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We consider several stochastic processes corresponding to the same physical solid-on-solid deposition prob-
lem. Simplified models presenting the sateenditiona) mean and variance for each process are also intro-
duced as well as generalizations in terms of the deposition of blobs and probabilistic deposition rules. We
compare the evolution of the roughness as a function of time for a three-parameter family that includes as limit
cases the Family model and the Edwards-Wilkinson equation, showing that in all cases the derived models with
the same mean and variance are indistinguishable from the originating models in terms of the evolution of the
roughness. Finally, we show that although all the models studied belong to the same universality class, some
relevant features such as the final surface roughness are reproduced only for models within a restricted class
determined by sharing the sart@nditiona) mean and variance.
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I. INTRODUCTION one would be capable of roughly determining other proper-

The increased technological requirements of high-qualit;}ies which might or might not be relevant to our particular
solid films (atomically smooth in particular in the rapidly —interest; this is to say we shal priori know whether deter-
developing field of nanotechnology, has stimulated interest ifnining the universality class will be a useful step to take or
the understanding of the physical processes that determimet.
interface dynamics and surface morphology. So far, most of the effort referring to universality classes

Consequently, a renewed interest in models of surfaceas focused on asserting the class of universality for different
growth has reemerged encompassing(tfaditiona) models  models. A few works have tried to relate solid-on-solid depo-
as well as the development of new ones for more complexijtion models to the simplest differential equation with addi-
_situatio_ns(substrate n_anotrenches, nanocavjtasl promot- _ tive (white, Gaussian, density independentise relying in
ing an intense experimental work to understand the physica},athematical manipulations that, at one time or another, ex-
processes involved in chemical vapor depositi@VD),  nang in Taylor series nondifferentiable functici€s10]. The
physical vapor depositionPVD), sputtering, molecular eaning and relevance of universality classes is a matter that

beam epitaxyMBE), eIectrochemstry, etdd]. claims elucidation. The present work is an attempt to ad-
Surface growth phenomena involve randomness not On%ance towards this goal

as a result of external sources of noise but also as an intrinsic In our probing of the Edwards-Wilkinsd1] universalit
property of surface growing, making stochastic dynamical | P " ? d th ter familv of st hy i
systems the natural framework for modeling attempts. class we will study a three-parameter tamily ot stochastic

The search for the most relevant factors organizing thélynamical systems that includes as limit systems the
behavior of stochastic dynamical systems—emerging in th&dwards-Wilkinson and the Familj8] model of surface
simulation of solid-on-solidSOS deposition as well as in growth and, according to the nu_merlcal simulations, belongs
other areas of physics—has been largely focused on thgPmpletely to the Edwards-Wilkinson class.
emergence of asymptotic features partially characterized by We shall further show that each element of our three-
scaling exponents and scaling laws. parameter family can be replaced by a denso-dependent sto-

Systems presenting the same scaling exponents are saidadastic model which only has in common the conditional
belong to the sameniversality clas§2—8§], producing in this  flux and dispersion, without modifying the observed proper-
form a taxonomy of stochastic dynamical systems. Furtherties of the surface in terms the standard roughness character-
more, quite often such classes are named after particularigation.
simple modelga partial differential equation with an addi-  The work is organized as follows: In Sec. Il we introduce
tive noise source in most cagdbat pertain to the class. basic definitions and some relevant aspects of stochastic

Certainly, any attempt to classify any taxonomy is an at-models; in Sec. Il we introduce the parametric families of
tempt to find key characteristics of the systems that will al-stochastic processes that are our main tool to explore the
low one to infer other common features shared by all theedwards-Wilkinson universality class. In Sec. IV we present
members of a class. Furthermore, one expects that after aselected numerical results, ending the work with a discussion
sessing the universality class to which our system pertaingf results Sec. V.
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[l. PRELIMINARY RESULTS “original model” to distinguish the direct implementation
from other possible implementations.
In this picture the time between two successive deposition
We shall confine our attention to one-dimensional subevents is not defined and it becomes natural to measure time
strates subject to periodic boundary conditions, althoughust in terms of the particles deposited or steps performed in
most of our results can be easily extended to other dimenthe algorithm. In real deposition processes, the number of
sions and boundary conditions. particles deposited per unit time is proportional to the system
One of the most relevant statistics associated to materiajizeL; therefore, in the computational simulation context, it
growth processes is the interface roughness, defined as the sensible to measure the time in “Monte Carlo steps”
root mean squargrms) of the deviations of the substrate (t,,.x (deposition¥/L).
height from the average height. The rules defining solid-on-solid deposition models might
Let L be the number of sites in the substréteen, ifais  not be the model descriptions most suitable for nonnumerical
the distance between sites, the substrate length willd)e  studies. A useful rewriting is to consider the original model
and consideh; the height at the sité the interface rough-  as the embedded process resulting from a denso-dependent

A. Basic definitions

ness is defined as (or state-dependenump process, of which the Monte Carlo
1 — simulations are just the associated Feller pro¢@2sl3. In
W(t,L) = /=2, (h;—h)?, (1) more common terms, a Markov chain in which the time be-
L™ tween events is stochastic as well as the events, having tran-

— sition probabilities that depend on the state of the sygiam
whereh=1/LZ; h; is the spatial mean of the interface. Often this case the state of the surfacBuch a definition would be
along this work we will consider for simplicity the squared the natural starting point if use of the machinery of Markov
roughnes3\? rather than withw. processes was intended. The interested reader cafléee

~Inorder to show the application of the methods proposedor a solid-on-solid deposition model defined along these
in the present work, we need to refer to some particulafines.

discrete models previously studied in the literat{6g]. We For our present purposes we can stop short of this setting,
shall now proceed to review the defining rules of these modnot planning to worry about the statistical characterization of
els: the time intervals between depositions.

(i) Random deposition mod¢RDM): A site, sayi, is An alternative approach to the original implementation
randomly chosen. The deposit occurs on the chosen site; i.yresenting equivalent statistical properties consists in defin-
the height at the siteincreases by one unih; — h;+1). ing a local growth rat&®, = CLJ, proportional to the probabil-

(it) Symmetric Family mode(SFM): A site, i, is ran- ity for a particle to be deposited in the siteJ;, in a fixed
domly chosen. The surface is modified according to the fol{and sufficiently smajl time interval. J; is the conditional

lowing rules: probability of the embedded Markov chain associated with
(1) If hy<h;,; the deposit occurs on thesite. the transition (hy,....h,,....,h)—(hy.....hi+1,... h),
(I If hy>h,; andhy=<hi_, the deposit occurs on the  which will characterize the different growing processes.

+1 site. Consider the following stochastic process evolving in

(1) 1f hy>h;_; andh;<h;,, the deposit occurs on the  terms of a discrete tima that we will later relate withy,c:
-1 site.

(IV) If both h,>h;,; andh,>h;_; the deposit occurs on h(n+ 1) = O(R(n) - X(n)) + hi(n), (2)
thei+1 ori—1 sites with the same probability.

This model represents a small variation from the originalwhere {X;} are L independent random variables each one
Family model [3] in which at the step IV reads “if uniformly distributed on0,1) and ® is the step function,

hi+1> (<)h;_1, the deposit occurs on the 1(i+1) site.” which we define as
B. Discrete evolution equation 1if x>0,
Solid-on-solid deposition models defined by rules such as 0K = 0if x<0. ©)

those in the previous subsection are directly implemented
into computer codes producing “Monte Carlo simulations”Notice that in this process the average number of sites with
simply by selecting the sitewith a pseudo random variable its height modified isN=3"; R(n)=LCZ; J=LC, corre-
 uniformly distributed in the interval0,1); then,i=[Ly]  sponding to a time interval o€ in Monte Carlo units of
(where[---] means integer valyds a uniformly distributed time. The process represents the simultaneous update of all
integer random number that takes valuegan... (L-1)}. sites based in the transition probabilities computed at the
The particle is deposited according to the rules of thetime n.
model, completing the cycle. Deposition models are defined The conditions for the stochastic proc¢g8sto be roughly
directly in terms of the simulation algorithm, a fact that an-equivalent to the corresponding original model are two: the
ticipates the preferred method of analysis: extensive numerfirst one is that both processes should have the same transi-
cal simulations. tion probabilitiesJ; for the same states of the surface; the
We shall call the rules defining a model the “microscopicsecond requirement is that the probability for depositions
rules” and the Monte Carlo implementation describing theoccurring at neighboring sites that imply changing the com-
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puted transition ratéand consequently make improper the L1 _ L _
simultaneous update stratggyust be negligible. J={ 1+ 2 Yiajudht = 2 Yierifh} L. (5)
The second condition can always be achieved making =1 =1

<1 or, what i.s the same, choosi'ﬁgsmall enough. _The subindex algebra must be understoohasd L), due to
The selection of this stochastic process as an approximae, . assumed periodic boundary conditions

tion of the original one is in part arbitrary. It has the advan- At this point it is worth noticing that sincé defines the

tage of_being close to some simulation stratggies ir]tmd”C(':'f?ansition probabilities for the embedded Markov chain, the
N the Ilteraturg _for cellular automa[gS] and |mpIemen_ta- probabilities J; define a density-dependent Markov chain.
t|on§ of deposition mode]{slG,l], being at the same time Using a time between events exponentially distributed with
flexible eno_ugh for our d's?uss'on' . . mean 1L—i.e., measuring the time between events in units
A_numerlcal p.rocedure implementing the stochastic SYSof tuc—the total number of particles deposited responds to a
temis as follows: . . o Poisson process and an averagk Gfparticles are deposited
.(') A local depo§|t|on pr(_)bablht)Ri for each site IS ob- in a time intervalC in correspondence with what is obtained
tameq from the_ microscopic rules of the modab will be for the procesg2). This is arguably the most suitable defi-
explained later in detai nition for theoretical work in terms of particles but does not

(i) A pseudorandom variable is taken for each lattice Sitqeave room for introducing blobs as proposed by Edwards-
(all the lattice sites are visited sequentiallif the variable is Wilkinson [11] while Eq.(2) does.

lower than or equal to the local deposition probability at the
site, then a particle will be deposited at this site, althougr}ra
that incorporation will be effective once all the lattice sites
have been visited.
(iii) All the lattice sites are simultaneously updated. = o MV IRV . In
The duration of a loop of this algorithgan iteration is C 3= Vit Yiegthy = Yiguath = ¥i-olD/L (6)
in Monte Carlo time. It must be stressed that, while in the Thus, Eq(6) for the local amplitudes, in conjunction with
standard algorithm the total number of deposited particles d£d. (2), permits us to find a discrete evolution equation for a
a determined time is a deterministic quantity, in the presenbroad class of SOS deposition models by selecting different
scheme this ha@nore realistically a stochastic nature. transition probabilitiesy.
At this point, we shall give an example of the application
) N of this method to find the local amplitudes for the random
C. Expression of the local deposition rates deposition and symmetric Family models introduce@Sec.

We have yet to find the probability of depositing the next!! A,)- . ) .
particle in the sitek in terms of the defining rules of the _ () Random deposition model: For this model the transi-
model. tions between sites are forbidden, all the conditional prob-

Since the models are normally defined in two stepsc. ~ abilities Y;  are zero foni #k, e, JFM=1/L. _ _

Il A), it is convenient to introduce first the conditional prob- (i) Symmetric Family model: From the microscopic
ability of depositing the particle at the sitegiven that the rules of this model it is clear that the jumps can only land at

In many models studied in the literatuf®,4,6,7,18 the
nsitions can only happen to first neighbors; in such a case,
Eq. (5) takes a simpler form

numberi has being selected in the first step. first neighbors; the result is

Let Yi,k{ﬁ} be the conditional probability that the particle Yiis1=0O(h - hi,pP[1-0.59(h - hi_y)], (7)
is deposited &k given that the sité has been selected. These
quantities might depend on the entire configurat{Hh (al- Y;i-1=0(h = hi_p)[(1 - 0.59(h; = hi;p)]. (8)

though in most cases it depends only on the heights within a ) ) )
given neighborhood of the sifg, and they are often thought USing Eqs(7) and(8) with Eq. (6) we'obtaln the expression
of as the contribution of two processes, one corresponding tff" the local amplitudes in the SFM:

moving |k—i| sites to the left(i >k) or to the right(k>i) LISM=1+0(h..—h)+ O(h_ - —h) - O(h - h

while the other contribution corresponds to moving (hia =h) + O Ny =)~ Oh = hy.y)

L-|k—i| sites to the right >k or to the leftk>i, this latter - O(h; = hi_)+0.520(h; - hi,)O(h; = hi_y)

contribution being due to the periodic boundary conditions. O —1)O . —hs) = O(h_—h)O(h
The probability for the next deposit to happen at the lsite (M1 =M O (i1 = hird) = Oy =) BN

(irrespective of the random numbiris obtained as a com- —-hi-))]. 9

position of a sum of independent events: Models such as the random deposition and symmetric Fam-

ily models in their usual implementation do not have free

L1 — parameters; just one particle is deposited in each iteration
= 2 Yieej i} L (4)  contrary to what happens with the evolution dictated by Eq.
1=0 (2) where one has a free parame®&rrepresenting the time
interval.
(1/L is the probability that the siteis chosem, and consid- The “optimal’ value for C to get the closest approxima-
ering that®y Y; =1, we can exclude of the sum the diagonaltion to the usual implementation would appear to Ge
terms to produce =1/L; however, this choice is not computationally efficient.
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FIG. 1. W2 as a function of the average height
- (h) for three different evolution mechanisms: the
symmetric Family modelSFM) (standard imple-

= 3 mentation, the implementation of Eq(2), and
r 7 the flux +variance model for small values Gf
. - (11). The simulation was made with=100 and
e Ah=0(CLI-X) C=0.01, while an average over 100 independent
4 Ah=CLIH( 12cui)lfzn T runs was performed.
1 — SFM: Usual Implementation |
G- 1 I 1 I 1 I 1 I 1 I 1
0 100 200 300 400 500 600

<h>

Varying C modifies the time scale but does not substantially We can ask the question for any given statistics of the

change the system. Values smaller tharlL Will simply process such as the roughness or the scaling exponents: is

mean that in most steps of the algorithm no particle is dethis statistics sensitive only to the conditional mean and vari-

posited leaving the surface unchanged. ValueCdarger ance at each step and insensitive to any other characteristic

than 1L appear to be convenient in terms of the efficiencyof the random process?

of the algorithm. For example, for a lattice withb=10 000 In order to explore answers for this question, we produce

sites, the choic€=10"* requires an average of 10 000 itera- a “Langevin-like” equation from Eq2) with the same mean

tions for depositing a monolayer of particles, resulting in aand variance:

very inefficient procedure. A choice such @s0.1 means —_—

that an average of just 10 iterations is required to deposita ~ Ni(N+1) =h() =CLJ +V12CLJ(1 -CLI) 7, (10

monolayer of particles. For such value®the effects of the  \here 7; are independent stochastic variables with uniform

neglected correlation introduced by multiple depositions stillgistribution in[-1/2,1/2.

cause a small contribution which does not modify statistical = Although the limitC— 0 is not attractive from a compu-

indicators such as the scaling exponents. tational point of view, it is interesting to consider it. When
C<1 the termCLJ; is negligible in front of 1 in Eq(10)—
i.e., y12CLJ(1-CLJ)~ V12CLJ,—and hence

Ill. RELATED MODELS

hi(n+1)-h =CLJ +V12CLJ 7. 11
We shall now introduce two families of models related to i+ 1) =) = CLY +VI12CLg 7 (19)

the solid-on-solid deposition models and, in particular, to the The evolution of the interface roughness obtained from
symmetric Family model. The new models are introducedhe usual implementation of the symmetric Family model
using three well-defined procedures: (see Sec. Il A, the simultaneous update implementation re-
(i) Substitute a given model by a new one that shares theulting from Eq.(2), and the approximate mode(sl) are
same local average deposition rate and variance but usescampared in Fig. 1. The figure shows that the sensitivity of
random variable with simpler statistics than the originatingroughness to the details of the stochastic process is almost

model(we will use uniformly distributed variablgs negligible provided the flux and variance are correct.
(ii) Allow for blobs—i.e., leth; take real values and not We further notice for future use that E@.1) can be con-
just integer values. We call this procedure smoothing. sidered as a discrete integration, with an integration Atep

(iii) Soften the defining rules of the deposition model by=C, of the continuous time equation
allowing other probability values foly;; different from

ah —

{0,3.1). =g+, (12)

Note that the three procedures to obtain related models at
can be applied simultaneously as will be shown later. where has zero mean and correlation properties given by

&g ) =gt -t). (13
A. Flux and variance models

Consider the stochastic systg®); the term®(R—X;) is a B. Smoothing procedure: Blobs
stochastic variable with mea@LJ, and varianceCLJ/(1 In most of the solid-on-soliddiscretg deposition models,
-CLJ). local amplitudes are obtained from microscopic rules as
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those described in Sec. Il A that include step functions oof K, the equation will be only an approximation. We now
even more complex nondifferentiable functions. For ex-allow for the deposition of blobs of height smaller than 1.
ample, the local amplitudes given in E§) for the symmet-
ric Family model contain several step functions. C. Smoothing procedure: Probabilities
In what follows we will consider the step functions as ) .
limits of sufficiently smooth functions. This smoothing pro- VW& can think that we have a family of models, one for
cedure has been employed earli6r10,19,20 in contexts eachKg vaIL_Je,_and only the family member that corresponds
similar to the present one; nevertheless, our interpretation dP Ko= coincides with the Monte Carlo model. The cost of
the smoothing process will differ from previous approaches!”tmduc'”g “smoothness” is then to lose the discretization in
The choice of a proper smoothing family of functions for the heights of the deposit.e., the heights will not be in-

the step function is not unique. Because of this reason, wereéased in units of)1 _ ,
will not constrain our discussion to one particular family; ~AS has been already mentioned, in some cases the local

instead, we will work using a few and not very restrictive @MPplitudesJ; will also have nonanalytical functions in their

hypotheses regarding the properties of this family of funcdefinitions. We will also ;mooth thesg functlorjs using the
tions. We shall calFy (X) a one-parameter family of func- same one-parameter family of smoothing functions. o
tions, where the real parameti labels the family mem- In general, in the smoothing process we change the origi-

bers. nal system for ap-times infinite family depending omp
Throughout this work we will assume the following: smoothing parameterK=Kg,K1,Ky, ... ,K,-1. At the limit
0 FKO(X) is a continuous, nondecreasing real function fork — o the original model is recovered. The paramefgy
eachK,>0 value such thatfor fixed x) which appears directly in the evolution equatidn), will be

called “principal smoothing parameter,” to distinguish it
(14) frqm the othe_r smoothing parametng, K2.’ Kp-1 thg.t.
might appear in the smoothing of the transition probabilities.
Our expectation is that the statistical properties of the sys-
() FKO(X) is differentiable at the origin, being approxi- tem will depend weakly on the smoothing introduced. This
mated atx=0 by is, we expect that iK is “sufficiently large,” the model will
be a good approximation to the original one. It is expected
1 that the loss of precision in the approximation will increase
Ficy(¥) = 5 + Kox + 0(Kox). (15  along with the decreasing d.
Not every statistical property is expected to have the same
. sensitivity to the smoothing parameters in the family of mod-
For example, we can consider els. It is then possible to think that, even when the differ-
ences between the models are very important, some charac-
teristics will be common or persist even for small values of

K

Of particular relevance is the question of the characteristic
exponents of the model: Is it possible for the scaling expo-

lim FKO(X) =0(x).
Kg—

1 1
FKO(X) = —arctafmKpx) + -, (16
T 2

obtaining a smooth family. Another possible choice would

be nents to be the same for the full family of stochastic systems,
even when the approximation to the original model substan-
g tially deteriorates? The answer to this question is not a
. 1 simple one. Extensive numerical simulations over various
0 ifx< Z_KO' well-known models appearing in the literature suggest that at
1 1 1 Igast for the models so far congidered, the answer is a_ffirma-
Fr (X) =4 Kx+= if—- —=<x<—, tive: the gmoothlng procedure is not expected to modify the
0 2 2Ko 2K, universality class.
L1
1 if—<x,
L 2K,

D. Evolution of the mean height in the smoothed system

A problem of fundamental importance in the modeling of
real deposition processes is how to relate model parameters
Xvith experimentally measurable quantities. One of the most
relevant quantities in deposition processes is the average
deposition rate—i.e., the average height increase per time
unit.

hi(n+1) = Fy (Ri(n) = X;(n)) + hy(n). (17) Considering Eq(17), it is clear that the local rate is given
by F(R,Ko)=(Fk,(Ri=X)))=/5 Fk,(Ri-x)dx which repre-

This equation reproduces exactly the results of the Monteents the average over independent realizations of the height
Carlo simulations only at the limiK,— . For finite values increase for a giveififixed) local deposition probability. In

obtaining a family of piecewise linear functions which are
not differentiable ak=+1/2K,.

Smoothing the step functions we extend the stochasti
procesq2) to a family of processes in the form
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—— Theoretical approximate rate
o RDM Smoothed L=50

4 SFM Smoothed K =10 L=50
v SFM Smoothed K1=0.1 L=50

FIG. 2. Comparison of the approximate theo-
retical rate (21) with the rates obtained from
C=0.1 T Monte Carlo simulations averaged over ten inde-
pendent runs. Results for the symmetric Family
models(SFM), random deposition modéRDM),
and a theoretical approximation described by
Egs.(21) and(18) are shown.

Average rate

some cases, it is possible to obtain a closed form for thig21). Notice that this means that in terms of the average
expression. For example, making the choice of smoothingrowth rate, all the models behave as the corresponding
functions proposed in Eq16) we obtain smoothed random deposition model for the same valug,of

1 R

F(RiKo) = 2 * ;arctaniKowR,-) E. Connection with spatially continuous models
_ Stochastic partial differential equations and discrete mod-
- arctariKom(R; - 1)) els are normally portrayed as two alternatives approaches to
study interface dynamics.
1 1 +K3w2(Ri -1)? Most of the support for this conjecture comes from nu-
* 2K g7 n 1+K22R2 ) (18 merical studies that have related pairs of models within the

0 same universality class: for example, the Edwards-Wilkinson

From the experimentalist point of view, who generally and the Family models.

watches as a single system evolves, more relevant than an The Edwards-WilkinsodEW) model readg11]
statistical ensemble average is the lattice average

h(x,t) = F + »V2h(x,t) + 7(x1), (22)

1
FalKo) :{FKo(Ri ~Xih = [2 Fio(Ri - X). (19 where F represents an average constant flow ang the
' diffusion constant (sometimes called evaporation-
In general it is not possible to obtain a closed expressiorondensation coefficieptwhile the noise termy(x,t) is as-
for Fa(Ko), sinceR,; is a stochastic variable whose statistical sumed to be a Gaussian white noise, with zero mean and
properties are priori unknown. Nevertheless, an attempt to correlation given by
achieve a suitable approximation to this quantity comes from

the “reasonable{but nonrigorous supposition that the spa- (n(x, ) n(x",t")) =Tox—-x")at-t"). (23
tial average ofy (Ri—X) is close to the statistical average:  Although considerable theoretical effort has been devoted
{Fr (R= X0} ~ (Fr ({RY. = X)) (20 0 relate continuous equations with discrete models, using a
0 0 :

variety of techniques such as Master equation formulations
From the general expressi@B) for the local amplitudes, followed by a Kramers-Moyal expansiof,19,2Q, Van Ka-
we obtain{J;},=1/L, so{R}, =C. Combining this relation- mpen’'s{) expansiong21], and otherg10,22,23, at present
ship with Egs.(19) and (20) we produce an estimation for not one of this attempts can be considered fully satisfactory,
the average rate: and the problem continues to be oped].
We will follow the proposed smoothing procedure with
Fa(Ko) ~ F(C.Ko). (2) the symmetric Family model defined in Sec. Il A. We simply
The average deposition rate emerging from this expresbave to replace the step functions in the expression of the
sion is compared in Fig. 2 with numerical simulations, show-local amplitude given in Eq9) for a functionFy and the
ing excellent agreement. The figure shows that the averaggep function in Eq(2) for a Fi_ function. Thus, from the
depends weakly on the value of the probability smoothingsymmetric Family model we obtain a three-parameter family
parameteK, being determined mostly by the main smooth-of smoothed models; i.e., we have a model for each
ing parameteK,, in agreement with the approximated result (C,Kg,K;) point in parameter space.
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T T

— Orig Alg K,=100K =100 !

o Mean+Var K0=100 K1=100
10 —| -~ Orig Alg K,=100K =0.1

a  Mean+Var K =100 K,=0.1
-—. Orig AlgK =1 K =100

v Mean+Var K0=1 K1=100
—.- Orig AlgK =1 K =0.1

»  Mean+Var K =1K =0.1

FIG. 3. Curves obtained, for different param-
eter values on the smoothed symmetric Family
model using the evolution dictated by E®9)
(Orig Alg) and the approximation in terms of
mean and varianc@8) (Mean +Vaj. In all cases
L=100 andC=0.1 and an average over 100 in-
dependent runs was performed.

Numerical simulations showas we shall see in Sec. JV Therefore, an interpolation has been produced linking the
that the family shares the same set of scaling exponents. Thigamily model and the Edwards-Wilkinson equation. Note,
means that despite the fact that we change the parameters thewever, that the link is established smoothing rather than
model remain in the same universality class than the symdifferentiating; smoothing is associated with the deposition
metric Family model. of blobs rather than particles and is expected to be relevant at

In particular, this is true for the models with a valuetof @ mesoscopic scale in consonance with the ide4sip
sufficiently small such that linear approximations are pos-

sible (howsmall shouldK be will depend on the argument of F. Simplified models
Fr- _ _ . . We will further explore the smoothed systems in terms of
Expanding both inKo, and K; up to the first nontrivial  the flux and variance model introduced in Sec. Il A for the

contribution, we get system(2).

L For every stochastic system in the smoothing family, a

_+ Ko flux and variance counterpart can be produced along the lines
hi(n+1) = hi(m) = 5 TKC " CKOKl( Mivs + iy =20 of Eq. (17) using state-dependent noise:
. %) Ky, (24 Ah; = E[CLJ, Kol + V12 Var (CL3 Ko) 7. (28)

here E and “Var” denote mean and variance EiI‘(o(CLJi

where 7, are uncorrelated random variables distributed uni-~ %) respectively, while the;, are independent random vari-

formly in [-2,2). The expressionhi,,+h_,-2h and (h,,  aples uniformly distributed '2'[‘_1/2'1/3- _

+h_,-2h/4) are two discrete realizations of the one- Ve Presentin Fig. 3 thevs (h) curves obtained for the

dimensional Laplace’s operator. smoothed symmetric Fz_im|ly models as d|cta_ted by E28. _
Equation(24) can be considered a discrete form of the @nd(30) and those obtained from the approximated equation

EW equation22). In fact, Eq.(24) is equivalent to a numeri- (28) for different parameters values. The figure shows excel-

cal integration(in an Euler forward schemef the EW equa- €Nt agreement between both approaches, since it is almost
tion with parameters: impossible to distinguish between corresponding pairs of

curves.
1 Ko
F= St KoC— ex (25 IV. NUMERICAL RESULTS

In this section we present an extensive numerical study

v=2CKKj, (26)  using Monte Carlo simulations. We focus on the properties
of the models obtained by applying the smoothing procedure

5 as explained above to the symmetric Family model.

= Kb 27) We aim at getting an understanding of the main properties
12 of the models in the different regions of the parameter space

(C,Kp,Ky), avoiding as much as possible the details that will
I' was introduced in Eq(23) and the integration steps are eventually emerge as characteristics of the particular smooth-

At=Ax=1. ing used.
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ues of smoothing parameters fdr=200, C
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ness exponent@~ 0.95.
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The smoothed symmetric Family mod&SFM with pa-  have found that our more relevant numerical findings can be
rametergC,Kg,K;) is defined by the following equations:  qualitatively understood by means of this characterization.
We shall speak of four main regions in parameter space,
hin+1) —h(n =Fv (CLIN) = X noted as{(L,!_);(L,N);(N,L);(N,N)}, vyhere, for ex.amp-le, .
i+ 1) = hy() = Py (CLAM = Xi(m) (29 the(L,N) region is the one where the linear approximation is
valid in Eq.(29) while the Fi, functions in Eq.(30) behave

SFM _ o oy C practically as step functions. It is obvious that, setting a fixed
Ji {1+ P, (Mg =)+ P (g = 1) = Fie, (i = i) C value, at the limit(K,,K;)— (0,0) we are in the(L,L)
‘FKl(hi‘hi—1)+0-5[2FKl(hi‘hi+1)FKl(hi—hi—l) Eegio)n, while for (Kq,K;)—(0,%) we are in the region
N, N).
= Fi, (Mg = ) Fy (Mg = i) =Fy (Mo = hy) In accordance with this classification scheme, we can un-
derstand many facts that emerge from numerical simulations,
X Fi,(hiy = M) JHL. (30) y g

such as the following:

In terms of scaling laws we find that, for the SSFM, the (i) The simulations show that little variation is observed
roughness scales with the average height and system size 9 varying theK, and K, parameters between 10 ard
agreement with the Family-Vicse¢R] picture since the scal- While C is kept fixed at a constant valué=0.1. This means
ing exponents obtained are close to those corresponding #hat. in this region of parameter, the smoothing procedure has
the EW universality clas¢see Fig. 4— i.e., in one dimen- ot an appreciable effect. A fact that can be understood by
sion «=0.5 andB=0.25. noting that, for thes¢C,K,,K,) values, we are in the region

Although the number of lattice sites is relatively small (N,N), and the arguments inside of tifefunctions in Egs.
due to computational restrictions, we find that the numerica(29) and(30) valuate theF functions as almost constant. No
evidence sustains the claim that the full family of stochasticsubstantial change takes place moving the parameters inside
systems belong to the same universality class. this region.

A qualitative understanding of the properties of the (i) Points in parameter space witb=0.1 andKy,K;
smoothed symmetric Family model in parameter spaceS% lie in the (L,L) region in which the evolution equation
comes from considering the generic shape assumed fét thereduces to the “EW-like” form discussed in Sec. Ill E. In Fig.
functions. In fact, roughly speaking, titefunctions have an 5, we use this connection with the EW equation to obtain
almost linear part and an almost constant igénis would be  data collapse between different simulations in which the pa-
exactly the case for a smoothing performed with the linearameters are included in the rescaling of the axis in the form
piecewise functions proposed ab@v&hen, we can make a given by the exact solution of the EW equatif#b].
partition of the parameter space in regions in which the lin- The collapse of data in Fig. 5 should not be expected to be
ear approximation in Eqs(29) and (30) is valid or not complete since the data correspond to different stochastic
valid—i.e., when the differencesh,—h;,,|K;<1 or |h systems and the scaling is adjusted just for the limit case
—h;41|[K;> 1 (leaving a transition region fgh,—h;,;|/K;=~1).  corresponding to the EW equations rather than for each one

Certainly, these regions depend on the proper choice dhdividually.
the smoothing function$ and have not, generally, well- Finally, we give an example of a transition between the
defined boundaries; instead, there are crossover regions withl,N) to the(N,L) region. This transition can be observed in
intermediate behavior that make it harder to obtain a fullFig. 6, where fixed value€=0.1, K,=1000 were taken,
characterization of the parameter space. Nevertheless, wehile the K, value was varied in the range 0.15%1This
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figure shows that varying; between approximately 0.4 and between the solid-on-solid deposition and an Edwards-
10° [which corresponds to théN,N) regior], a nearly con-  Wilkinson equation, being all the models within the same
stant value of the saturation squared roughness is obtainedpiversality class.
while for K;<~0.4 (Corresponding to théN, L) regior) the We have .Sh.OWH_ that there is a Langevirj-like equation that
saturation squared roughness growsas cannot be distinguished from the symmetric Family model in
The influence of the paramet& depends on the region terms of roughness evolution. The Langev[n-llke stochastic
being considered. In thé\, N) region the influence is negli- M0del(12) presents a mean value contributiGitux) plus a
gible (providedC is sufficiently small as it only results in state-dependentienso-dependent or multiplicati/aoise.

changing the time between observations. In(theL) region The smoothing procedure introduced in this work could
. ging e . ' -) €9 actually be applied to a large class of solid-on-solid deposi-
it controls the amount of diffusion without changing the fluc-

: : X = ; i tion models, but the final linearization requires the saturation
tuations. Finally, the location of the transition regions in theyt he roughness: hence, in those situations where, for ex-
(Ko,K1) plane depends o6 since the conditions for linear-  ample, instabilities in the form of fingers appe@nstable
izing the probability rates depends both GrandKj. growing), the linearization is not possible and the relation
with differential equations is lost.
V- SUMMARY AND DISCUSSION It is worth mentioning that in the present work smoothing

The study of a three-parameter family of stochastic sysis understood as a continuous process in terms of the
tems related to the symmetric Family model by smoothing okmoothing parameters; hence, the degree of smoothness in-
the probabilities and the surfaces allows us to interpolatéroduced can be regulated. This idea is in sharp contrast with

16 T T T T T T T T T T

LR I IR B LI

L
=
]

=]

1 “ . . =

F 001 0.1 10 100 1000 .

. FIG. 6. Curves of\? vs (h) for different val-
- ues of the parametd{;. Inset: saturation values
of W2 as a function ofK;, showing a transition
between different behaviors closeKg=0.4. The
remaining parameters aky=1000 andC=0.1.
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previous works[9,10,19,20 where the step function is re- Intuitively, the higher the value of the probability smooth-
placed by a polynomial moving from th&l,N) region to the  ing parameteK; is, the higher the sensitivity to the height
(L,L) region discontinuously. differencesh,—h,,, hence, the system is expected to respond

We have further shown that the evolution of the roughnessnore effectively to height differences for lardgée, values,
with time is insensitive to most features of the stochasticychieving smoother surfaces. Our results show that this in-
process if exception is made for the conditional flux andyisive thinking is relevant only for moderate values of the

variance of the model; hence, we can conjecture that just the, - i smoothing parametés, and insensitivity to this
conditional flux and variance are reflected in universality
feature becomes the rule for larger valueKof

classes.

Conversely, notice that model validation beyond condi-
tional mean and variance requires one to go beyond the stan-
dard statistical analysis of roughness. ACKNOWLEDGMENTS
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