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1 Model Framework

In our numerical model for sorted patterned ground stones move in two horizontal dimensions

representing an active layer in plan view (Fig. 1). Stone motion is not spatially discrete; how-

ever, a two-dimensional grid with cell size equal to stone size is used in searching for stones

within an area, in calculations of stone concentration and to enforce a maximum depth of stones.

Stone particles are moved by iterating through three transport algorithms representing lateral

sorting, stone domain squeezing and hillslope diffusion. Stone transport arising from processes

associated with soil domains is calculated from the current configuration of stones, which as-

sumes that stone transport by soil domain processes is tightly coupled to the geometry of stone

domains at the scale of sorted patterned ground.
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Figure 1: (A) Plan view of numerical model. Circles indicate the top stone in that cell. Stone
color darkens with the number of stones in that cell from light gray for a single stone to black for
the maximum number of stones, ������� . The surface used in the calculation of lateral sorting, � ,
is plotted as a gray-scale background; lighter shades indicate higher surfaces. (B) Perspective
view of the three-dimensional geometry that corresponds to this two-dimensional simulation.

2 Lateral Sorting

The lateral sorting algorithm transports stones toward stone domains by calculating a surface

(Fig. 1) whose gradient is the local strength of the lateral sorting processes. The height of this

surface is proportional to the negative of the stone concentration calculated over a distance �
	��
and weighted by inverse distance:
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where � �*% is the distance to cell &76 598 1 , ( ��% is the number of stones in cell &:6 5;8 1 , and �<�4��� is the

maximum number of stones in a cell.

After calculating � , all cells are chosen in random order and the top stone in each cell is

moved downslope (toward regions of high stone concentration) proportional to the local gra-

dient in � : => 	?�@BAC	�� =D � , where AC	�� is a diffusion constant that relates stone transport (flux)

to the local slope of � , unless this movement would cause the number of stones in any cell
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to exceed � �4��� . Far from stone domains, � approximates the ground surface because lateral

sorting results from downslope stone motion on the ground surface. Near stone domains lateral

sorting also includes subsurface transport at inclined freezing fronts.

3 Stone Domain Squeezing and Confinement

Stone motion by lateral squeezing of stone domains is abstracted as diffusion of stones biased

parallel to the axis of the stone domain:
� => ���  ��AC��� =D�� � û, where

�
is the surface uplift

owing to lateral squeezing of the stone domain and A
��� is a diffusion constant that relates

stone transport to gradients in surface uplift. A first order equation for surface uplift
�

was

derived by conserving the volume of a stone domain (rectangular cross section) being squeezed

by an amount �	� :
�  
��� , where � is the vertical thickness of the stone domain before

squeezing and � is its width. In this model, we assume that wider stone domains are more

easily compressed and that this effect is linear with stone domain width, making
�

proportional

to � .

The stone domain squeezing algorithm operates on every cell in random order. After select-

ing a cell, the unit vector along the axis of the stone domain that includes the selected cell is

calculated by a linear least squares fit to the positions of all the stones within a distance � ��� of

the top stone in the selected cell. The direction of transport in this cell by stone domain squeez-

ing, û, is the average of the vector pointing along the axis of the stone domain weighted by a

constant factor � ��� (representing confinement) and a randomly oriented unit vector weighted

by the factor - ��� ��� . The gradient in vertical stone domain thickness, =D � along the vector

û is calculated and the top stone in the selected cell is moved down gradient by an amount:

A �����	� =D � (  A ��� =D��
), unless this movement would cause the number of stones in any cell to

exceed � �4��� .
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4 Hillslope Transport

A hillslope gradient is prescribed within each cell. All cells are chosen in random order and the

top stone in each cell is displaced downslope a distance proportional to the hillslope gradient,

unless this transport displaces a stone into a cell with a greater number of stones. The downslope

transport is given by:
� =>  A�� =D � , where A�� is a diffusion constant that relates stone transport

(flux) to hillslope gradient. Because lateral sorting is due to downslope stone motion on the

ground surface far from stone domains, A�� must equal AC	?� .
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