this terminology in place, let us examine what happens to your food. The early stages of
digestion break complex fats and sugars down to simple molecules, for example the simple sugar
glucose, which then get transported to the body’s individual cells. Once inside the cell, glucose
undergoes glycolysis in the cytoplasm. We will not study glycolysis in detail, though it does generate
a small amount of ATP (two molecules per glucose). Of greater interest to us is that glycolysis splits
glucose to two molecules of pyruvate (CH3–CO–COO−), another small, high-energy molecule.

In anærobic cells, this is essentially the end of the story. The pyruvate is a waste product, which
typically gets converted to ethanol or lactate and excreted by the cell, leaving only the two ATP
molecules per glucose as the useful product of metabolism. Prior to about 1.8 billion years ago,
Earth’s atmosphere lacked free oxygen, and living organisms had to manage with this “anærobic
metabolism.” Even today, intense exercise can locally exhaust your muscle cells’ oxygen supply,
switching them to anærobic mode, with a resulting buildup of lactate.

With oxygen, however, a cell can synthesize about thirty more molecules of ATP per glucose.
E. Kennedy and A. Lehninger found in 1948 that the site of this synthesis is the mitochondrion
(Figure 2.7 on page 37). The mitochondrion carries out a process called oxidative phosphorylation:
That is, it imports and oxidizes the pyruvate generated by glycolysis, coupling this energetically fa-
vorable reaction to the unfavorable one of attaching a phosphate group to ADP (“phosphorylating”
it).

The mitochondrion is surrounded by an outer membrane, which is permeable to most small ions
and molecules. Inside this membrane lies a convoluted inner membrane, whose interior is called
the matrix. The matrix contains closed loops of DNA and its transcriptional apparatus, similarly
to a bacterium. The inner side of the inner membrane is densely studded with spherical buttons
visible in electron microscopy and sketched in Figure 2.7b. These are ATP synthase particles, to
be discussed below.

Figure 11.8 shows in very rough form the steps involved in oxidative phosphorylation, discussed
in this subsection and the next one. The figure has been drawn in a way intended to stress the
parallels between the mitochondrion and the simple factory in Figure 11.7.

Decarboxylation of pyruvate The first step in oxidative phosphorylation takes place in the
mitochondrion’s matrix. It involves the removal of the carboxyl (CO) group from pyruvate and
its oxidation to CO2, via a giant enzyme complex called pyruvate dehydrogenase (see Figure 2.4m
on page 33). The remainder of the pyruvate is an acetyl group, CH3–CO–; it gets attached to a
carrier molecule called “coenzyme A” (abbreviated CoA) via a sulfur atom, forming “acetyl-CoA.”
As mentioned above, a reduction must accompany the oxidation of the carbon. The pyruvate
dehydrogenase complex couples the oxidation tightly to one particular reduction, that of the carrier
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(a) Metabolism of sugar generates a difference in the electrochemical potential of protons across the inner mitochon-

drial membrane. For simplicity, “NAD” represents both the carrier molecules NADH and FADH2 (the dashed line

represents an indirect process of import into the mitochondrion). (b) The protons in turn drive a number of molecular

machines. (Although mitochondria do not have flagella, bacteria such as E. coli have a similar arrangement, which

does drive their flagellar motor.)

molecule nicotinamide adenine dinucleotide (or NAD+). The net reaction,

CH3–CO–COO− + HS–CoA + NAD+ → CH3–CO–S–CoA + CO2 + NADH, (11.14)

adds two electrons (and a proton) to NAD+, yielding NADH. (Glycolysis also generates another
molecule of NADH per pyruvate; this NADH enters the respiratory chain indirectly.)

Krebs cycle The second step also occurs in the mitochondrial matrix. A cycle of enzyme-
catalyzed reactions picks up the acetyl-CoA generated in the previous step, oxidizing further the
acetyl group and recovering coenzyme A. Corresponding to this oxidation, three more molecules
of NAD+ are reduced to NADH; in addition a second carrier molecule, flavin adenine dinucleotide
(abbreviated FAD), gets reduced to FADH2. The net reaction,

CH3–CO–S–CoA + 2H2O + FAD + 3NAD+ + GDP3− + P2−
i

→ 2CO2 + FADH2 + 3NADH + 2H+ + GTP4− + HS–CoA, (11.15)

thus adds eight electrons (and three protons) to the carriers FAD and NAD+. It also generates
one GTP, which is energetically equivalent to an ATP. Different authors refer to this part of the
reaction as the Krebs cycle, or the tricarboxylic acid cycle.

Summary Reactions Equations 11.14 and 11.15 oxidize pyruvate completely: Pyruvate’s three
carbon atoms each end up as molecules of carbon dioxide. Conversely, four molecules of the carrier
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NAD+ and one of FAD get reduced to NADH and FADH2. Since glycolysis generates two molecules
of pyruvate and two of NADH, the overall effect is to generate ten NADH and two FADH2 per
glucose. Two ATP per glucose have been formed so far from glycolysis, and the equivalent of two
more from the citric acid cycle.

11.3.3 The chemiosmotic mechanism identifies the mitochondrial inner

membrane as a busbar

How does the chemical energy stored in the reduced carrier molecules gets harnessed to synthesize
ATP? Early attempts to solve this puzzle met with a frustrating inability to pin down the exact
stoichiometry of the reaction: Unlike, say, Equation 11.14, where each incoming pyruvate yields
exactly one NADH, the number of ATP molecules generated by respiration did not seem to be
any definite, integral number. This difficulty dispersed with the discovery of the chemiosmotic

mechanism, proposed by Peter Mitchell in 1961.
According to the chemiosmotic mechanism, ATP synthesis is indirectly coupled to respiration via

a power transmission system. Thus we can break the story down into the generation, transmission,
and utilization of energy, just as in a factory (Figure 11.8).

Generation The final oxidation reaction in a mitochondrion (respiration) is

NADH + H+ + 1
2O2 → NAD+ + H2O. (11.16)

(and a similar reaction for FADH2). This reaction has a standard free energy change of8 ∆G′0
NAD =

−88kBTr, but the enzyme complex that facilitates Reaction 11.16 couples it to the pumping of ten
protons across the inner mitochondrial membrane. The net free energy change of the oxidation
reaction is thus partially offset by the difference in the electrochemical potential of a proton across
the membrane (see Section 8.1.1 on page 260), times ten.

Your Turn 11d
a. Adapt the logic of the Example on page 422 to find the difference in electrochemical potential
for protons across the mitochondrial inner membrane. Use the following experimental input: The
pH in the matrix minus that outside is ∆pH = 1.4, while the corresponding electrical potential
difference equals ∆V ≈ −0.16 volt.
b. The difference you just found is often expressed as a “proton-motive force,” or “p.m.f.,” defined
as (∆µH+)/e. Compute it, expressing your answer in volts.
c. Compute the total ∆G′0

NAD + 10∆µH+ for the coupled oxidation of one molecule of NADH
and transport of ten protons. Is it reasonable to expect this reaction to go forward? What
information would you need in order to be sure?

Transmission Under normal conditions, the inner mitochondrial membrane is impermeable to
protons. Thus by pumping protons out, the mitochondrion creates an electrochemical potential
difference that spreads all over the surface of its inner membrane. The impermeable membrane
plays the role of the electrical insulation separating the two wires of an electrical power cord: It
maintains the potential difference between the inside and outside of the mitochondrion. Any other

8The actual ∆G is even greater in magnitude than ∆G′0, because the concentrations of the participating species

are not equal to their standard values. We will nevertheless use the above value as a rough guide.
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machine embedded in the membrane can utilize the excess free energy represented by this ∆µ to
do useful work, just as any machine can tap into the busbar along a factory.

Utilization The chemiosmotic mechanism requires a second molecular machine, the ATP syn-

thase, embedded in the inner membrane. These machines allow protons back inside the mitochon-
drion, but couple their transport to the synthesis of ATP. Under cellular conditions, the hydrolysis
of ATP yields a ∆GATP of about 20kBTr (see Appendix B). This is about 2.1 times as great as the
value you found for the proton’s |∆µ| in Your Turn 11d, so we conclude that at least 2.1 protons
must cross back into the mitochondrion per ATP synthesis. The actual value is thought to be
closer to 3.9 Another proton is thought to be used by the active transporters that pull ADP and
Pi into, and ATP out of, the mitochondrion. As mentioned earlier, each NADH oxidation pumps
ten protons out of the mitochondrion. Thus we expect a maximum of about 10/(3+1), or roughly
2.5 ATP molecules synthesized per NADH. This is indeed the approximate stoichiometry measured
in biochemical experiments. The related molecule FADH2 generates another 1.5 ATP on average
from its oxidation. Thus the ten NADH and two FADH2 generated by the oxidation of one glucose
molecule ultimately give rise to 10 × 2.5 + 2 × 1.5 = 28 ATP molecules.

Adding to these the two ATP generated directly from glycolysis, and the two GTP from the citric
acid cycle, yields a rough total of about 32 molecules of ATP or GTP from the oxidation of a single
glucose molecule. This figure is only an upper bound, assuming high efficiency (small dissipative
losses) throughout the respiration/synthesis system. Remarkably, the actual ATP production is
close to this limit: The machinery of oxidative phosphorylation is quite efficient. The schematic
Figure 11.9 summarizes the mechanism presented in this section.
T2 Section 11.3.3′ on page 437 gives some more comments about ATP production.

11.3.4 Evidence for the chemiosmotic mechanism

Several elegant experiments confirm the chemiosmotic mechanism.

Independence of generation and utilization Several of these experiments were designed to
demonstrate that oxidation and phosphorylation proceed almost independently, linked only by
the common value of the electrochemical potential difference, ∆µ, across the inner mitochondrial
membrane. For example, artificially changing ∆µ by preparing an acidic exterior solution was
found to induce ATP synthesis in mitochondria without any source of food. Similar results were
obtained with chloroplasts in the absence of light. (In fact, an external electrical potential can be
directly applied across a cell membrane to operate other proton-driven motors—see this chapter’s
Excursion.)

In a more elaborate experiment, E. Racker and W. Stoeckenius assembled a totally artificial
system, combining artificial lipid bilayers with a light-driven proton pump (bacteriorhodopsin)
obtained from a bacterium. The resulting vesicles generated a pH gradient when exposed to light.
Racker then added an ATP synthase from beef heart to his preparation. Despite the diverse
origins of the components, the combined system synthesized ATP when exposed to light, again
emphasizing the independence of ATP synthase from any aspect of the respiratory cycle other than
the electrochemical potential jump ∆µ.

9 T2 The precise stoichiometry of the ATP synthase is still under debate. Thus the numbers here are subject to

revision.
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Figure 11.9: (Schematic.) Mechanism of oxidative phosphorylation. Electrons are taken from NADH molecules

and transferred down a chain of carriers (black dots), ultimately ending up on an oxygen atom in water. Two of

the membrane-bound enzymes shown couple this process to the pumping of protons across the inner mitochondrial

membrane, seen in cross section. Protons then flow back through the F0F1 complex (right), which synthesizes ATP.

See also the more realistic depiction of these objects in Figure ?? on page ??. [From Goodsell, 1993.]

Membrane as electrical insulation It is possible to rip apart the mitochondrial membrane into
fragments (using ultrasound), without damaging the individual proteins embedded in it. Ordinarily
these fragments would reassemble into closed vesicles, because of the high free energy cost of a bilayer
membrane edge (see Section 8.6.1), but this reassembly can be prevented by adding a detergent.
The detergent, a one-chain amphiphile, protects the membrane edges by forming a micelle-like rim
(Figure 8.8 on page 285). When such fragments were made from the mitochondrial inner membrane,
they continued to oxidize NAD+, but lost the ability to synthesize ATP. The loss of function is easy
to understand in the light of the chemiosmotic mechanism: In a membrane fragment, the electrical
transmission system is “short-circuited”; protons pumped to one side can simply diffuse to the other
side.

Similarly, introducing any of a class of membrane channel proteins, or other lipid-soluble com-
pounds known to transport protons short-circuits the mitochondrion, cutting ATP production.
Analogous to the electric heater shown in Figure 11.7, such short-circuiting converts the chemical
energy of respiration directly into heat. Some animals engage this mechanism in the mitochondria of
“brown fat” cells, when they need to turn food directly into heat (for example, during hibernation).

Operation of the ATP synthase We have seen that an elaborate enzymatic apparatus accom-
plishes the oxidation of NADH and the associated proton pumping. In contrast, the ATP synthase
turned out to be remarkably simple. As sketched in Figure 11.10a, the synthase consists of two
major units, called F0 and F1. The F0 unit (shown as the elements a, b, and c in the figure) is
normally embedded in the inner mitochondrial membrane, with the F1 unit (shown as the elements
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Figure 11.10: (Schematic; video micrograph frames) Direct observation of the rotation of the “c” ring of the F0

proton turbine. (a) A complete ATP synthase from E. coli (both F0 and F1 units) is attached to a coverslip, and

a long, fluorescently labeled filament of actin is attached. (b) Successive video frames showing the rotation of the

actin filament in the presence of 5 mM ATP. The frames are to be read from left to right, starting with the first row;

they show a counterclockwise rotation of the actin filament. [From Wada et al., 2000.]

α, β, γ, δ, and ϵ in the figure) projecting into the matrix. Thus the F1 units are the round buttons
(often called “lollipops”) seen projecting from the inner side of the membrane in electron micro-
graphs. They were discovered and isolated in the 1960s by H. Fernandez–Moran and by Racker,
who found that in isolation they catalyzed the breakdown of ATP. This result seemed paradoxical:
Why should the mitochondrion, whose job is to synthesize ATP, contain an ATPase?

To answer the paradox, we first must remember that an enzyme cannot alter the direction of
a chemical reaction (see Ideas 8.14 on page 267 and 10.13 on page 374). ∆G sets the reaction’s
direction, regardless of the presence of enzyme. The only way an enzyme can implement an uphill
chemical reaction (∆GF1 > 0 for ATP synthesis) is by coupling it to some downhill process (∆GF0 <

0), with the net process being downhill (∆GF1 + ∆GF0 < 0). It was easy to guess that the F1 unit
is somehow coupled to the F0 unit, and that F0, being embedded in the membrane, is driven by
the electrochemical potential difference of protons across the membrane. By isolating the F1 unit,
the experimenters had inadvertently removed this coupling, converting F1 from a synthase to an
ATPase.

P. Boyer proposed in 1979 that both F0 and F1 are rotary molecular machines, mechanically
coupled by a driveshaft. According to Boyer’s hypothesis, we may think of F0 as a proton “turbine,”
driven by the chemical potential difference of protons and supplying torque to F1. Boyer also
outlined a mechanochemical process by which F1 could convert rotary motion to chemical synthesis.
Fifteen years later, J. Walker and coauthors gave concrete form to Boyer’s model, finding the
detailed atomic structure for F1 (sketched in Figure 11.10a). The elements labeled a, b, α, β, and
δ in the figure remain fixed with respect to each other, while c, γ, and ϵ rotate relative to them.
Each time the driveshaft γ passes a β subunit, the F1 unit catalyzes the interconversion of ATP
with ADP; the direction of rotation determines whether synthesis or hydrolysis takes place.

Although static atomic structures such as the one in Figure 11.10a can be highly suggestive,
nevertheless they do not actually establish that one part moves relative to another. The look-and-
see proof that F1 is a rotary machine came from an ingenious direct experiment by K. Kinosita,
Jr., M. Yoshida, and coauthors. Figure 11.10 shows a second-generation version of this experiment.

With a diameter of less than 10 nm, F1 is far too small to observe directly by light microscopy.
To overcome this problem, the experimenters attached a long, stiff actin filament to the c element,
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as sketched in Figure 11.10a. They labeled the filament with a fluorescent dye and anchored the
α and β elements to a glass slide, so that relative rotary motion of the c element would crank the
entire actin filament. The resulting motion pictues showed that the motor took random (Brownian)
steps, with no net progress, until ATP was added. With ATP, it moved in one direction at speeds
up to about six revolutions per second. The motion was not uniform; slowing the F1 motor by
using low ATP levels showed discrete, 120◦ steps. Such steps are just what we would expect on
structural grounds: The structure of F1 shows three β subunits, each one-third of a revolution from
the others. (Compare the steps taken by kinesin, Figure 10.22 on page 385.) A later experiment
used the entire F0F1 complex, not just F1, to confirm that the F0 really is rigidly connected to F1
(see Figure 11.10).

The experiments just described also allow an estimate of the torque generated by ATP hydrolysis
(or the torque required for ATP synthesis), using ideas from low Reynolds-number flow. The
experimenters found that an actin filament 1µm long rotated at about 6 revolutions per second, or
an angular velocity of 2π×6 radians per second, when ATP was supplied. Section 5.3.1 on page 153
claimed that the viscous drag force on a thin rod, dragged sideways through a fluid, is proportional
to its speed, v, and to the viscosity of water, η. The force should also be proportional to the rod’s
length. Detailed calculation for a rod of length 1µm, with the thickness of an actin filament, gave
Kinosita and coauthors the constant of proportionality:

f ≈ 3.0ηLv. (11.17)

Your Turn 11e
Equation 11.17 gives the force needed to drag a rod at a given speed v. But we want the torque
needed to crank a rod pivoted at one end at angular velocity ω.
a. Work this out from Equation 11.17. Evaluate your answer for a rod of length 1µm rotating at
6 revolutions per second.
b. How much work must the F1 motor do for every one-third revolution of the actin filament?

More precisely, the rotation rate just quoted was achieved when ATP was supplied at a concen-
tration cATP = 2mM, along with cADP = 10 µM and cPi = 10mM.

Your Turn 11f
a. Find ∆G for ATP hydrolysis under these conditions (recall Section 8.2.2 and Problem 10.3).
b. If each ATP hydrolysis cranks the γ element by one-third of a revolution, how efficiently does
F1 transduce chemical free energy to mechanical work?

Thus F1 is a highly efficient transducer, when operated in its ATPase mode. Under natural condi-
tions, F1 operates in the opposite direction (converting mechanical energy supplied by F0 to ATP
production) with a similarly high efficiency, contributing to the overall high efficiency of ærobic
metabolism.

11.3.5 Vista: Cells use chemiosmotic coupling in many other contexts

Section 11.2 introduced ion pumping across membranes as a practical necessity, reconciling

• The need to segregate macromolecules inside a cellular compartment, so they can do their
jobs in a controlled chemical environment,
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• The need to give macromolecules an overall net negative charge, in order to avert a clumping
catastrophe (Section 7.4.1 on page 229), and

• The need to maintain osmotic balance, or osmoregulate, in order to avoid excessive internal
pressure (see Section 11.2.1).

This chain of logic may well explain why ion pumps evolved in the first place: to meet a challenge
posed by the physical world.

But evolution is a tinkerer. Once a mechanism evolves to solve one problem, it’s available to
be pressed into service for some totally different purpose. Ion pumping implies that the resting,
or steady, state of the cell is not in equilibrium, and so is not a state of minimal free energy.
That is, the resting state is like a charged battery, with available (free) energy distributed all over
the membrane. We should think of the ion pumps as a “trickle charger,” constantly keeping the
battery charged despite “current leaks” tending to discharge it. Section 11.3.3 showed one useful
cellular function that such a setup could perform: the transmission of useful energy among machines
embedded in the mitochondrial membrane. In fact, the chemiosmotic mechanism is so versatile that
it appears over and over in cell biology.

Proton pumping in chloroplasts and bacteria Chapter 2 mentioned a second class of ATP-
generating organelles in the cell, the chloroplasts. Chloroplasts capture sunlight and use its free
energy to pump protons across their membrane. From this point on, the story is similar to that in
Section 11.3.3: The proton gradient drives a “CF0CF1” complex similar to F0F1 in mitochondria.

Bacteria, too, maintain a proton gradient across their membranes. Some ingest and metabolize
food, driving proton pumps related to, though simpler than, the ones in mitochondria. Others, for
example the salt-loving Halobacterium salinarium contain a light-driven pump, bacteriorhodopsin.
Again, whatever the source of the proton gradient, bacteria contain F0F1 synthases quite similar
to those in mitochondria and chloroplasts. This high degree of homology, found at the molecular
level, lends strong support to the theory that both mitochondria and chloroplasts originated as
free-living bacteria. At some point in history, they apparently formed symbiotic relations with
other cells. Gradually the mitochondria and chloroplasts lost their ability to live independently, for
example losing some of their genomes.

Other pumps Cells have an array of active pumps. Some are powered by ATP: For example,
the calcium ATPase, which pumps Ca++ ions out of a cell, plays a role in the transmission of nerve
impulses (see Chapter 12). Others pull one molecule against its gradient by coupling its motion to
the transport of a second species along its gradient. Thus for example the lactose permease allows
a proton to enter a bacterial cell, but only at the price of bringing along a sugar molecule. Such
pumps, where the two coupled motions are in the same direction, are generically called symports.
A related class of pumps, coupling an inward to an outward transport, are called antiports. An
example is the sodium–calcium exchanger, which uses sodium’s electrochemical potential gradient
to force calcium out of animal cells (see Problem 11.1).

The flagellar motor Figure 5.9 on page 157 shows the flagellar motor, another remarkable molec-
ular device attached to the power busbar of E. coli. Like F0, the motor converts the electrochemical
potential jump of protons into a mechanical torque; Section 5.3.1 on page 153 described how this
torque turns into directed swimming motion. The flagellar motor spins at up to 100 revolutions per
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Figure 11.11: (Photomicrograph; schematic; experimental data.) Experiment to show that the flagellar motor

runs on proton-motive force. (a) Micropipette tip used to study the bacterial flagellar motor. (b) Micropipette with

a partially inserted bacterium. Dashed lines represent the part of the cell wall permeabilized by cephalexin. [Image

kindly supplied by H. C. Berg; see Fung & Berg, 1995.] (c) Flagellar motor speed versus the proton-motive force

across the part of the membrane containing the motor.

second; each revolution requires the passage of about 1000 protons. The Excursion to this chapter
describes a remarkable experiment showing directly the relation between proton-motive force and
torque generation in this motor.

11.4 Excursion: “Powering up the flagellar motor” by H.

C. Berg and D. Fung

Flagellar rotary motors are driven by protons or sodium ions that flow from the outside to the
inside of a bacterial cell. E. coli uses protons. If the pH of the external medium is lower than that
of the internal medium, protons move inward by diffusion. If the electrical potential of the external
medium is higher than that of the internal medium, they are driven in by a transmembrane electric
field. We thought that it would be instructive to power up the flagellar motor with an external
voltage source, for example a laboratory power supply.10 E. coli is rather small, less than 1 µm

in diameter by about 2µm long. And its inner membrane, the one that needs to be energized, is
enclosed by a cell wall and porous outer membrane. Thus, it is difficult to insert a micropipette
into a cell. But one can put a cell into a micropipette.

First, we grew cells in the presence of a penicillin analog called cephalexin: This suppresses
septation (formation of new cell walls between the halves of a dividing cell). The cells then just
grow longer without dividing—they become filamentous, like snakes. Then we attached inert mark-
ers (dead cells of normal size) to one or more of their flagella. We learned how to make glass
micropipettes with narrow constrictions (Figure 11.11a). Then by suction we pulled a snake about
half way into the pipette, as shown schematically in panel b of the figure. The pipette contained

10Actually, we used a voltage clamp; see Section 12.3.1 on page 465.
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an ionophore, a chemical that made the inner segment of the cell permeable to ions, as indicated
by the dashed lines. One electrode from the voltage clamp was placed in the external medium and
the other was placed inside the pipette. At the beginning of the experiment, the largest resistance
in the circuit between the electrodes was the membrane of the outer segment: The resistances of
the fluid in the pipette and the membrane of the inner segment were relatively small. Therefore,
nearly all of the voltage drop was across the membrane of the outer segment, as desired. However,
a substantial fraction of the current flowing between the electrodes leaked around the outside of
the cell, so we could not measure the current flowing through the flagellar motors (or other mem-
brane ion channels). The job of the voltage clamp was to supply whatever current was necessary
to maintain a specified difference in potential.

When we turned up the control knob of the voltage clamp, the marker spun faster. When we
turned it down, the marker spun more slowly. If we turned it up too far (beyond about 200mV),
the motor burned out (the membrane suffered dielectric breakdown). In between, the angular
speed of the motor proved to be linearly proportional to the applied voltage, a satisfying result.
When we reversed the sign of the voltage, the motor spun backward for a few revolutions and then
stopped. When we changed the sign back again, the motor failed to start for several seconds, and
then sped up in a stepwise manner, gaining speed in equally spaced increments. Evidently, the
different force-generating elements of the motor—we think there are eight, as in a V-8 automobile
engine—either were inactivated or came off of the motor when exposed to the reverse potential.
They were reactivated or replaced, one after another, when the initial potential was restored! We
did not expect to see this self-repair phenomenon.

The main difficulty with this experiment was that the ionophore used to permeabilize the inner
segment soon found its way to the outer segment, destroying the preparation. Correction could be
made for this, but only for a few minutes. We are still trying to find a better way to permeabilize
the inner segment.

For more details See Blair & Berg, 1988 and Fung & Berg, 1995.
Howard Berg is Professor of Molecular and Cellular Biology, and of Physics, at Harvard University. Having

studied chemistry, medicine, and physics, he began looking for a problem involving all these fields—and

settled upon the molecular biology of behavior. David Fung did his doctoral work on several aspects of the

bacterial flagellar motor. He currently works on technology transfer at Memorial Sloan–Kettering Cancer

Center in New York.

The big picture

Returning to the Focus Question, this chapter gave a glimpse of how cells actively regulate their
interior composition, and hence their volume. We followed a trail of clues that led to the discovery
of ion pumps in the cell membrane. In some ways the story is reminiscent of the discovery of DNA
(Chapter 3): A tour de force of indirect reasoning left little doubt that some kind of ion pump
existed, years before the direct isolation of the pump enzyme. We then turned to a second use for
ion pumping, the transmission of free energy from the cell’s respiration pathway to its ATP synthesis
machinery. The following chapter will develop a third use: Ion pumps create a nonequilibrium state,
in which excess free energy is distributed over the cell’s membrane. We will see how another class
of molecular devices, the voltage-gated ion channels, has evolved to turn this “charged” membrane
into an excitable medium, the resting state of a nerve axon.
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Key formulas

• Gibbs–Donnan: If several ion species can all permeate a membrane, then in order to have
equilibrium their Nernst potentials must all agree with each other (and with the externally
imposed potential drop, if any). For example, suppose the ions are sodium, potassium, and
chloride, and let c1,i and c2,i be the exterior and interior concentrations, respectively, of species
i. Then (Equation 11.5)

c1,Na+

c2,Na+
=

c1,K+

c2,K+
=

c2,Cl−

c1,Cl−
.

• Pumps: The effect of active ion pumping is to add an ATP-dependent current source to
the membrane. Making the Ohmic hypothesis gives jNa+ = gNa+

e (∆V − VNernst
Na+ ) + jpump

Na+

(Equation 11.10). Here jNa+ is the flux of sodium ions, gNa+ is the membrane’s conductance,
VNernst

Na+ is the Nernst potential, and ∆V is the actual potential difference across the membrane.

Further reading

Semipopular:

History: Hodgkin, 1992.

Intermediate:

Section 11.2 follows in broad outline the approach of Benedek & Villars, 2000c. See also Katz’s
classic book, Katz, 1966.
Osmoregulation: Keener & Sneyd, 1998, §2.8
Electroosmotic aspects of kidney function: Hoppensteadt & Peskin, 2002; Benedek & Villars,
2000c.
Many biochemistry and cell-biology texts describe the biochemical aspects of respiration, for
example Berg et al., 2002; Nelson & Cox, 2000; Voet & Voet, 2003; Karp, 2002.
Chemiosmotic mechanism: Atkins, 2001; Alberts et al., 1997.
Modeling of ion transport, cell volume control, and kidney function: Hoppensteadt & Peskin, 2002;
Keener & Sneyd, 1998.

Technical:

Ion Pumps: Läuger, 1991; Skou, 1989.
F0F1: Noji et al., 1997; Boyer, 1997; Oster & Wang, 2000.
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T2 Track 2

11.1.2′

1. To see why the charge density in the membrane is small, think of how permeation works:
a. Some permeation occurs through channels; the volume of these channels is a small fraction of
the total volume occupied by the membrane.
b. Some permeation occurs by dissolving the ions in the membrane material; the corresponding
partition coefficient (see Section 4.6.1 on page 121) is small. That’s because the ions have a large
Born self-energy in the membrane interior, whose permittivity is low (see Section 7.4.1 on page
229).

2. We can get Equation 11.1 more explicitly if we imagine membrane permeation literally as diffusion
through a channel in the membrane. Applying the argument in Section 4.6.3 on page 124 to the
channel gives

V ′
2 − V ′

1 = −kBT

ze
ln

c′2
c′1

.

Here V ′ and c′ refer to the potential and density at the mouth of the channel (at lines B or
C in Figure 11.2). But we can write similar formulas for the potential drops across the charge
layers themselves, for example V2 − V ′

2 = −kBT
ze ln c2

c′2
. Adding these three formulas again gives

Equation 11.1.
Actually, we needn’t be so literal. The fact that the permeation constant of the membrane drops

out of the Nernst relation means that any diffusive transport process will give the same result.

11.2.2′ Section 11.2.2 on page 418 mentioned that there will be nonlinear corrections to Ohmic
behavior when ∆V − VNernst

i is not small. Indeed, each of the many ion conductances has its own
characteristic current-versus-potential relation, some of them highly nonlinear (or “rectifying”),
others not. One simple model for a nonlinear current–voltage relation is the “Goldman–Hodgkin–
Katz” formula; see for example Appendix C of Berg, 1993.

11.2.3′

1. Adding up the columns of Table 11.1 seems to show that even with ion pumping there is a big
osmotic imbalance across the cell membrane. We must remember, however, that while the list of
ions shown in the table is fairly complete for the extracellular fluid (essentially seawater), still the
cytosol has many other osmotically active solutes, not listed in the table. The total of all interior
solute species just balances the exterior salt, as long as active pumping keeps the interior sodium
level small. If active pumping stops, the interior sodium level rises, and an inward flow of water
ensues.

2. The sodium–potassium pump can be artificially driven by external electric fields, instead of by
ATP. Even an oscillating field, which averages to zero, will induce a directed net flux of sodium in
one direction and potassium in the other: The pump uses the nonequilibrium, externally imposed
field to rectify the thermally actived barrier crossings of these ions, like the diffusing ratchet model
of molecular motors (Section 10.4.4 on page 389). See Astumian, 1997; Läuger, 1991.

11.3.3′ The discussion in Section 11.3.3 did not mention how pyruvate and ADP enter the mi-
tochondrial matrix, nor how ATP exits. Specialized transporters in the mitochondrial membrane
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accomplish these tasks. Some of these transporters themselves require ATP, reducing the net
production per glucose. For more details see Berg et al., 2002; Hinkle et al., 1991.
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Problems

11.1 Heart failure
A muscle cell normally maintains a very low interior calcium concentration; Section 12.4.2 will
discuss how a small increase in the interior [Ca2+] causes the cell to contract. To maintain this low
concentration, muscle cells actively pump out Ca2+. The pump used by cardiac (heart) muscle is
an antiport (Section 11.3.5): It couples the extrusion of calcium ions to the entry into the cell of
sodium.

The drug oubain suppresses the activity of the sodium–potassium pump. Why do you suppose
this drug is widely used to treat heart failure?

11.2 Electrochemical equilibrium
Suppose we have a patch of cell membrane stuck on the end of a pipette (tube). The membrane is
permeable to bicarbonate ions, HCO−

3 . On side A we have a big reservoir with bicarbonate ions at
a concentration of 1 M; on side B there’s a similar reservoir with a concentration of 0.1 M. Now we
connect a power supply across the two sides of this membrane, to create a fixed potential difference
∆V = VA − VB .
a. What should ∆V be in order to maintain equilibrium (no net ion flow)?
b. Suppose ∆V = 100 mV. Which way will bicarbonate ions flow?

11.3 Vacuole equilibrium
Here are some data for the marine alga Chætomorpha. The extracellular fluid is seawater;
the “plasmalemma” (outer cell membrane) separates the outside from the cytoplasm; a second
membrane (“tonoplast membrane”) separates the cytoplasm from an interior organelle, the vacuole
(Section 2.1.1 on page 34). (In this problem we pretend that there are no other small ions than
the ones listed here.)

Ion Vacuole Cytoplasm Extracellular VNernst (plasmalemma) VNernst (tonoplast)
(mM) (mM) (mM) (mV) (mV)

K+ 530 425 10 ? −5.5
Na+ 56 50 490 +57 ?
Cl− 620 30 573 −74 +76

a. The table gives some of the Nernst potentials across the two membranes. Fill in the missing
ones.
b. The table does not list the charge density ρq,macro arising from impermeant macroions in the
cytoplasm. What is −ρq,macro/e in mM?
c. The actual measured membrane potential difference across the tonoplast membrane is +76mV.
Suppose all the quoted numbers are accurate to about 2%. Which ion(s) must be actively pumped
across the tonoplast membrane, and in which direction(s)?
d. Suppose we selectively shut down the ion pumps in the tonoplast membrane, but the cell
metabolism continues to maintain the listed concentrations in the cytoplasm. The system then
relaxes to a Donnan equilibrium across the tonoplast membrane. What will be the approximate
ion concentrations inside the vacuole, and what will be the final Donnan potential?

11.4 T2 Relaxation to Donnan equilibrium
Explore what happens to the resting steady state (see Section 11.1.3) after the ion pumps are
suddenly turned off, as follows.
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a. Table 11.1 on page 416 shows that sodium ions are far from equilibrium in the resting state.
Find the conductance per area for these ions, using the value 5Ω−1m−2 for the total membrane
conductance per area and the ratios of individual conductances given in Equation 11.9 on page 420.
b. Using the Ohmic hypothesis, find the initial charge flux carried by sodium ions just after the
pumps have been shut off. Reexpress your answer as charge per time per unit length along a giant
axon, assuming its diameter to be 1 mm.
c. Find the total charge per unit length carried by all the sodium ions inside the axon. What would
the corresponding quantity equal if the interior concentration of sodium matched the fixed exterior
concentration?
d. Subtract the two values found in (c). Divide by the value you found in (b) to get an estimate
for the time scale for the sodium to equilibrate after the pumps shut off.
e. Chapter 12 will describe a nerve impulse as an event that passes by one point on the axon in
about a millisecond. Compare to the time scale you just found.
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