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Abstract

Unintended spatial spread of genetic information is one of the major problems in modern agriculture. The vertical distribution
of transgenic properties and the spatial spread of resistant weeds and pests are likely to develop under long-term pesticide use.
These are complex systems that require an integrated view of population dynamics, genetics, and physical transport processes.
Mathematical models may be utilised to support of risk assessment and to derive appropriate risk management strategies. In this
contribution we propose a generic modelling framework that provides an explicit simulation of the spatial patterns of gene flow
through agro-ecosystems.

Pollen dispersal is modelled with traditional transport equations from atmospheric physics that are applied to outcrossing stud-
ies of genetically modified maize. Transport equations were coupled to models of population dynamics and genetics with partial
differential equations that combine dispersal, growth and genetics. The overall model consists of a set of coupled partial differential
equations for pollen dispersal, and the spatial and temporal dynamics of each biotype involved. Initial boundary value problems
are set up for the dispersal of resistance in dependence on spatial spread patterns, which are solved by finite element methods.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In modern agriculture gene flow is important be-
cause of (i) the development and spread of resistant
biotypes from the extended use of pesticides, and (ii)
the large-scale release of transgenics. Gene flow is a
complex process embracing population dynamics, ge-
netics, and the flow of genetic information via pollen
and seed dispersal. In order to establish mathemati-
cal models for risk assessment and management, these
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processes have to be integrated. Each of these pro-
cesses have been published with adverse set of math-
ematical approaches:

• deterministic matrix population models (Richter
et al., 2002),

• stochastic models (Paice et al., 1998),
• cellular automaton models for dispersal of resistant

weeds (Colbach and Sache, 2001; Ermentrout and
Edelstein-Keshet, 1993; Richter et al., 2002),

• air pollution models stemming from atmospheric
diffusion theories (Lavigne et al., 1998; Okubo and
Levin, 1989), and

• population dispersal in terms of partial differential
equations (Murray, 1989).
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Each approach has its own merits and justification
in specific contexts and scales. However, our aim is to
find a general mathematical framework for the integra-
tion of all processes into an aggregated, transferable
and modular model structure.

The processes taken into consideration for inte-
grated modelling of biosafety issues are population dy-
namics, genetics, and dispersal of genetic information.
If gene flow is considered at the field and landscape
scale, a convenient general mathematical structure is a
system of partial differential equations. For each of the
processes involved, relations in the form of ordinary
or partial differential equations can be formulated, and
then bound into one system of equations. Advantage
of a mathematically homogeneous approach includes:

(i) the processes can be formulated in a concise way
that

(ii) leads to well defined mathematical problems, and
(iii) for which advanced numerical solution schemes

are available.

Furthermore, a concise mathematical formulation
is advantageous in that general dynamic patterns
can be explained by the structure of the differential
equations. This is not feasible for models, which
are merely defined in algorithmic form, for instance
rule based systems in cellular automaton models (cf.
Richter et al., 2001).

The paper is structured as follows:Section 2de-
scribes the proposed integrative modelling framework
comprising population dynamics, dispersal, and genet-
ics. Section 3applies this framework to different ex-
perimental data sets. Sub-modules of the framework
are used for model analysis and calibration. These re-
sults are finally discussed inSection 4.

2. Modelling framework for gene flow in
agro-ecosystems

Modelling the spatial spread of genetic informa-
tion requires coupling of three components: popula-
tion dynamics, dispersal, and genetics. First a gen-
eral model for spatially explicit population dynamics
based on partial differential equations is developed.
This sub-model acts as a source for pollen emission.
Second, Lagrangian and the Eulerian approaches for
the atmospheric transport processes are incorporated

to model the dispersal of pollen. The third part of
the modelling concept is a genetic model that couples
pollen imission-events of out-crossing, with the phe-
nomenological pattern of the crop.

2.1. Population dynamics

First we considern = 2 andn = 3 populations
of different biotypes of a species with the population
density denoted byNi (i = 1, . . . , n). The approach
can be extended to an arbitrary number of biotypes.1

The following basic equation formulates the processes
of crop growth and spatial spread, and exchange of
genetic information.

∂Ni

∂t
= ri( �N, �P)︸ ︷︷ ︸

(a)

− µiNi


1 +

n∑
j=1

αi,jNj




︸ ︷︷ ︸
(b)

+∇ ·Di∇Ni︸ ︷︷ ︸
(c)

, i = 1, . . . , n (1)

Population growth and the underlying genetic pro-
cesses are incorporated by the Term (a). InSection 2.3
we will present a two-loci genetic model for the spec-
ification of ri. Pi denotes the available pollen of bio-
typeNi.

Term (b) models the species dependent mortality
with a parameterµi and the interspecific competition
between the biotypesi and j defined by parameters
αi,j. If only a single biotype is considered, the Terms
(a) and (b) are equivalent to the logistic growth equa-
tion. The last Term (c) ofEq. (1)describes the spatial
spread of species by a simple diffusion-type process.
The specification of the coefficientD can incorporate
different strategies for spatial spread by rhizomes or
due to clonal growth.D depends on habitat suitability
or abiotic parameters (cf.Seppelt, 2003, chapter 3).
Note the model is also applicable to insect populations
with immobile (larvae) and mobile (adult) life stages.
If exchange of genetic information between the bio-
types is neglected, Term (a) becomes a simple growth
rate. The equation system of this sub-model can be
used to study spatially explicit habitat-dependent pop-
ulation dynamics.

1 We will carefully point out if there are any special considera-
tions according to the number of species.
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2.2. Pollen dispersal

Several studies from recent literature have exam-
ined the outcrossing probability of genetic modified
crops (Lavigne et al., 1998; Emberlin et al., 1999;
Treu and Emberlin, 2000). However, comparisons
between pollen dispersal experiments is difficult be-
cause of the strong dependence on the shape and area
of the source and receptor plots, and the strong in-
fluence of different weather conditions, even for the
same crop (Lavigne et al., 1998). Models are needed
that relate dispersal distances to such measurable
parameters as wind speed and settling velocity. This
allows comparisons among different environments,
rather than conventional phenomenological models
(Okubo and Levin, 1989). Two approaches (Lagrange
and Eulerian) are used for modelling the spatial
spread of genetic information. Further, differences be-
tween phenomenological- and physical-based model
approaches are considered.

2.2.1. Lagrange approach
The Lagrange approach describes the concentration

statistics in terms of the stochastic properties of the
paths of ensembles of particles. Transport of a particle
in the three-dimensional space from a location (x, y,
z) to a location (x′, y′, z′) is modelled by a density
function f(x − x′, y − y′, z − z′), also known as a
transfer function. The amount of particles, which are
emitted from a location (x′, y′, z′) and reach a location
(x, y, z), is given by the product of the density of pollen
donatorsSi(x′, y′, z′) of biotype i at location (x′, y′,
z′) and the transfer functionf(x − x′, y − y′, z − z′).
The total amount of pollen, which reaches a single
plant in (x, y, z), is then derived by the integral over
all donators (Lavigne et al., 1998).

Fi(x, y, z) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x− x′, y − y′, z− z′)

×Si(x′, y′, z′)dx′dy′dz′ (2)

A frequent choice forf is a transfer function of
Gaussian-type with covariance matrixΣ in a general
for written as:

f(�x) = 1

(2π)3/2
∣∣Σ1/2

∣∣
×

(
exp

[
−1

2
(�x− �x′)Σ−1(�x− �x′)

])
(3)

with �x = (x, y, z), �x′ = (x′, y′, z′) and the general co-
variance matrixΣ ∈ R3×3. This ansatz is supported by
the fact that the general form of the analytical solution
of the atmospheric diffusion equation for an instanta-
neous source in a constant velocity field inx-direction
is given by such a Gaussian-type function (cf.Seinfeld
and Pandis, 1998).

f1(x, y, z, t) = S

8(πt)3/2(KxxKyyKzzt)1/2

× exp

[
− (x− ut)2

4Kxxt
− y2

4Kyyt
− z2

4Kzzt

]
(4)

Here u denotes the wind velocity,S is the source
strength andKii is the Eddy diffusion coefficients.

Several experimental investigations (Schütte et al.,
2001) showed that spatial spread of pollen is charac-
terised by short and long distance transport. A possi-
ble explanation is that pollen in the upper layers of the
canopy has a higher diffusion resistance than pollen
in the upper layers of the atmosphere (Nichols and
Hewitt, 1994). This effect can be modelled by the su-
perposition of transfer functions of Gaussian type. The
superposition of two Gaussian-type transfer-functions
with covariance matricesΣ1 andΣ2 as:

fS(�x) = Si

(
β exp

[
−1

2
(�x− �x′)Σ−1

1 (�x− �x′)
]

+ (1 − β)exp

[
−1

2
(�x− �x′)Σ−1

2 (�x− �x′)
])

(5)

yields a typical biphasic profile of spatial spread.Fig. 1
illustrates the superposition of two Gaussian-type
functions.

For each biotypei, model parameters include the
weighting factor β, and the six elements (in the
three-dimensional case or three elements in the two-
dimensional case) of the symmetric covariance ma-
trices. These parameters reflect the previous history
concerning wind velocity and other meteorological
variables and the time overlap of anthesis of the donor
population and fertilisation sensitivity of the recipient
population.

2.2.2. Eulerian approach
The Eulerian approach describes the spatial spread

of an ensemble of particles relative to a fixed co-
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Fig. 1. SuperpositionfS of two Gaussian-type functionsf with distinct diffusion coefficients.

ordinate system. The mass balance equation for an
infinitesimally small representative volume leads to
a partial differential equation. Under simplifying as-
sumptions (molecular diffusion negligible compared
to turbulent diffusion, and incompressible atmosphere)
spatial spread of pollenPi of biotypei is described by
the following partial differential equation:

∂Pi

∂t
= ∇ ·K∇Pi − ∇ · �uPi + Si(�x, t) (6)

Pi denotes the particle density, e.g. pollen,K is the
diffusion coefficient andSi is a source term.

The wind velocity profile above canopy is given by
an empirical formula:

ux(z) = uy(z) = u0

(
z

h0

)s

, uz = −g (7)

The wind velocity field is thus given by�u =
(ux, uy, uz). Gravitational settling of pollen is speci-
fied by the parameterg. ux anduy specify the velocity
of a wind field and thus define the boundary condition
for Eq. (6). u0 denotes an average wind speed andh0
is the height of the canopy.s is a shape parameter.
Based on field measurements the parametersu0 and
h0 can be measured directly. The shape parameter can

be identified with parameter estimation techniques
(Richter and Söndgerath, 1990). Fig. 2 illustrates the
boundary condition for the functionux = uy with
data fromRaupach and Thom (1981).

2.2.3. Different mobility of pollen
Eq. (1) may be applied to model spatial spread of

crops, weed or insect populations. In this equation dis-
persal is modelled by a single parameterD. Analysis
of gene flow through populations, and the spread of
genetic properties necessitates distinguishing popula-
tionsNi and their emitted pollenPi. To now the density
of a certain populationNi was available. The emitted
pollen from population,Ni, is given by the equation:

Si(x, y, t) = αiNi(x, y, t)f(t) (8)

As a first approach, it is assumed that pollen emis-
sions are proportional to the plant density, as embod-
ied in the coefficientαi. The time dependent factorf(t)
incorporates phenological stages, e.g. blossom of the
crop and the genotypeNi. Note Eq. (8) specifies the
source strength of pollen used inEqs. (2), (4) and (6)
and couples the population dynamics sub-model with
the one for dispersal.
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Fig. 2. Profile of mean wind velocity in a maize canopy (h0 = 2.45 m) with a measured wind velocity at the top ofu0 = 1.13 m s−1.

2.2.4. Outcrossing probability
Test and analysis of the sub-models was conducted

by the estimation of the probability of out-crossing
events for one genotype in a field of a differing geno-
type. This probability was calculated for genotypek
by estimating the available pollen of genotypek by
the pollen from the donator, as well as for all recipient
populations at location�x:

pk(�x) = Pk(�x)∑n
i=1Pi(�x)

(9)

In the following we will focus on two populations,
a genetic modified populationN1 (with pollenP1) and
a non-modified populationN2 (with pollen P2). This
reducesEq. (9) to:

p1(�x) = P1(�x)
Pi(�x)+ P2(�x) (10)

2.3. Genetics

Estimating the probability of out-crossing events is
a first indicator for gene flow in an agricultural ecosys-
tem. If interest is in the phenological results of gene
flow, then simulation of mating process of different
genesis is needed. The functionsri( �N, �P) (Eq. (1),
Term (a)) which couple the sub-model of dispersion

(Eqs. (4) and (6)) with the population dynamics sub-
model (Eq. (1)), need to be defined.

We focus on a diploid species with three geno-
types (n = 3): “AA”, “Aa”, and “aa”. The functions
ri( �N, �P) are derived from the Hardy–Weinberg theory
(Nisbet et al., 1989):

r1( �N, �P) = r1
1

P

(
P1 + 1

2
P2

) (
A1N1 + 1

2
A2N2

)

r2( �N, �P) = r2
1

P

[(
P3 + 1

2
P2

) (
A1N1 + 1

2
A2N2

)

+
(
P1 + 1

2
P2

)
A3N3

]

r3
( �N, �P) = r3

1

P

(
P3 + 1

2
P2

) (
A3N3 + 1

2
A2N2

)
(11)

with P = P1+P2+P3. HereAi (i = 1, . . . , 3) denote
the number of seed of biotypei, andri is the rate of
germinating (plants) or hatching (insects).

2.4. Model overview and numerical solution

Fig. 3 summarises the equations and functions of
all sub-models introduced previously. An overview of
all parameters is given inTable 1. The framework
consists of generic models for population dynamics
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Fig. 3. Summary of model framework.

Table 1
List of parameters

Sub-model 1 Population dynamics,Eq. (1)
αi,j Interspecific competition
µi Mortality
Di Dispersal

Sub-model 2a Lagrange approach,Eqs. (2)–(5)
Σ,Σi ∈ R3×3 General covariance matrix
Special case Two-dimensional superposition of two

Gaussian-type functions,Eqs. (4) and (5)
Kxx, Kyy, Kzz Eddy diffusivity
β Far-field/near-field relation
Si Source strength of biotypei

Sub-model 2b Eulerian approach,Eqs. (6) and (7)
K Diffusivity
u0 Average wind speed at top of canopy
h0 Height of canopy
s Shape parameter
g Gravitational settling of pollen
Si Source strength of biotypei

Sub-model 3 Genetics,Eq. (11)
ri Germination rate
Ai Number of seeds of biotypei

(Sub-model 1), two possible approaches for spread of
pollen through the atmosphere (Sub-models 2a, 2b)
and a sub-model for the mating of a diploid species
(Sub-model 3).

The mathematical task of solving these coupled
non-linear partial differential equations is performed
by advanced finite element methods (FEM) with the
MatLAB toolkit Femlab® (Comsol, 2001). The solu-
tion of the models requires the following steps:

• Selection of a general class of model equations (here
general convection–diffusion equation).

• Definition of geometry either in accordance to a
real world situation or certain specific testing pur-
poses.

• Spatially explicit specification of model parame-
ters based on defined geometric objects, initial and
boundary conditions.

• Generation of finite element mesh.
• Selection of numerical solver (here a backward dif-

ferentiation formulae (BDF) for non-linear ordinary
differential equations, a full multi-grid with adap-
tive mesh-control was chosen).

In this study we focus on experiments with simple
geometry restructured from real world data. However,
topographical data derived from a Geographic Infor-
mation System can also be used for simulating real
world situations, cf.Seppelt (2003).

3. Applications and results

Three case studies are presented to test the mod-
elling toolkit with a focus on the gene flow parts (i.e.
Sub-models 2 and 3).

3.1. Out-crossing

Sub-models 2a and 2b (seeFig. 3) were tested
within a cross-pollination monitoring study carried
out at the Federal Biological Research Centre for
Agriculture and Forestry (BBA) in Braunschweig,
Germany. In the experiment a 100 m× 100 m plot of
genetically modified maize (herbizide resistance) was
placed within a field (ca. 5 ha) of ordinary maize of
the same variety. Sixteen sampling arrays in equally
spaced distances were configured around the source
plot.
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Sixteen sampling arrays (denoted by “A” to “Q”)
surrounded the source plot in equally spaced dis-
tances (22.5◦ intervals). Each array was composed
of six sampling points in distances of 3, 4.5, 7.5,
13.5, 25.5 and 49.5 m from the edge of the source.
A minimum of 2497 maize kernels up to 4996
maize kernels were examined per sampling point
to allow valid statements for cross-pollination rates
above 0.5%. The maize grains were germinated in
a greenhouse, and seedlings were treated with the
herbicide Glufosinate. The seedlings that survived
the treatment were identified as genetically modified
with herbicide resistance. This approach quantifies
the amount of genetically modified maize seeds and
the percentage of cross-pollination events can be
calculated.

Assuming constant population levels for each bio-
type, the model concept may be applied to the exper-
imental design by setting:

N1(�x) =
{

1, for �x ∈ GMO−Plot

0, else

Fig. 4. Simulation of probability of outcrossing as a function of distance from the edge of a field with GM crops. Note, log-scale is used
for the outcrossing probability (log(pk)).

for the GM maize population and

N2 = 1 −N1

for the ordinary maize population.
The computed log-scaled cross-pollination rates

(log(p1)) of the Gaussian type model for the geometry
of the 100 m× 100 m transgenic plot show asym-
metry reflecting the prevailing wind direction, see
Fig. 4. The experimental design and the results of the
spatially explicit simulation of the cross-pollination
probabilities of the gene dispersal model are shown in
Fig. 5. The parameter estimation technique based on a
subset of the available measured data. A training data
set was used to estimate the model parameters. Appli-
cation of the calibrated model to the entire field data
set (“test data”) showed good model performance.
For instance, the data from transect “L” was used to
train the model for the cardinal point “East” and data
from the sampling points of the transects “I” through
“N” were used to test the model, seeLoos et al.
(2003)for detailed information. The model is capable
of reproducing the prevailing wind as well as local
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Fig. 5. Comparison of the simulation based on the Gaussian model with the observed field data displayed by the absolute deviations (left,
K1 = 1.076 m2 s−1, K2 = 149.439 m2 s−1, ux = 0.926 m s−1, uy = 0.108 m s−1, β = 0.632). The upper figure shows the model results,
the lower part displays the absolute deviations from the experimental measurements. A–Q denote the 16 sampling arrays of the experiment
(cf. Loos et al., 2003).

characteristics of the field.Fig. 6 shows outcrossing
rates along a transect in the prevailing wind direc-
tion and the corresponding model fit. The log-scaling
clearly illustrates two main dispersal processes for
short versus long ranges. For a detailed analysis of
this sub-model, seeLoos et al. (2003). In this publi-
cation an additional approach introduced byRaupach
(1987) is compared, which makes use of a special
analytic solution of the Euler approach distinguishing
between near field and far field transport.

3.2. Spatially explicit spread of pollen

The use of a finite-element-solver allows a simu-
lation with the Eulerian approach ofEq. (6) numeri-
cally. This model describes atmospheric transport of
particles using a physical approach.Fig. 7 shows the
spatial spread of pollen over a closed canopy with
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Fig. 6. Spatially explicit results of cross-pollination probabilities
from the 100 m×100 m sized GMO field (cf.Fig. 5) with genetic
modified maize along the transect of the prevailing wind. This
additional transect with 17 sampling points (between transect L
and M) is not plotted inFig. 5.
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Fig. 7. Simulated patterns of dispersal based on the Eulerian approach. Two time steps are selected for detailed study and a transect of
200 m length and 20 m height is chosen. The grey-scale denotes the density of pollen in pollen/m3. Note the gravitational settling of the
pollen in the vicinity of the edge of the canopy.

a Neumann boundary condition (prescribed flux, see
Eq. (7)) at the surface of the canopy. The wind pro-
file above the canopy causes long-range transport in
the upper layers, whereas particles near the bound-

ary layer are transported only a short range because
of gravitational settling and low velocities within the
boundary layer. The empirical Lagrange approach re-
produced these effects. It is an important question
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to relate the more empirical approach to physically
measurable data. This would allow to run the empir-
ical model without the calibration step based on a
field experiment but with measured values on climatic
conditions (e.g. wind profile within and outside the
canopy).Loos et al. (2003)studied a simplification
of this model based on theoretical considerations pro-
posed byRaupach (1987)and compared the results.

3.3. Spread of pesticide resistance

An important application of the above model is
modelling the spatial spread of pesticide resistant pest
(or weed) populations. We use the modelling frame-
work above to study the spread of pesticide resistance
using an artificial simulation experiment.

A diploid population (n = 3) is considered, in
which the property of resistance is conferred to the
next generation by one single dominant gene. In
Section 2.3the model for the underlying genetics is
discussed. In this application it is assumed the atmo-
spheric transport of pollen is negligible by setting
Pi = Si for all i = 1, . . . , 3. Thus, this applica-
tion couples sub-models 1 and 3 (seeFig. 4) with
simulation results based onEqs. (1), (10) and (11).

The parameters with the property of resistance are
the mortality ratesµi. These parameters depend on
the pesticide concentration at location�x, and hence on
the degree of resistance of the considered biotype. The

Fig. 8. Finite-element mesh for the numerical simulation of the dispersal of resistance for a test geometry: Plots B and C are treated with
a pesticide. On Plot B a resistant biotype is located in spot A.

hypothetical study area consists of three plots “B”,
“C”, and “D”, seeFig. 8. A pesticide (or herbicide) is
applied to Plots “B” and “C”. Plot “D” remains un-
treated. Starting from an infested spot “A” on Plot
“B” a resistant biotype begins to spread in the study
area.Fig. 8 shows the geometry of the field together
with a finite element mesh required for the solution
of the initial boundary value problem. The resultant
spatial distributions of resistant (AA and aA) and sen-
sitive (aa) biotypes are shown inFig. 9 for two time
steps. The resistant biotypes invade the treated plots,
whereas the sensitive biotype retreats to the untreated
plot, which may serve as a refuge.

4. Discussion

In general the modelling approaches of the sub-
models (population dynamics, transport, genetics) are
highly aggregated, so the entire model is therefore
applicable to a broad range of spatial and temporal
scales. However, the emphasis here was focused on
the field or plot scale of an agro-ecosystem. To scale
up to the landscape, simulation with the atmospheric
transport model is needed, which considers the topog-
raphy of the study area. For this sub-model the two
approaches (Lagrangian, Eulerian) for transport mod-
elling of pollen through the atmosphere are equiv-
alent under coordinate transformation. However, the
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Fig. 9. Spatial spread of three biotypes (sensitive: upper, resistant: lower and middle) for two time steps.

two approaches differ in several general ways. The
Lagrangian model is set up by the superposition of an-
alytical solutions ofEq. (6). Parameters can be iden-
tified only by the application of parameter estimation
procedures. This requires sufficient experimental data,
and the transfer of quantitative results to other sites
with other environmental forcing is difficult. The ad-
vantages of this approach are the small number of

free parameters, simplicity in defining different spa-
tial configurations of the donor and recipient field, and
less computational effort. The Eulerian model can be
specified by physically measurable parameters. This
supports model applications at different investigation
sites. Scaling up of the Eulerian approach can be sup-
ported by the use of topography data in the FEM-solver
obtained from Geographic Information Systems.
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Amalgamation of all the processes (dispersal,
growth and genetics) into the same mathematical
structure (i.e. partial differential equations) allows a
broad spectrum of applications that encompass de-
velopments of anti-resistance strategies, as well as
risk assessment of spread of transgenic properties.
However, for a detailed mapping of the life cycle
of plants, it is more appropriate to use time discrete
models that are embedded into cellular automaton
models (Seppelt, 2003, chapter 3). A major drawback
of cellular automaton models is that the range of dis-
persal in one time step is limited by the order of the
Moore radius. Cellular automata models are therefore
not capable of modelling pollen dispersal on a large
(landscape) scale. In order to achieve both a realistic
description of plant (or insect) development in terms
of a time discrete scheme and a realistic simulation
of long-range dispersal, both systems have to be
integrated into a hybrid model.
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