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Dynamics of solid growth under a gravitational field: Influence of the formation of a diffusive layer
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We discuss the gravitational sedimentation of particles in terms of a stochastic model considering, in view of
experimental evidence, that the aggregation to the growing surface~deposit! is mediated by the formation of a
layer of suspended particles subject to gravitational forces, thermal agitation, as well as aggregation~contact!
forces. The aggregation of such partially buoyant particles is ruled by the rates of occurrence of the different
stochastic events: incorporation to the layer of suspended particles, sedimentation, and gravitationally biased
diffusion. The model introduces bridges across different standard solid on solid deposition models which can
be considered as limit cases of the present one. Analytical and numerical results show that for finite~realistic!
deposits there are different regimes of aggregation including situations in which the deposit is grown com-
pletely during the transient time of the system.
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I. INTRODUCTION

The growth of solids by sedimentation of particles h
practical and theoretical relevance. From a theoretical p
of view the mechanism of gravitational deposition of pa
ticles ranks among the simplest forms of growing a solid i
controlled situation and as such it represents a test benc
different solid on solid~SOS! @1,2# deposition models and
their analysis.

From a technological point of view, the preparation
‘‘supercrystals’’@3# by aggregation of nearly monodispers
nanoparticles or microparticles has attracted considerabl
terest. Crystals formed by the aggregation of CdS, Cu2Se,
and Fe2O3 nanospheres with appealing optical and electri
properties have been prepared and characterized. How
synthetic opals constructed by sedimentation of submic
silica, SiO2, particles remain the most popular and parad
matic supercrystals.

Particles in supercrystals are held together by van
Waals forces. Silica self-assembling to produce good qua
opals requires small rates of particle aggregation which
close to the thermodynamical equilibrium. In such situatio
aggregation does not happen unavoidably upon contac
the particles with the growing interface. In practical term
the growth of these opals requires several days and proc
with the formation of a ‘‘white clue,’’ a diffusive layer of
particles close to the growing surface@4#.

The interface dynamics of this system has been studie
atomic force microscopy imaging, and interpreted using
namic scaling arguments. Experimental results show that
supercrystals become rougher with increased depos
height in a form that~when restricted to a proper spatial an
temporal region! is compatible with the scaling relations d
termined for random incorporation followed by relaxatio
models, such as the Edwards-Wilkinson~EW! model @5#.
This model accounts of the preferential growth of the surf
at valleys and the inhibition of growth at peaks~transformed
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into evaporation when the average deposition rate is s
tracted from the model!. However, it cannot account for th
diffusive layer which has no room in this class of settings

In the present work we introduce an indirect depositi
model in which particles are incorporated at random to
suspended layer of almost buoyant particles which in t
can stick to the surface or bounce~most likely! downhill
along the surface.

The model is framed in the standard population dynam
setting, i.e., as a Markov system with density dependent t
sition probabilities@6# and, as such, it contrasts with standa
SOS models@7,8# since the certainty of deposition rules
completely avoided.

Furthermore, our aim is to understand the role of the d
fusive layer in the growth of opals as well as to character
different experimental situations that can potentially affe
the properties of the supercrystal. We will constrain o
study to finite-size and finite-time growth processes co
pletely avoiding the~cumbersome! infinite-size and infinite-
time singular~and noncommuting! limits.

A second and important purpose of this work is to im
prove the standard analysis of stochastic models of cry
growth which could be later applied to other real and mo
complex situations. In this sense, the discussion inclu
scaling laws but moves beyond them estimating the time
which crossovers from one scaling law to another will ha
pen due to the prevalence of different~kinds of! events.

The paper is organized as follows: Section II introduc
the stochastic model; Secs. III–V discuss simple limit cas
the main aspects of the dynamics, and numerical results
spectively, while Sec. VI presents the summary and conc
ing remarks. The Appendix presents exact solutions for
case where there is no sensitivity to the deposited topo
phy.

II. MODEL DESCRIPTION

We consider particles in a fluid media moving towards
solid surface~the substrate! driven by the gravitational force
©2003 The American Physical Society05-1
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TABLE I. Stochastic events considered, their effect, and transition ratesA51/@Ps1(1
2Ps)„exp@2K(hi112hi)#1exp@2K(hi212hi)#…#.

Event Effect Transition rate

Rain ci→ci11 R
R movement $ci ,ci 11%→$ci21,ci 1111% ciA(12Ps)exp@2K(hi112hi)#
L movement $ci ,ci 21%→$ci21,ci 2111% ciA(12Ps)exp@2K(hi212hi)#
Deposition $ci ,hi%→$ci21,hi11% ciAPs
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The particles are not immediately aggregated to the s
strate; rather, they have a certain probability of remaining
the interface, diffusing preferably to the sites of~local! mini-
mum of potential energy~valleys!. Particles will eventually
attach to the substrate in an irreversible way. At the timt,
there will be a numberC(t) of particles that have come clos
to the substrate but still have not been deposited. We say
these particles form the diffusive layer.

We formulate a minimal model that resembles the o
served physics in terms of a stochastic~Markov! system suit-
able for computer simulations but also intended to be a
nable to non-numerical analysis. We will try to keep t
number of free parameters in the model as small as pos
to simplify as well as to clarify the analysis.

Let i 51, . . . ,L label the i th site in a one-dimensiona
lattice. Consider the stochastic variables: number of parti
above thei th site in the diffusive layer,ci ; number of par-
ticles deposited on thei th site,hi . hi is measured in lattice
units. One lattice unit in our model is equivalent to our p
ticle width.

The evolution of the populationshi ,ci responds to sto-
chastic events which can be classified in two large grou
~a! incorporation to the diffusive layer~particle rain or just
‘‘rain’’ ! and ~b! transitions.

~a! Particle rain events consist in the incorporation o
particle into the diffusive layer at a constant rateR trans-
forming ci→ci11, and leaving the remaining variables u
changed.

~b! Transition events in the diffusive layer alter the sta
of the system but not the number of particles being con
ered.

The transition events are of three different kinds: depo
tion at a sitei, and particle movement in the diffusive laye
from site i either to the left or to the right.

The different kinds of events and their transition rates
summarized in the Table I and illustrated in Fig. 1.

Note that the total transition rate for the transition eve
is ci , i.e., we assume that the likelihood of a transition ev

FIG. 1. Schematic illustration of the different events and th
influence on the dynamics.
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at the sitei is proportional to the local concentration of pa
ticles in the diffusive layer.

The time between events is assumed to be exponent
distributed with densitynexp(2nt), wheren5(RL1C) is a
characteristic frequency andC5( j

Lci . This time distribution
corresponds to the usual assumptions of population dyn
ics.

There are three free parameters in the model:R, K, and
Ps . These parameters play the following role.

~a! R is the rate at which particles are incorporated in t
diffusive layer.

~b! We will show that the form in which the topography o
the deposit influences the diffusive layer dynamics is c
trolled byK. For K.0 the particles are prone to accumula
in the regions corresponding to the valleys, forK,0 they
tend to accumulate at the potential energy maxima~peaks!,
while for K50 the diffusive layer dynamics is independe
of the interface shape. Thus,K is related to the competition
between gravitational and thermal energies.

~c! The parameterPs , normalized so that 0<Ps<1, rep-
resents the probability that a particle sticks to the dep
once it impinges upon it.Ps therefore is related to the rela
tive occurrence of left or right movements within the diffu
sive layer in contrast with deposition events. As such, it c
trols the mean path traveled by the particles in the diffus
layer before attaching to the~frozen! substrate.

In particular, in the absence of gravitational effects (K
50), the particles perform an~unbiased! random walk that
is interrupted by deposition events. In this case, the m
free path of a particle is directly related to the parameterPs .
Consider a particle incorporated into the diffusive lay
there are three possible events: deposit, and movement e
to the left, or to the right. The latter are performed wi
probability

p5
2~12Ps!

22Ps
. ~1!

The probability for the particle to maked steps in any direc-
tion before depositing is

Pd5~12p!pd. ~2!

Since each step is an independent event, and the prob
ity of moving either to the left or to the right are equal, th
mean free pathl is

l5A^d2&5Ap~p11!/~12p!2. ~3!
r

5-2
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The mean free path traveled by a particle in absence of gr
tational effects is then given by

l5A2~12Ps!~423Ps!

Ps
2

, ~4!

where distances are measured in terms of lattice units.
see that whenPs→1, we havel→0, while for Ps→0, the
mean distance traveled grows to infinity.

This picture does not remain valid ifK.0 (K,0) since
in such a case the particles tend to remain confined to
valleys~peaks!, in which casel is expected to be related t
the distance between valleys~peaks!.

Part of the discussion of results will refer to the roughn
of the deposit, a quantity of relevance in experiments a
applications that consequently has received much theore
attention. The roughness of the interfaceW is defined as the
root mean square of the deviations from the mean value
the site heights, i.e.,

W2~L,t !5^~hi~ t !2^hi~ t !&L!2&L , ~5!

where the bracket̂&L denotes lattice average.

III. ELEMENTARY ANALYSIS AND LIMIT CASES

There are four regions in parameter space in which
present model is in correspondence with simpler models

Ps51: There is no diffusion. The variables at each s
are independent. At each site there is random deposition
diated by the suspended phase. Hence, the deposition pr
will be Poisson distributed~see the Appendix for an analyt
cal deduction! and after a transient time it will behave a
random deposition.

K50: The dynamics in the diffusive layer is not affecte
by the substrate topography. This implies that growth
roughness will be essentially the one that corresponds to
random deposition case, since the diffusive layer will av
age to a homogeneous layer. This case can be solved an
cally ~see the Appendix!.

K,0: There will be a tendency for particles to mov
towards local maxima where they will aggregate resulting
the formation of sharp peaks where the particles will ac
mulate, separated by regions where the diffusive layer is v
thin ~the probability of aggregating in the valleys is low
than at the peaks! and the deposits are negligible. In th
case, the roughness increases quadratically with the
number of deposited particles@9#.

R!1, K.1: In this case, the rain of particles is ve
slow in comparison with the aggregation process, henc
rarefied diffusive layer is expected. For sufficiently large v
ues ofK, lateral movements in the diffusive layer will outra
the deposits, and the particle is expected to explore la
regions of the surface being deposited with larger probab
in those sites with~local! minimal gravitational energy. In
Fig. 2, we compare the evolution of the roughness in a ty
cal realization of the stochastic process with an essent
deterministic model ruled by a single specification: ‘‘Pa
ticles are initially deposited on a site~randomly chosen! and
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travel across the surface until they find the first semista
~i.e., with h@ i #<h@ i 61#) site where they are aggregated
the surface.’’ The unit of time is chosen as that necessar
incorporate the equivalent to 1 ML of particles to the syste

The scaling exponents of the adatom model are in g
agreement with those from other random deposition mod
based on surface relaxation@1#, as well as those found for th
EW equation@5#. While much theoretical work has been pe
formed pertaining to deposition models, related experime
concerning deposition of colloidal suspensions are few,
our knowledge, and information relevant to our model ev
scarcer. Xin-Ya Leiet al. @10# investigate polymer deposition
in a (111)-dimensional system—they only analyze resu
in the final, apparently stationary, regime. Salvarezzaet al.
report, in (211)-dimensional experiments, scaling exp
nents consistent with the EW equation. Their roughnes
measured as a function of average deposit thickness^h&, but
not of time.

In the remainder of this work, we will focus our analys
on the implications of the existence of a diffusive layer, wit
out limiting our analysis to asymptotic properties. We ha
no knowledge of experiments performed in this general ca
The aim of what follows is therefore to allow experiments
be planned in the more frequently achieved transient regi

IV. THE DIFFUSIVE LAYER AND DEPOSIT KINETICS

Particles are constantly incorporated to the diffusive la
as a result of the particle rain, while at the same time
diffusive layer is depleted by the deposition process. Be
the aggregation rate proportional to the number of partic
in the diffusive layer, we can expect that, on an average
balanced situation is reached.

If C(t) stands for the total number of particles in th
diffusive layer, the expected average number at a site wil
c(t)5C(t)/L. The average number of aggregated partic
will be calledh(t).

In theK50 case, the average width of the diffusive lay

FIG. 2. Quadratic roughness as a function of time for our mo
~filled symbols! and for a deterministic model~hollow symbols! of
deposition on semistable sites, for different lattice sizes.Ps50.95,
R51025, andK56.
5-3
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in the steady state iscss5R(22Ps)/Ps ~A15!, while the
average deposit height evolves as

^h&5Rt2css~12e2[ Ps /(22Ps)] t!, ~6!

assuming an initial condition corresponding to a homo
neous state@c(0)5h(0)50#.

Note that fort@(22Ps)/Ps , the mean height of the de
posit grows linearly with time,h;t, a relation that is as-
sumed in most models studied in the literature. Howev
when t<(22Ps)/Ps , the average height grows ash;t2.

In Fig. 3, we present results corresponding to Mo
Carlo simulations for the caseKÞ0. Two families of curves
are shown. The first one corresponds toPs50.8, while the
second family corresponds toPs50.2. We can verify that for
the family with Ps50.8, the average deposit decreases w
K for any fixed time, while on the contrary, forPs50.2, the
deposited height increases withK for any fixed time. We can
see that even after a deposit of 500 ML~in real situations, a
width in the micrometer scale! expression~6! represents a
good approximation to the evolution of the deposit, even
large values ofK.

The result suggests that when the diffusion of particle
slow (Ps'1), the diffusive layer is rarefied in the valley
delaying the deposition process, while at the same t
deposition at the peaks is increasingly inhibited by incre
ing the values ofK.

WhenPs'0, most of the particles are available for dep
sition at the valleys and the effect of increasingK is to in-
crease the effective deposit rate.

Evidently, there is a value ofPs for which the situation is
intermediate between both extreme cases. The situatio
shown in the inset of Fig. 3. ForPs;0.3, it can be seen tha
the concentration of the steady state is practically indep
dent ofK.

FIG. 3. Evolution of the mean substrate thickness as a func
of time: analytical result (K50), and simulations forPs50.2 and
Ps50.8 with different K values.L5100, R510 for an average
over 100 independent runs. The time unit corresponds to the in
poration of 1 ML of particles. Inset: Steady state concentration a
function of Ps for different K.
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V. NUMERICAL RESULTS

A. Roughness at saturation

In this section, we show how both the characteristic sca
associated with the different power law regimes, and th
crossovers, are affected by the presence of a diffusive la
meaning that, under certain circumstances that could be
in experimental work, an adequate estimation of the width
the diffusive layer might be more relevant to nanotechnolo
cal processes than the universal exponents in the asymp
regime.

The basic process that introduces smoothness into the
posit consists in the accumulation of particles in corresp
dence with the valleys, and the rarefaction of the diffus
layer in correspondence with the peaks of the deposit, a
result of a biased diffusion process. The smoothing proc
enters in competition with the intrinsic fluctuations due to t
rain process. We estimate the size of these fluctuations t
of the order ofc1/2, with c the mean width of the diffusive
layer.

We further expect that in the limit case in whichc is very
large, the biased diffusion will result inefficient to compe
sate the size of the fluctuations. Because of this, we ex
the evolution of roughness to be affected by the width of
diffusive layer. Evidence of this effect can be found in Fig
where we can see that with a very thick diffusive layer t
random-deposition regime survives even after a deposit o
or 30 ML, in contrast to the situation where the diffusiv
layer is thin and the random-deposition regime ends s
after the first monolayer is deposited.

The saturation value for the roughness of the interface
a function of the rain rate is shown in Fig. 4~inset!. As a
result of the balance between smoothing and fluctuations
scribed, the saturation values of the roughness will dep
on the rain rate:the slower the particle rain, the better th
film quality, a conclusion that seems to be intuitive for se
mentation models but has not been accounted for by o
models and/or studies.

n

r-
a

FIG. 4. Quadratic roughness vs mean deposit thickness, for
extreme values of diffusive layer width.L5100, K50.5, average
over 100 independent runs. Inset: Growth of the deposit roughn
vs rain rate.
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B. Influence of the diffusive layer on the characteristic
exponents

In most of the models studied in the literature@7,8# it is
found that the roughness satisfies the dynamic scaling
potheses@11# implying that the dependence ofW2 on time is
of the form

W2~L,t !5H ;t if t,t0

;t2b if t0,t,t1~L !

const if t1~L !,t,

whereb is a characteristic exponent of the system. It is e
pected that characteristic exponents be invariant in fron
changes in the rules that define the model, as long as
basic underlying physics is preserved.

However, the fact that in our system the deposit does
~initially ! grow linearly with time, Fig. 5, implies that the
graph ofW2 against time is not in agreement with the sta
dard picture.

The initial transient timet0 roughly corresponds to th
time for depositing 1 ML and is characterized by the abse
of correlations among sites. The evolution of the roughn
is then expected to match that corresponding to rand
deposition, i.e.,W2(L,t)}t.

However, the presence of a diffusive layer, introduce
characteristic time scaletk that corresponds to the time re
quired to reach the steady state concentration. From Eq.~6!,
we can estimate this time astk5(22Ps)/Ps . The observ-
able exponents corresponding toW2 vs t associated with the
different regimes will depend on the value oftk compared to
the other time scales present such ast0 ~deposit of 1 ML! and
t1, the saturation time of the deposit in terms of the roug
ness. This means that different scaling laws will emerge fr
the W2 vs t plots depending on whethertk,t0 , t0,tk,t1,
or t1,tk .

In particular, it can be seen~Fig. 5! that for times shorter
than tk ~the situation in whichh;t2), and t0,tk,t1, the
observed exponents in theW2 vs t curves are~approxi-
mately! doubled with respect to those observed in theW2 vs
h curves.

VI. SUMMARY AND CONCLUDING REMARKS

We have introduced a simple model for sedimentat
where only gravitational forces and diffusion effects are
cluded. The model describes both the particle aggrega
and a layer of buoyant particles that we have named
diffusive layer.

The model introduced follows the standard formulation
population dynamics and as such can be analyzed. In
context, it is important to notice that most results will be
terms of statistical estimators, for example, the asympt
value of the mean thickness of the diffusive layer can ta
any real value. An average number of 1024 particles can
only be interpreted as a buoyant particle every 104 sites, i.e.,
a lonely particle trying to find the proper place where
attach to the surface.

By changing parameters, the model can bridge betw
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situations which are observationally different as, for e
ample, those situations where a white clue is formed,
those of extremely rarefied diffusive layers which cannot
directly observed.

The present work focuses in growing thin layers and
such the question of the ‘‘universality class’’ of the mod
lies beyond the scope and possibilities of the present st
Nevertheless, observed values of critical exponents c
puted during the simulations are compatible with t
‘‘Edwards-Wilkinson’’ class. It is worth noticing that the
time required by the system to abandon the ‘‘rando
deposition’’ transient strongly depends on the thickness
the diffusive layer.

Among the important features of the present model and
mathematical study, we emphasize on the following poin

~a! There is a single model for several different situation
Differences are managed through continuous changes in
rameter values rather than in sharp changes of rules.

~b! The limit case where there is no sensitivity to th
deposit topography can be solved in exact form, opening
possibility of applying~developing! perturbation theory to
cases with weak dependence on the deposited profile.

~c! The model at no point assumes a linear relation
tween time and average deposited height, and predic
slower buildup of the deposit at the beginning of the dep
sition process. Furthermore, for any given deposit thickn
it is possible to make the full deposition process in the tr
sitory regime.

FIG. 5. Quadratic roughness as a function of the mean he
~upper! and as a function of time~lower! in theh;t2 region, show-
ing the ~approximate! doubling of the scaling exponents.L5100,
Ps50.2, R5500, K55, average over 100 independent runs. T
time unit corresponds to the incorporation of 1 ML of particles.
5-5
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~d! It is possible to estimate, within the approxima
model, times for the prevalence of one or another class
events. The prevalence of different events will be apparen
the rate of change of different statistical estimators as,
example, crossover of scaling exponents.

~e! The model predicts a dependence of the final smoo
ness with the particle incorporation rate not present in pre
ous models.

~f! The model predicts a complete statistical equivale
of the deposit~as a function of time! in all the cases where
no sensitivity to the topography of the deposit is presentand
the particle rain is homogeneous. This fact suggests that ex
periments trying to probe the underlying physics might b
efit from an inhomogeneous rain of particles which is de
nitely not recommended if a smooth homogeneous surfac
the final objective.
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APPENDIX: ANALYTICAL SOLUTION FOR KÄ0

In this section, we explore analytical solutions for the ca
K50 ~no sensitivity to the topography of the deposit!.

1. Derivation of the probability generating function

The stochastic variables are the concentration at the
ferent sites,ci with i 51, . . . ,L, and the number of depos
ited particleshi on each site.

The master equation reads

Ṗ~c,h,t !5(
i 51

L

@RP~ci21!1B~ci11!P~ci 2121,ci11!

1B~ci11!P~ci11,ci 1121!1A~ci11!P~ci

11,hi21!#2FLR1~2B1A!(
i 51

L

ci GP, ~A1!

where

B5
12Ps

22Ps
and A5

Ps

22Ps
.

On the right side of Eq.~A1!, we have highlighted the nota
tion including only the arguments of the probabilitiesP that
change with the event associated to the term.

The generating function is defined by@12#

C~q,s,t !5 (
$c,h%

q1
c1
•••qL

cLs1
h1
•••sL

hLP~c,h,t !, ~A2!

and satisfies the partial differential equation:
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Ċ5RS (
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qn2L DC1(
n

@B~qn211qn11!

2~2B1A!qn1Asn#
dC

dqn
. ~A3!

Let C5eF. The corresponding equation forF reads

Ḟ5RS (
n

qn2L D 1(
n

@B~qn211qn11!

2~2B1A!qn1Asn#
dF

dqn
. ~A4!

Since~A4! is a quasilinear equation, its solutions can
obtained by the method of characteristics@13#.

The system of characteristic equations associated to
~A4! are

dt

1
5•••5

dqi

~2B1A!qi2Bqi 212Bqi 112Asi

5•••5
dF

R(
n

qn2LR

. ~A5!

After integrating Eq.~A5!, we get

F5
R

A
Q1

R

A
~S2L !lnuQ2Su1G~v1 , . . . ,vL!, ~A6!

whereQ5(qi , S5(si , G is a function to be determined
using the initial conditions, andv i are the integral surface
corresponding to theL characteristic equations, i.e
v j„qi(t),t…5constj whenqi(t) satisfies

qi̇5B(
j

M i j qj1A~qi2si !. ~A7!

Here,Mi j are the elements of anL2 matrix defined as

Mi j 52d i j 2d i ( j 21 modL)2d i ( j 11 modL) , ~A8!

M is symmetric and non-negative matrix, with eigenvalue

lk52F12cosS 2pk

L D G , ~A9!

each one with degeneration two. The corresponding eig
vectors read

Tn j5expS i
2p

L
~n21!~ j 21! D , ~A10!

with k51,2, . . . ,L ~there is an arbitrary election within th
degenerated subspaces!.

Equation~A7! is solved using standard methods~‘‘varia-
tion of the constants, for example’’! arriving in this form to
the general solution of Eq.~A4! that reads
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F~ t !5
R

A
Q1

R

A
~S2L !lnuQ2Su

1GS e2(A1l iB)t(
j

Ti j ~qj2cj ! D , ~A11!

whereci satisfies( j (BMi j 1Ad i j )cj5Asi .
Considering the initial condition that corresponds to t

certainty of havingci
0 particles in the sitei of the diffusive

layer, andhi
0 particles deposited in the sitei,

F~0!5(
n

~cn
0ln qn1hn

0ln sn!, ~A12!

we obtain the expression ofG for this family of initial con-
ditions

G~v1 ,v2 , . . . ,vL!5(
k

S ck
0lnH(

n
S 1

L
expF2 i

2p

L
~k21!

3~n21!GvnD1ckJ 1hk
0ln skD

2
R

A
~v11S!2

R

A
~S2L !lnuv1u.

~A13!

Finally, the generating function with the initial configura
tion ck

0 ,hk
0 is

C~q,s,t !5expS R

A
~Q2S!~12e2At!1Rt~S2L ! D

3)
k51

L S (
n j

1

L
ei (2p/L)(n21)( j 2k)

3e2(A1lnB)tqj1(
n j

A

L
ei (2p/L)(n21)( j 2k)

3
~12e2(A1lnB)t!

~A1Bln!
sj D ck

0

~sk!
hk

0
. ~A14!

2. Particular cases

We shall briefly explore the meaning of the results o
tained in the preceding section considering the follow
cases.

~a! Initially there is no particle in the system.ci
050,hi

0

50.
In this case the marginal distributionsf (c) and g(h) are
Poisson-like with mean values given by
B

06160
-

^c&5sc
25

R

A
~12e2At!, ~A15!

^h&5sh
25Rt2

R

A
~12e2At!. ~A16!

~b! No diffusion case:Ps51.
In this case,B50 andA51. The generating function is the

C (Ps51)5)
k51

L

exp@R~qk2sk!~12e2t!

1Rt~sk2L !#sk

hk
0

@e2t~qk2sk!1sk#
ck

0
,

~A17!

which factorizes with respect to the site variables as a m
festation that the sites become statistically independent w
there is no diffusion.

~c! Asymptotic limit t→`.
The marginal distributions in thet→` limit are

f asympt~qn!5expS R

A
~qn21! D , ~A18!

gasympt~sn!5expFRt~sn21!S 12
R

AD G~sn!hn
0

3)
k F 1

L (
j S expF i

2p

L
~ j 21!~n2k!G

11
B

A
l j

D
3~sn21!11G ck

0

. ~A19!

We see that the diffusive layer variables evolve to the s
tionary state distribution losing ‘‘memory’’ of the initia
state. In contrast, the marginal generating function for
deposited particles,gasympt(sn), is still dependent on the ini-
tial conditions.

Roughly speaking, we can say that, for very large tim
the initial condition will only be reflected in the statistica
properties of the deposited layer, and not in those of
diffusive layer.
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