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We consider several stochastic processes corresponding to the same physical solid-on-solid deposition prob-
lem. Simplified models presenting the same(conditional) mean and variance for each process are also intro-
duced as well as generalizations in terms of the deposition of blobs and probabilistic deposition rules. We
compare the evolution of the roughness as a function of time for a three-parameter family that includes as limit
cases the Family model and the Edwards-Wilkinson equation, showing that in all cases the derived models with
the same mean and variance are indistinguishable from the originating models in terms of the evolution of the
roughness. Finally, we show that although all the models studied belong to the same universality class, some
relevant features such as the final surface roughness are reproduced only for models within a restricted class
determined by sharing the same(conditional) mean and variance.
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I. INTRODUCTION

The increased technological requirements of high-quality
solid films (atomically smooth), in particular in the rapidly
developing field of nanotechnology, has stimulated interest in
the understanding of the physical processes that determine
interface dynamics and surface morphology.

Consequently, a renewed interest in models of surface
growth has reemerged encompassing old(traditional) models
as well as the development of new ones for more complex
situations(substrate nanotrenches, nanocavities) and promot-
ing an intense experimental work to understand the physical
processes involved in chemical vapor deposition(CVD),
physical vapor deposition(PVD), sputtering, molecular
beam epitaxy(MBE), electrochemistry, etc.[1].

Surface growth phenomena involve randomness not only
as a result of external sources of noise but also as an intrinsic
property of surface growing, making stochastic dynamical
systems the natural framework for modeling attempts.

The search for the most relevant factors organizing the
behavior of stochastic dynamical systems—emerging in the
simulation of solid-on-solid(SOS) deposition as well as in
other areas of physics—has been largely focused on the
emergence of asymptotic features partially characterized by
scaling exponents and scaling laws.

Systems presenting the same scaling exponents are said to
belong to the sameuniversality class[2–8], producing in this
form a taxonomy of stochastic dynamical systems. Further-
more, quite often such classes are named after particularly
simple models(a partial differential equation with an addi-
tive noise source in most cases) that pertain to the class.

Certainly, any attempt to classify any taxonomy is an at-
tempt to find key characteristics of the systems that will al-
low one to infer other common features shared by all the
members of a class. Furthermore, one expects that after as-
sessing the universality class to which our system pertains,

one would be capable of roughly determining other proper-
ties which might or might not be relevant to our particular
interest; this is to say we shalla priori know whether deter-
mining the universality class will be a useful step to take or
not.

So far, most of the effort referring to universality classes
has focused on asserting the class of universality for different
models. A few works have tried to relate solid-on-solid depo-
sition models to the simplest differential equation with addi-
tive (white, Gaussian, density independent) noise relying in
mathematical manipulations that, at one time or another, ex-
pand in Taylor series nondifferentiable functions[9,10]. The
meaning and relevance of universality classes is a matter that
claims elucidation. The present work is an attempt to ad-
vance towards this goal.

In our probing of the Edwards-Wilkinson[11] universality
class we will study a three-parameter family of stochastic
dynamical systems that includes as limit systems the
Edwards-Wilkinson and the Family[3] model of surface
growth and, according to the numerical simulations, belongs
completely to the Edwards-Wilkinson class.

We shall further show that each element of our three-
parameter family can be replaced by a denso-dependent sto-
chastic model which only has in common the conditional
flux and dispersion, without modifying the observed proper-
ties of the surface in terms the standard roughness character-
ization.

The work is organized as follows: In Sec. II we introduce
basic definitions and some relevant aspects of stochastic
models; in Sec. III we introduce the parametric families of
stochastic processes that are our main tool to explore the
Edwards-Wilkinson universality class. In Sec. IV we present
selected numerical results, ending the work with a discussion
of results Sec. V.
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II. PRELIMINARY RESULTS

A. Basic definitions

We shall confine our attention to one-dimensional sub-
strates subject to periodic boundary conditions, although
most of our results can be easily extended to other dimen-
sions and boundary conditions.

One of the most relevant statistics associated to material
growth processes is the interface roughness, defined as the
root mean square(rms) of the deviations of the substrate
height from the average height.

Let L be the number of sites in the substrate(then, if a is
the distance between sites, the substrate length will beLa),
and considerhi the height at the sitei; the interface rough-
ness is defined as

Wst,Ld =Î1

Lo
i

shi − h̄d2, s1d

whereh̄=1/Loi hi is the spatial mean of the interface. Often
along this work we will consider for simplicity the squared
roughnessW2 rather than withW.

In order to show the application of the methods proposed
in the present work, we need to refer to some particular
discrete models previously studied in the literature[6,7]. We
shall now proceed to review the defining rules of these mod-
els:

(i) Random deposition model(RDM): A site, say i, is
randomly chosen. The deposit occurs on the chosen site; i.e.,
the height at the sitei increases by one unitshi →hi +1d.

(ii ) Symmetric Family model(SFM): A site, i, is ran-
domly chosen. The surface is modified according to the fol-
lowing rules:

(I) If hi øhi±1 the deposit occurs on thei site.
(II ) If hi .hi+1 and hi øhi−1 the deposit occurs on thei

+1 site.
(III ) If hi .hi−1 and hi øhi+1 the deposit occurs on thei

−1 site.
(IV ) If both hi .hi+1 and hi .hi−1 the deposit occurs on

the i +1 or i −1 sites with the same probability.
This model represents a small variation from the original

Family model [3] in which at the step IV reads “if
hi+1. s,dhi−1, the deposit occurs on thei −1si +1d site.”

B. Discrete evolution equation

Solid-on-solid deposition models defined by rules such as
those in the previous subsection are directly implemented
into computer codes producing “Monte Carlo simulations”
simply by selecting the sitei with a pseudo random variable
c uniformly distributed in the intervalf0,1d; then, i =fLcg
(wheref¯g means integer value) is a uniformly distributed
integer random number that takes values inh0, . . . ,sL−1dj.

The particle is deposited according to the rules of the
model, completing the cycle. Deposition models are defined
directly in terms of the simulation algorithm, a fact that an-
ticipates the preferred method of analysis: extensive numeri-
cal simulations.

We shall call the rules defining a model the “microscopic
rules” and the Monte Carlo implementation describing the

“original model” to distinguish the direct implementation
from other possible implementations.

In this picture the time between two successive deposition
events is not defined and it becomes natural to measure time
just in terms of the particles deposited or steps performed in
the algorithm. In real deposition processes, the number of
particles deposited per unit time is proportional to the system
sizeL; therefore, in the computational simulation context, it
is sensible to measure the time in “Monte Carlo steps”
stMC~ sdepositionsd /Ld.

The rules defining solid-on-solid deposition models might
not be the model descriptions most suitable for nonnumerical
studies. A useful rewriting is to consider the original model
as the embedded process resulting from a denso-dependent
(or state-dependent) jump process, of which the Monte Carlo
simulations are just the associated Feller process[12,13]. In
more common terms, a Markov chain in which the time be-
tween events is stochastic as well as the events, having tran-
sition probabilities that depend on the state of the system(in
this case the state of the surface). Such a definition would be
the natural starting point if use of the machinery of Markov
processes was intended. The interested reader can see[14]
for a solid-on-solid deposition model defined along these
lines.

For our present purposes we can stop short of this setting,
not planning to worry about the statistical characterization of
the time intervals between depositions.

An alternative approach to the original implementation
presenting equivalent statistical properties consists in defin-
ing a local growth rateRi =CLJi proportional to the probabil-
ity for a particle to be deposited in the sitei, Ji, in a fixed
(and sufficiently small) time interval. Ji is the conditional
probability of the embedded Markov chain associated with
the transition sh1, . . . ,hi , . . . ,hLd→ sh1. . . . ,hi +1, . . . ,hLd,
which will characterize the different growing processes.

Consider the following stochastic process evolving in
terms of a discrete timen that we will later relate withtMC:

hisn + 1d = Q„Risnd − Xisnd… + hisnd, s2d

where hXij are L independent random variables each one
uniformly distributed onf0,1d and Q is the step function,
which we define as

Qsxd = H1 if x . 0,

0 if x ø 0.
s3d

Notice that in this process the average number of sites with
its height modified isN=oi=1

L Risnd=LCoi Ji =LC, corre-
sponding to a time interval ofC in Monte Carlo units of
time. The process represents the simultaneous update of all
sites based in the transition probabilities computed at the
time n.

The conditions for the stochastic process(2) to be roughly
equivalent to the corresponding original model are two: the
first one is that both processes should have the same transi-
tion probabilitiesJi for the same states of the surface; the
second requirement is that the probability for depositions
occurring at neighboring sites that imply changing the com-
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puted transition rate(and consequently make improper the
simultaneous update strategy) must be negligible.

The second condition can always be achieved makingRi
!1 or, what is the same, choosingC small enough.

The selection of this stochastic process as an approxima-
tion of the original one is in part arbitrary. It has the advan-
tage of being close to some simulation strategies introduced
in the literature for cellular automata[15] and implementa-
tions of deposition models[16,17], being at the same time
flexible enough for our discussion.

A numerical procedure implementing the stochastic sys-
tem is as follows:

(i) A local deposition probabilityRi for each sitei is ob-
tained from the microscopic rules of the model(as will be
explained later in detail).

(ii ) A pseudorandom variable is taken for each lattice site
(all the lattice sites are visited sequentially). If the variable is
lower than or equal to the local deposition probability at the
site, then a particle will be deposited at this site, although
that incorporation will be effective once all the lattice sites
have been visited.

(iii ) All the lattice sites are simultaneously updated.
The duration of a loop of this algorithm(an iteration) is C

in Monte Carlo time. It must be stressed that, while in the
standard algorithm the total number of deposited particles at
a determined time is a deterministic quantity, in the present
scheme this has(more realistically) a stochastic nature.

C. Expression of the local deposition rates

We have yet to find the probability of depositing the next
particle in the sitek in terms of the defining rules of the
model.

Since the models are normally defined in two steps(Sec.
II A ), it is convenient to introduce first the conditional prob-
ability of depositing the particle at the sitek given that the
numberi has being selected in the first step.

Let Yi,khh̄j be the conditional probability that the particle
is deposited atk given that the sitei has been selected. These

quantities might depend on the entire configurationhh̄j (al-
though in most cases it depends only on the heights within a
given neighborhood of the sitei), and they are often thought
of as the contribution of two processes, one corresponding to
moving uk− i u sites to the leftsi .kd or to the rightsk. id
while the other contribution corresponds to moving
L− uk− i u sites to the righti .k or to the leftk. i, this latter
contribution being due to the periodic boundary conditions.

The probability for the next deposit to happen at the sitek
(irrespective of the random numberi) is obtained as a com-
position of a sum of independent events:

Jk = So
j=0

L−1

Yk+j ,khh̄jDY L s4d

(1/L is the probability that the sitei is chosen), and consid-
ering thatok Yi,k=1, we can exclude of the sum the diagonal
terms to produce

Jk = S1 + o
j=1

L−1

Yk+j ,khh̄j − o
j=1

L−1

Yk,k+jhh̄jDY L. s5d

The subindex algebra must be understood assmod Ld, due to
the assumed periodic boundary conditions.

At this point it is worth noticing that sinceJi defines the
transition probabilities for the embedded Markov chain, the
probabilities Ji define a density-dependent Markov chain.
Using a time between events exponentially distributed with
mean 1/L—i.e., measuring the time between events in units
of tMC—the total number of particles deposited responds to a
Poisson process and an average ofLC particles are deposited
in a time intervalC in correspondence with what is obtained
for the process(2). This is arguably the most suitable defi-
nition for theoretical work in terms of particles but does not
leave room for introducing blobs as proposed by Edwards-
Wilkinson [11] while Eq. (2) does.

In many models studied in the literature[3,4,6,7,18] the
transitions can only happen to first neighbors; in such a case,
Eq. (5) takes a simpler form

Ji = s1 + Yi+1,ihh̄j + Yi−1,ihh̄j − Yi,i+1hh̄j − Yi,i−1hh̄jd/L. s6d

Thus, Eq.(6) for the local amplitudes, in conjunction with
Eq. (2), permits us to find a discrete evolution equation for a
broad class of SOS deposition models by selecting different
transition probabilitiesY.

At this point, we shall give an example of the application
of this method to find the local amplitudes for the random
deposition and symmetric Family models introduced in(Sec.
II A ).

(i) Random deposition model: For this model the transi-
tions between sites are forbidden, all the conditional prob-
abilities Yi,k are zero fori Þk, i.e., Ji

sRDMd=1/L.
(ii ) Symmetric Family model: From the microscopic

rules of this model it is clear that the jumps can only land at
first neighbors; the result is

Yi,i+1 = Qshi − hi+1df1 − 0.5Qshi − hi−1dg, s7d

Yi,i−1 = Qshi − hi−1dfs1 − 0.5Qshi − hi+1dg. s8d

Using Eqs.s7d ands8d with Eq. s6d we obtain the expression
for the local amplitudes in the SFM:

LJi
SFM = 1 +Qshi+1 − hid + Qshi−1 − hid − Qshi − hi+1d

− Qshi − hi−1d+0.5f2Qshi − hi+1dQshi − hi−1d

− Qshi+1 − hidQshi+1 − hi+2d − Qshi−1 − hidQshi−1

− hi−2dg. s9d

Models such as the random deposition and symmetric Fam-
ily models in their usual implementation do not have free
parameters; just one particle is deposited in each iteration
contrary to what happens with the evolution dictated by Eq.
s2d where one has a free parameterC, representing the time
interval.

The “optimal9 value for C to get the closest approxima-
tion to the usual implementation would appear to beC
=1/L; however, this choice is not computationally efficient.
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Varying C modifies the time scale but does not substantially
change the system. Values smaller than 1/L will simply
mean that in most steps of the algorithm no particle is de-
posited leaving the surface unchanged. Values ofC larger
than 1/L appear to be convenient in terms of the efficiency
of the algorithm. For example, for a lattice withL=10 000
sites, the choiceC=10−4 requires an average of 10 000 itera-
tions for depositing a monolayer of particles, resulting in a
very inefficient procedure. A choice such asC=0.1 means
that an average of just 10 iterations is required to deposit a
monolayer of particles. For such value ofC the effects of the
neglected correlation introduced by multiple depositions still
cause a small contribution which does not modify statistical
indicators such as the scaling exponents.

III. RELATED MODELS

We shall now introduce two families of models related to
the solid-on-solid deposition models and, in particular, to the
symmetric Family model. The new models are introduced
using three well-defined procedures:

(i) Substitute a given model by a new one that shares the
same local average deposition rate and variance but uses a
random variable with simpler statistics than the originating
model (we will use uniformly distributed variables).

(ii ) Allow for blobs—i.e., lethi take real values and not
just integer values. We call this procedure smoothing.

(iii ) Soften the defining rules of the deposition model by
allowing other probability values forYi,j different from
h0, 1

2 ,1j.
Note that the three procedures to obtain related models

can be applied simultaneously as will be shown later.

A. Flux and variance models

Consider the stochastic system(2); the termQsRi −Xid is a
stochastic variable with meanCLJi and varianceCLJis1
−CLJid.

We can ask the question for any given statistics of the
process such as the roughness or the scaling exponents: is
this statistics sensitive only to the conditional mean and vari-
ance at each step and insensitive to any other characteristic
of the random process?

In order to explore answers for this question, we produce
a “Langevin-like” equation from Eq.(2) with the same mean
and variance:

hisn + 1d − hisnd = CLJi + Î12CLJis1 − CLJidhi , s10d

wherehi are independent stochastic variables with uniform
distribution in f−1/2,1/2d.

Although the limitC→0 is not attractive from a compu-
tational point of view, it is interesting to consider it. When
C!1 the termCLJi is negligible in front of 1 in Eq.(10)—
i.e., Î12CLJis1−CLJid,Î12CLJi,—and hence

hisn + 1d − hisnd = CLJi + Î12CLJihi . s11d

The evolution of the interface roughness obtained from
the usual implementation of the symmetric Family model
(see Sec. II A), the simultaneous update implementation re-
sulting from Eq.(2), and the approximate models(11) are
compared in Fig. 1. The figure shows that the sensitivity of
roughness to the details of the stochastic process is almost
negligible provided the flux and variance are correct.

We further notice for future use that Eq.(11) can be con-
sidered as a discrete integration, with an integration stepDt
=C, of the continuous time equation

] hi

] t
= LJi + ÎLJiji , s12d

whereji has zero mean and correlation properties given by

kjistdj jst8dl = di jdst − t8d. s13d

B. Smoothing procedure: Blobs

In most of the solid-on-solid(discrete) deposition models,
local amplitudes are obtained from microscopic rules as

FIG. 1. W2 as a function of the average height
khl for three different evolution mechanisms: the
symmetric Family model(SFM) (standard imple-
mentation), the implementation of Eq.(2), and
the flux +variance model for small values ofC
(11). The simulation was made withL=100 and
C=0.01, while an average over 100 independent
runs was performed.
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those described in Sec. II A that include step functions or
even more complex nondifferentiable functions. For ex-
ample, the local amplitudes given in Eq.(9) for the symmet-
ric Family model contain several step functions.

In what follows we will consider the step functions as
limits of sufficiently smooth functions. This smoothing pro-
cedure has been employed earlier[9,10,19,20] in contexts
similar to the present one; nevertheless, our interpretation of
the smoothing process will differ from previous approaches.

The choice of a proper smoothing family of functions for
the step function is not unique. Because of this reason, we
will not constrain our discussion to one particular family;
instead, we will work using a few and not very restrictive
hypotheses regarding the properties of this family of func-
tions. We shall callFK0

sxd a one-parameter family of func-
tions, where the real parameterK0 labels the family mem-
bers.

Throughout this work we will assume the following:
(I) FK0

sxd is a continuous, nondecreasing real function for
eachK0.0 value such that(for fixed x)

lim
K0→`

FK0
sxd = Qsxd. s14d

(II ) FK0
sxd is differentiable at the origin, being approxi-

mated atx=0 by

FK0
sxd =

1

2
+ K0x + osK0xd. s15d

For example, we can consider

FK0
sxd =

1

p
arctanspK0xd +

1

2
, s16d

obtaining a smooth family. Another possible choice would
be

FK0
sxd =5

0 if x ,
1

2K0
,

K0x +
1

2
if −

1

2K0
ø x ø

1

2K0
,

1 if
1

2K0
, x,

obtaining a family of piecewise linear functions which are
not differentiable atx= ±1/2K0.

Smoothing the step functions we extend the stochastic
process(2) to a family of processes in the form

hisn + 1d = FK0
„Risnd − Xisnd… + hisnd. s17d

This equation reproduces exactly the results of the Monte
Carlo simulations only at the limitK0→`. For finite values

of K0 the equation will be only an approximation. We now
allow for the deposition of blobs of height smaller than 1.

C. Smoothing procedure: Probabilities

We can think that we have a family of models, one for
eachK0 value, and only the family member that corresponds
to K0=` coincides with the Monte Carlo model. The cost of
introducing “smoothness” is then to lose the discretization in
the heights of the deposit(i.e., the heights will not be in-
creased in units of 1).

As has been already mentioned, in some cases the local
amplitudesJi will also have nonanalytical functions in their
definitions. We will also smooth these functions using the
same one-parameter family of smoothing functions.

In general, in the smoothing process we change the origi-
nal system for ap-times infinite family depending onp

smoothing parametersK̄=K0,K1,K2, .. . ,Kp−1. At the limit

K̄→ `̄ the original model is recovered. The parameterK0,
which appears directly in the evolution equation(17), will be
called “principal smoothing parameter,” to distinguish it
from the other smoothing parametersK1, K2, . . . ,Kp−1 that
might appear in the smoothing of the transition probabilities.

Our expectation is that the statistical properties of the sys-
tem will depend weakly on the smoothing introduced. This

is, we expect that ifK̄ is “sufficiently large,” the model will
be a good approximation to the original one. It is expected
that the loss of precision in the approximation will increase

along with the decreasing ofK̄.
Not every statistical property is expected to have the same

sensitivity to the smoothing parameters in the family of mod-
els. It is then possible to think that, even when the differ-
ences between the models are very important, some charac-
teristics will be common or persist even for small values of

K̄.
Of particular relevance is the question of the characteristic

exponents of the model: Is it possible for the scaling expo-
nents to be the same for the full family of stochastic systems,
even when the approximation to the original model substan-
tially deteriorates? The answer to this question is not a
simple one. Extensive numerical simulations over various
well-known models appearing in the literature suggest that at
least for the models so far considered, the answer is affirma-
tive: the smoothing procedure is not expected to modify the
universality class.

D. Evolution of the mean height in the smoothed system

A problem of fundamental importance in the modeling of
real deposition processes is how to relate model parameters
with experimentally measurable quantities. One of the most
relevant quantities in deposition processes is the average
deposition rate—i.e., the average height increase per time
unit.

Considering Eq.(17), it is clear that the local rate is given
by FsRi ,K0d=kFK0

sRi −Xidl=e0
1 FK0

sRi −xddx which repre-
sents the average over independent realizations of the height
increase for a given(fixed) local deposition probability. In
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some cases, it is possible to obtain a closed form for this
expression. For example, making the choice of smoothing
functions proposed in Eq.(16) we obtain

FsRi,K0d =
1

2
+

Ri

p
arctansK0pRid

−
Ri − 1

p
arctansK0psRi − 1dd

+
1

2K0p2lnS1 + K0
2p2sRi − 1d2

1 + K0
2p2Ri

2 D . s18d

From the experimentalist point of view, who generally
watches as a single system evolves, more relevant than an
statistical ensemble average is the lattice average

FAsK0d = hFK0
sRi − XidjL ;

1

Lo
i

FK0
sRi − Xid. s19d

In general it is not possible to obtain a closed expression
for FAsK0d, sinceRi is a stochastic variable whose statistical
properties area priori unknown. Nevertheless, an attempt to
achieve a suitable approximation to this quantity comes from
the “reasonable”(but nonrigorous) supposition that the spa-
tial average ofFK0

sRi −Xid is close to the statistical average:

hFK0
sRi − XidjL , kFK0

shRijL − Xidl. s20d

From the general expression(5) for the local amplitudes,
we obtainhJijL=1/L, so hRijL=C. Combining this relation-
ship with Eqs.(19) and (20) we produce an estimation for
the average rate:

FAsK0d , FsC,K0d. s21d

The average deposition rate emerging from this expres-
sion is compared in Fig. 2 with numerical simulations, show-
ing excellent agreement. The figure shows that the average
depends weakly on the value of the probability smoothing
parameterK1, being determined mostly by the main smooth-
ing parameterK0, in agreement with the approximated result

(21). Notice that this means that in terms of the average
growth rate, all the models behave as the corresponding
smoothed random deposition model for the same value ofK0.

E. Connection with spatially continuous models

Stochastic partial differential equations and discrete mod-
els are normally portrayed as two alternatives approaches to
study interface dynamics.

Most of the support for this conjecture comes from nu-
merical studies that have related pairs of models within the
same universality class: for example, the Edwards-Wilkinson
and the Family models.

The Edwards-Wilkinson(EW) model reads[11]

ḣsx,td = F + n¹2hsx,td + hsx,td, s22d

where F represents an average constant flow andn is the
diffusion constant (sometimes called evaporation-
condensation coefficient), while the noise termhsx,td is as-
sumed to be a Gaussian white noise, with zero mean and
correlation given by

khsx,tdhsx8,t8dl = Gdsx − x8ddst − t8d. s23d

Although considerable theoretical effort has been devoted
to relate continuous equations with discrete models, using a
variety of techniques such as Master equation formulations
followed by a Kramers-Moyal expansions[9,19,20], Van Ka-
mpen’sV expansions[21], and others[10,22,23], at present
not one of this attempts can be considered fully satisfactory,
and the problem continues to be open[24].

We will follow the proposed smoothing procedure with
the symmetric Family model defined in Sec. II A. We simply
have to replace the step functions in the expression of the
local amplitude given in Eq.(9) for a functionFK1

and the
step function in Eq.(2) for a FK0

function. Thus, from the
symmetric Family model we obtain a three-parameter family
of smoothed models; i.e., we have a model for each
sC,K0,K1d point in parameter space.

FIG. 2. Comparison of the approximate theo-
retical rate (21) with the rates obtained from
Monte Carlo simulations averaged over ten inde-
pendent runs. Results for the symmetric Family
models(SFM), random deposition model(RDM),
and a theoretical approximation described by
Eqs.(21) and (18) are shown.
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Numerical simulations show(as we shall see in Sec. IV)
that the family shares the same set of scaling exponents. This
means that despite the fact that we change the parameters the
model remain in the same universality class than the sym-
metric Family model.

In particular, this is true for the models with a value ofK̄
sufficiently small such that linear approximations are pos-

sible (howsmall shouldK̄ be will depend on the argument of
FK̄).

Expanding both inK0 and K1 up to the first nontrivial
contribution, we get

hisn + 1d − hisnd =
1

2
+ K0C −

K0

2
+ CK0K1Shi+1 + hi−1 − 2hi

+
hi+2 + hi−2 − 2hi

4
D + K0hi , s24d

wherehi are uncorrelated random variables distributed uni-
formly in f−1

2 , 1
2

d. The expressionshi+1+hi−1−2hi and shi+2

+hi−2−2hi /4d are two discrete realizations of the one-
dimensional Laplace’s operator.

Equation(24) can be considered a discrete form of the
EW equation(22). In fact, Eq.(24) is equivalent to a numeri-
cal integration(in an Euler forward scheme) of the EW equa-
tion with parameters:

F =
1

2
+ K0C −

K0

2
, s25d

n = 2CK0K1, s26d

G =
K0

2

12
. s27d

G was introduced in Eq.(23) and the integration steps are
Dt=Dx=1.

Therefore, an interpolation has been produced linking the
Family model and the Edwards-Wilkinson equation. Note,
however, that the link is established smoothing rather than
differentiating; smoothing is associated with the deposition
of blobs rather than particles and is expected to be relevant at
a mesoscopic scale in consonance with the ideas in[11].

F. Simplified models

We will further explore the smoothed systems in terms of
the flux and variance model introduced in Sec. III A for the
system(2).

For every stochastic system in the smoothing family, a
flux and variance counterpart can be produced along the lines
of Eq. (17) using state-dependent noise:

Dhi = EfCLJi,K0g + Î12 Var sCLJi,K0dhi . s28d

here E and “Var” denote mean and variance ofFK0
sCLJi

−Xid, respectively, while thehi are independent random vari-
ables uniformly distributed inf−1/2,1/2d.

We present in Fig. 3 theW2 vs khl curves obtained for the
smoothed symmetric Family models as dictated by Eqs.(29)
and(30) and those obtained from the approximated equation
(28) for different parameters values. The figure shows excel-
lent agreement between both approaches, since it is almost
impossible to distinguish between corresponding pairs of
curves.

IV. NUMERICAL RESULTS

In this section we present an extensive numerical study
using Monte Carlo simulations. We focus on the properties
of the models obtained by applying the smoothing procedure
as explained above to the symmetric Family model.

We aim at getting an understanding of the main properties
of the models in the different regions of the parameter space
sC,K0,K1d, avoiding as much as possible the details that will
eventually emerge as characteristics of the particular smooth-
ing used.

FIG. 3. Curves obtained, for different param-
eter values on the smoothed symmetric Family
model using the evolution dictated by Eq.(29)
(Orig Alg) and the approximation in terms of
mean and variance(28) (Mean +Var). In all cases
L=100 andC=0.1 and an average over 100 in-
dependent runs was performed.
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The smoothed symmetric Family model(SSFM) with pa-
rameterssC,K0,K1d is defined by the following equations:

hisn + 1d − hisnd = FK0
„CLJisnd − Xisnd… s29d

Ji
SFM = h1 + FK1

shi+1 − hid + FK1
shi−1 − hid − FK1

shi − hi+1d

− FK1
shi − hi−1d+0.5f2FK1

shi − hi+1dFK1
shi − hi−1d

− FK1
shi+1 − hidFK1

shi+1 − hi+2d−FK1
shi−1 − hid

3FK1
shi−1 − hi−2dgj/L. s30d

In terms of scaling laws we find that, for the SSFM, the
roughness scales with the average height and system size in
agreement with the Family-Vicseck[2] picture since the scal-
ing exponents obtained are close to those corresponding to
the EW universality class(see Fig. 4)— i.e., in one dimen-
sion a=0.5 andb=0.25.

Although the number of lattice sites is relatively small
due to computational restrictions, we find that the numerical
evidence sustains the claim that the full family of stochastic
systems belong to the same universality class.

A qualitative understanding of the properties of the
smoothed symmetric Family model in parameter space
comes from considering the generic shape assumed for theF
functions. In fact, roughly speaking, theF functions have an
almost linear part and an almost constant part(this would be
exactly the case for a smoothing performed with the linear
piecewise functions proposed above). Then, we can make a
partition of the parameter space in regions in which the lin-
ear approximation in Eqs.(29) and (30) is valid or not
valid—i.e., when the differencesuhi −hi+1uK1!1 or uhi
−hi+1uK1@1 (leaving a transition region foruhi −hi+1uK1<1).

Certainly, these regions depend on the proper choice of
the smoothing functionsF and have not, generally, well-
defined boundaries; instead, there are crossover regions with
intermediate behavior that make it harder to obtain a full
characterization of the parameter space. Nevertheless, we

have found that our more relevant numerical findings can be
qualitatively understood by means of this characterization.

We shall speak of four main regions in parameter space,
noted ashsL ,Ld ; sL ,Nd ; sN,Ld ; sN,Ndj, where, for example,
thesL ,Nd region is the one where the linear approximation is
valid in Eq. (29) while theFK1

functions in Eq.(30) behave
practically as step functions. It is obvious that, setting a fixed
C value, at the limitsK0,K1d→ s0,0d we are in thesL ,Ld
region, while for sK0,K1d→ s` ,`d we are in the region
sN,Nd.

In accordance with this classification scheme, we can un-
derstand many facts that emerge from numerical simulations,
such as the following:

(i) The simulations show that little variation is observed
by varying theK0 and K1 parameters between 10 and̀,
while C is kept fixed at a constant value,C=0.1. This means
that, in this region of parameter, the smoothing procedure has
not an appreciable effect. A fact that can be understood by
noting that, for thesesC,K0,K1d values, we are in the region
sN,Nd, and the arguments inside of theF functions in Eqs.
(29) and(30) valuate theF functions as almost constant. No
substantial change takes place moving the parameters inside
this region.

(ii ) Points in parameter space withC=0.1 andK0,K1

ø
1
2 lie in the sL ,Ld region in which the evolution equation

reduces to the “EW-like” form discussed in Sec. III E. In Fig.
5, we use this connection with the EW equation to obtain
data collapse between different simulations in which the pa-
rameters are included in the rescaling of the axis in the form
given by the exact solution of the EW equation[25].

The collapse of data in Fig. 5 should not be expected to be
complete since the data correspond to different stochastic
systems and the scaling is adjusted just for the limit case
corresponding to the EW equations rather than for each one
individually.

Finally, we give an example of a transition between the
sN,Nd to thesN,Ld region. This transition can be observed in
Fig. 6, where fixed valuesC=0.1, K0=1000 were taken,
while the K1 value was varied in the range 0.1,106. This

FIG. 4. Comparison of the squared roughness
vs mean height evolution for the original sym-
metric Family model(SFM) and the smoothed
symmetric Family model(SSFM) for various val-
ues of smoothing parameters forL=200, C
=0.01 and averaging over 25 independent runs.
Inset: saturation squared roughness as a function
of system size, showing, approximately, a rough-
ness exponent 2a,0.95.
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figure shows that varyingK1 between approximately 0.4 and
106 [which corresponds to thesN,Nd region], a nearly con-
stant value of the saturation squared roughness is obtained,
while for K1, ,0.4 (corresponding to thesN,Ld region) the
saturation squared roughness grows asK1

−1.
The influence of the parameterC depends on the region

being considered. In thesN,Nd region the influence is negli-
gible (providedC is sufficiently small) as it only results in
changing the time between observations. In thesL ,Ld region
it controls the amount of diffusion without changing the fluc-
tuations. Finally, the location of the transition regions in the
sK0,K1d plane depends onC since the conditions for linear-
izing the probability rates depends both onC andK1.

V. SUMMARY AND DISCUSSION

The study of a three-parameter family of stochastic sys-
tems related to the symmetric Family model by smoothing of
the probabilities and the surfaces allows us to interpolate

between the solid-on-solid deposition and an Edwards-
Wilkinson equation, being all the models within the same
universality class.

We have shown that there is a Langevin-like equation that
cannot be distinguished from the symmetric Family model in
terms of roughness evolution. The Langevin-like stochastic
model (12) presents a mean value contribution(flux) plus a
state-dependent(denso-dependent or multiplicative) noise.

The smoothing procedure introduced in this work could
actually be applied to a large class of solid-on-solid deposi-
tion models, but the final linearization requires the saturation
of the roughness; hence, in those situations where, for ex-
ample, instabilities in the form of fingers appear(unstable
growing), the linearization is not possible and the relation
with differential equations is lost.

It is worth mentioning that in the present work smoothing
is understood as a continuous process in terms of the
smoothing parameters; hence, the degree of smoothness in-
troduced can be regulated. This idea is in sharp contrast with

FIG. 5. Data collapse, ob-
tained by rescaling the axis in
agreement with the exact solution
of the EW equation. The word
“runs” in the box indicates the
number of independent realiza-
tions in which the data has been
averaged.

FIG. 6. Curves ofW2 vs khl for different val-
ues of the parameterK1. Inset: saturation values
of W2 as a function ofK1, showing a transition
between different behaviors close toK1=0.4. The
remaining parameters areK0=1000 andC=0.1.
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previous works[9,10,19,20] where the step function is re-
placed by a polynomial moving from thesN,Nd region to the
sL ,Ld region discontinuously.

We have further shown that the evolution of the roughness
with time is insensitive to most features of the stochastic
process if exception is made for the conditional flux and
variance of the model; hence, we can conjecture that just the
conditional flux and variance are reflected in universality
classes.

Conversely, notice that model validation beyond condi-
tional mean and variance requires one to go beyond the stan-
dard statistical analysis of roughness.

Not every interesting property is shared by all members of
a universality class. Of particular relevance is the fact that
the maximum roughness achieved with different models is
model dependent, being sensitive to the transition probabili-
ties Yi,j and, hence, to the microscopic laws describing par-
ticle interactions.

Intuitively, the higher the value of the probability smooth-
ing parameterK1 is, the higher the sensitivity to the height
differenceshi −hi+1, hence, the system is expected to respond
more effectively to height differences for largeK1 values,
achieving smoother surfaces. Our results show that this in-
tuitive thinking is relevant only for moderate values of the
probability smoothing parameterK1 and insensitivity to this
feature becomes the rule for larger values ofK1.
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