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Stochastic population dynamics: The Poisson approximation
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We introduce an approximation to stochastic population dynamics based on almost independent Poisson
processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies
to systems that evolve in terms ofeventssuch as death, birth, contagion, emission, absorption, etc., and we
assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the
result of the projection from the space of events into the space of populations that determine the state of the
system~phase space!. The properties of the Poisson approximation are studied in detail. Especially, error
bounds for the moment generating function and the generating function receive particular attention. The
deterministic approximation for the population fractions and the Langevin-type approximation for the fluctua-
tions around the mean value are recovered within the framework of the Poisson approximation as particular
limit cases. However, the proposed framework allows to treat other limit cases and general situations with
small populations that lie outside the scope of the standard approaches. The Poisson approximation can be
viewed as a general~numerical! integration scheme for this family of problems in population dynamics.
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I. INTRODUCTION

In this paper, we consider the time evolution of interacti
populations, i.e., the time evolution of systems which
described by non-negative integers counting the member
the different species acting in the problem. Molecules@1–5#,
photons@6–8#, predators, preys, infected individuals, et
can be regarded as populations under a diversity of situat
@9#. The different nature of the systems will be apparent
the characteristic interactions of each particular problem
consideration. Henceforth, we will consider a rather gene
class of interactions.

The time evolution of discrete populations is describ
with jumps in the population values that occur ‘‘instant
neously’’ ~meaning that the time taken to dissociate a m
ecule, emit a photon, hatch an egg, cut the umbilical co
etc., must be considerably shorter than the time between
servations, and essentially unimportant for the purpose
the analysis!. We shall refer to each of these jumps as
event.

We will consider that this time evolution responds to
Markov process, i.e., the probability of occurrence of a
event in an infinitesimal time interval (t,t1dt) will only
depend on the number of individuals at the timet and on
parameters that might depend ont. We shall further conside
that the time between events is exponentially distributed w
a characteristic frequency~transition rate! that only depends
on the state of the system@16#.

This setting has been successfully applied to a large
diverse class of systems and is usually modeled with Mo
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Carlo simulations~the name comes from solving an inver
problem: the approximation of solutions to differential equ
tions by stochastic jumps obtained by the Monte Ca
method!. Monte Carlo simulations are simple realizations
the Markov process. This approach is sometimes ca
Feller process@10# in the mathematical literature.

Considering the trasition rates, a widely used assump
which is reasonable for a large number of natural proces
the ‘‘mass-action’’ law which formalizes the following intui
tive idea: if a system is made twice as large duplicating e
population as well as the environment, then the numbe
interactions per unit time will be roughly twice the origin
figure.

When the mass-action law holds and in addition the po
lations are large, the fractions of the total population rep
sented by each species are the relevant variables. A Ma
jump process complying with the mass-action law can
approximated by the combination of a deterministic differe
tial equation and a stochastic correction describing the de
ture from the deterministic law in the form of a Langev
equation~Brownian process! @10–13#. The approximation is
sound provided that the description is not applied to re
tively small-time intervals hosting too few events.

Large-system limits where the description can be p
formed with a deterministic law or Langevin equations re
on two requirements: first, that we are interested in fractio
of the total population and/or fluctuations of these fractio
rather than in the actual population numbers and second,
the total populations are as large as needed~infinite popula-
tion size! to make the approximation valid. In terms ofnatu-
ral sciencesthis limit needs to be reinterpreted. Normall
natural scientists are not allowed to change their proble
i.e., we cannot change city if our model is not good enou
for the small city where the study of, for example, an e
©2003 The American Physical Society18-1
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demic outbreak is required. In this work, we shall deal w
this difficulty indicating the order of magnitude of the erro
introduced in our approximations.

As a general rule, whenever we introduce an appro
mated evolution law the predictions deteriorate with tim
The approximations presented in this work will not be t
exception, they will ‘‘improve’’ with our tolerance and dete
riorate with time. The different limits will then represent di
ferent balances between time of evolution and precision
the description.

Between the event-by-event realizations of the Mo
Carlo method and the ‘‘as many as needed’’ events per
time ~large population limit! of the Langevin method there i
room and need for a description that applies to large
small populations indistinctly. Such possibility has be
demonstrated recently@14# introducing a naive Poisso
approximation. As pointed out in Ref.@14#, this naive
approximation requires several improvements if it is going
achieve a fully respectable status. Mainly, it should ma
the Langevin approximation in the large population lim
and thead hocprocedure at the boundary of the populati
space~when one or more populations are zero! should re-
ceive careful consideration.

The aim of this paper is to present a Poisson approxi
tion in which the parameters of the~truncated! Poisson dis-
tributions obey a set of ordinary differential equatio
~ODE!. We intend to show that such approximation will pr
vide an adequate tool to handle systems with large and s
populations indistinctly, being especially suitable when
population is not as large as required for a deterministic
scription.

The basic description will be performed in the space
events which can be projected down onto the phase s
~the population numbers! of the problem. We will show tha
in the large population limit the Poisson approximation co
verges to the solutions of the Langevin problem but furth
more, it converges to the Monte Carlo process when
mean number of events per unit time is kept fixed in
limit.

The rest of the work is organized as follows: In Sec.
we formulate the problem in terms of its probabilities and
class of events involved. In Sec. III, we present the Pois
approximation. Section IV contains the core results of t
work since the quality of the approximations is asserted
der different potential uses. Section IV B is rather techni
as well as parts of Sec. III and it might be skipped in a fi
reading. Section V works out a simple example where j
one class of events is involved. Concluding remarks are
for Sec. VI.

II. STATEMENT OF THE PROBLEM AND BASIC
PROPERTIES

A. Phase space and space of events

We shall consider a stochastic process in which the s
of the system is described by a vector of integer variab
~populations!, Xi , i 51, . . . ,N.

The evolution of the system is described by the occ
rence ofE ~classes of! events. The eventj produces a chang
03191
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X→X1d j in the state of the system, whileWj (X)dt is the
probability of occurrence of the eventj in an infinitesimal
time interval@ t,t1dt# given that the state of the system
the timet is X. We shall often refer toWj (X) as the ‘‘tran-
sition probability.’’ Without loss of generality we can con
sider thatd iÞd j for iÞ j .

We shall further assume that the formulation is consiste
meaning that the corresponding transition probability for
event that would eventually produce a meaningless~non-
physical, nonbiological,. . . ) state is zero. Also we define
Wj (X)50, j 51, . . . ,E if X is a meaningless state~negative
populations are the most noticeable meaningless states!.

We shall consider that at timet50 the system is in the
stateX(0)5X0. Let P(n1 , . . . ,nE ;t/X0) be the probability
that at timet, exactlynj , j 51, . . . ,E events of each differ-
ent kind have occurred, given that the initial state~at time t
50) was X0. Let z i , i 51, . . . ,E be non-negative intege
random variables distributed with probabilitie
P(n1 , . . . ,nE ;t/X0). Then,

X5X01(
j 51

E

d jz j , ~1!

meaning that the random variableX represents the state o
the system at timet and its probability distribution is the on
resulting from the effects of the different possible events

Note that the decomposition in terms of events carr
more information than the transition probabilities from t
stateX0 to the stateX since, in principle, several combina
tions of events can produce the same final state. Such c
binations are distinguished in the present formulation~think,
for example, of a birth-death process, thek-death k-born
events all lead to a transition fromX0 to X0 and our prob-
ability distribution keeps track of the contributions of ea
situation!.

Our interest is then to produce suitable approximations
P(n1 , . . . ,nE ;t/X0) that can be used in a direct analysis
the problem in question or efficient numerical realizations
the process under consideration.

B. Time evolution of the probabilities and the generating
function

The probabilitiesP(n1 , . . . ,nE ;t/X0) satisfy the forward
Kolmogorov equation~sometimes referred as Master equ
tion in the natural sciences literature!

d

dt
P~n1 , . . . ,nE ;t/X0!

5(
j 51

E

@Wj~X2d j !P~n1 , . . . ,nj21, . . . ,nE ;t/X0!#

2S (
j 51

E

Wj~X!D P~n1 , . . . ,nE ;t/X0!, ~2!

where X5X01( j 51
E d jnj and P(n1 , . . . ,nE ;0/X0)
8-2
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5) j 51
E d0nj

(d i j is the Kronecker delta!. We notice that

P(n1 , . . . ,nE ;t/X0)50, whenever one or morenj is nega-
tive.

The generating function associated to the probabili
P(n1 , . . . ,nE ;t/X0) is

F~z1 , . . . ,zE ;X0!5(
$nj %

S )
j 51

E

zj
nj D P~n1 , . . . ,nE ;t/X0!.

~3!

F(z1 , . . . ,zE ;X0) can, as a function ofz, be regarded as
an analytic function defined via a non-negative series on
unit cubeR, namely,R5uzj uP@0,1#, j 51, . . . ,E ~actually,
we may regardzj as real and non-negative variables, exc
for Sec. IV E!. Moreover, for allt values,F(z151, . . . ,zE
51;X0)51 and itsz derivatives can be computed by term
by-term derivation with the possible exception of the bord
of R.

Proposition. Let F:R°R defined as above. Then,F is
non-negative, has non-negative derivatives with respec
everyzi anddF/dt is nonpositive.

Proof. The only statement which is not obvious is the la
one. First, we note that the fact that the time coefficients
F(z,t;X0) are probabilities~therefore, non-negative an
summing one!, guarantees thatF(z,t;X0) is uniformly con-
vergent for allt>0 and allzP@0,1#. Hence, thet derivatives
of F can be computed term by term.

Hence, we have

d

dt
F~z,t;X0!5 (

$nj %;X0

S )
j 51

E

zj
nj D d

dt
P~n1 , . . . ,nE ;t/X0!

~4!

5(
$nj %

S )
j 51

E

zj
nj D S (

j 51

E

Wj~X2d j !

3P~n1 , . . . ,nj21, . . . ,nE ;t/X0!

2(
j 51

E

Wj~X!P~n1 , . . . ,nE ;t/X0!D ~5!

~whereX5X01( j 51
E d jnj ), changing the index of sum in th

first term fromnj21→nj , we obtain

d

dt
F~z,t;X0!5(

j 51

E

~zj21!Gj~z1 ,, . . . ,zE!

[L~X0!F~z,t;X0!, ~6!

where

Gj~z1 ,, . . . ,zE!5(
$nj %

S )
j 51

E

zj
nj D Wj~X!P~n1 , . . . ,nE ;t/X0!

5Lj~X0!F~z,t;X0!, ~7!
03191
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Lj (X0) is an operator that acts by multiplying each term
the analytical expansion ofF(z,t;X0) by the transition rate
associated to thej event in the stateX5X01(kdknk .

We have implicitly used that the transition probabilitie
are zero when they imply a transition to a meaningless s
and that the probabilities of the meaningless states are i
tically zero, hence allowing to extend the sums formally
to infinity in all cases. SinceGi(z1 , . . . ,zn)>0 and (zi
21)<0, we have (zi21)Gi(z1 , . . . ,zn)<0 and the result
follows immediately. j

The previous results shows that the time derivative of
generating function can be written as the action of a lin
operatorL on F. Moreover,L(X0) in Eq. ~6! can be thought
of as applying not only to generating functions but to a
analytic function ofzPR. The evolution operator can now
formally be written as exp(Lt). In particular, it transforms
analytic functions into analytic functions.

Furthermore, when applied to any monomial, the equa

Uexp~Lt !)
j 51

E

zj
njU5U)

j 51

E

zj
njU ~8!

can be easily verified~it follows immediately from the fact
that L maps generating functions into generating function!.

For every analytic function f(z1
n1 , . . . ,zE

nE)

5(n1 , . . . ,nE
an1 , . . . ,nE

z1
n1 , . . . ,zE

nE consider the normuufuu
5(n1 , . . . ,nE

uan1 , . . . ,nE
u.

Proposition. The evolution operator exp@L(X)t# is
bounded by the identity, i.e.,

uuexp@L~X!t#fuu<uufuu. ~9!

Proof. By definition F(z,t;X0)5exp(Lt)F(z,0;X0) for
every generating functionF(z,0;X0). Since the sum of the
probabilities of all the states is 1, it is clear that the statem
of the theorem is true~the equal sign holds! whenf(z,0) is
a generating function. Moreover, exp(Lt) is a linear operator
and the generating functionsz1

n1 , . . . ,zE
nE form a basis of the

space of entire functions, hence

uuexp@L~X!t# (
n1 , . . . ,nE

z1
n1 , . . . ,zE

nEan1 , . . . ,nE
uu

5uu (
n1 , . . . ,nE

an1 , . . . ,nE
exp@L~X!t#~z1

n1 , . . . ,zE
nE!uu

< (
n1 , . . . ,nE

uan1 , . . . ,nE
u. j

~10!

Notice thatF(z,t;X0) satisfies~6! with initial condition
F(z,0;X0)51 according to Eq.~3!. We will allow in this
paragraph more general initial conditions associated to
~6!. Let f(z,t;X0) be a solution of Eq.~6! with initial con-
dition f(z,0;X0)5zj

m representing a system with probabilit
1 at t50 of being in the stateX5X01md j , we have that
f(z,t;X0)5zj

mF(z,t;X), sinceF(z,t;X) represents the gen
erating function with initial condition at the reference sta
X. Hence, the following result holds:
8-3
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d

dt
@zjF~z,t;X01d j !#5zj

d

dt
F~z,t;X01d j !

5zjL~X01d j !F~z,t;X01d j !

5L~X0!@zjF~z,t;X01d j !#, ~11!

which can be independently verified starting from the de
nition of L(X) in Eqs.~6! and ~7!.

C. The border between admissible and meaningless states

We will further characterize the states in the border of
region of admissible states.

Let Bj (X0) be the set of events such that

X5X01 (
i 51, . . . ,E

d ini ~12!

is an admissible state, but

Y5X01 (
i 51, . . . ,E

d ini1d j ~13!

is not. In such cases, we shall say that$ni% i 51, . . . ,E be-
longs to thej th component of the borderBj (X0) of the ad-
missible region~note that the different components of th
border are not necessarily disjoint!.

After this preparatory section, we are ready to introdu
the Poisson approximation in the following section.

III. APPROXIMATION BY „ALMOST … INDEPENDENT
POISSON PROCESSES

A. The Poisson approximation

We will now attempt to approximate the probabilitie
P(n1 , . . . ,nE ;t/X0) by a product of probabilities represen
ing independent Poisson processes with parametersl i(t), i
51, . . . ,E which satisfy a differential equation that we sha
prescribe.

The main aim of this paper is to understand the qua
~size of errors and convergence properties! of this approxi-
mate model.

Consider the eventj, we let Pn1 , . . . ,nE

j (l j ) be

Pn1 , . . . ,nE

j ~l j !5exp~2l j !
l j

nj

nj !
, ~14!

whenever$ni%P” Bj (X0) and

Pn1 , . . . ,nE

j ~l j !5exp~2l j ! (
i 5nj

`
l j

i

i !
512exp~2l j ! (

i 50

nj 21
l j

i

i !
,

~15!

if $ni%PBj .
Notice that fornj50,

d

dt
Pn1 , . . . ,nE

j ~l j !52
dl j

dt
Pn1 , . . . ,nE

j ~l j !, ~16!
03191
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while for if $ni%P” Bj (X0) andnjÞ0 ~the general case!

d

dt
Pn1 , . . . ,nE

j ~l j !5
dl j

dt
@Pn1 , . . . ,nj 21, . . . ,nE

j ~l j !

2Pn1 , . . . ,nE

j ~l j !#, ~17!

and finally,

d

dt
Pn1 , . . . ,nE

j ~l j !5
dl j

dt
Pn1 , . . . ,nj 21, . . . ,nE

j ~l j !, ~18!

if the state belongs to the boundary setBj . Further notice
that the expressions~16!, ~17!, and~18! resemble the contri-
butions of thej th event to the change of the probabilities~2!
for boundary and non boundary states.

We propose the following expression as an approxim
tion:

P~n1 , . . . ,nE ;t/X0!;S )
j 51

E

Pn1 , . . . ,nE

j D
5 P̄~n1 , . . . ,nE ;t/X0!, ~19!

where the expression is valid for all$nj% such thatX5X0
1( jd jnj is an admissible state and the coefficient functio
l j (t) are still to be determined.

Once again, the probabilities of inadmissible states
zero and the evolution of Eq.~19! is completely decoupled
from the probabilities of the inadmissible states as can
seen from the expression~18!. We could formally extend the
expression to all possible values of$n% without introducing
errors.

The generating function associated withP̄ reads

C~z1 , . . . ,zE ,t;X0!5( S )
j 51

E

zj
nj D P̄~n1 , . . . ,nE ;t/X0!,

~20!

where the summation is extended to all the admissible st
and can be formally extended to all combinations of no
negative integer numbers$nj%.

Proposition. C(0,t;X0)51.
Proof. Notice first that this is equivalent to say that th

probability of being in any admissible state is 1. The prop
sition is proved realizing that it is true fort50 and that Eqs.
~16!, ~17!, and~18! assure thatdC(0,t;X0)/dt50.

To completely specify the proposed approximation,
have to establish the dependence of the Poisson param
$l j% with respect to time. We propose that the paramet
satisfy the following ODE with initial conditionl j (0)50:

Nj~ t,X0!
dl j

dt
5 (

$n%P” Bj

Wj~X!P̄~n1 , . . . ,nE ,t;X0!

[ f j~l!Nj~ t,X0!, ~21!

where the functionsf j (l) are defined by the right-hand sid
of the equations,Nj (t,X0)5($n%P” Bj

P̄(n1 , . . . ,nE ,t;X0) de-
8-4
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notes the sum of approximated probabilitiesexcluding the
border of the admissible region andX5X01( j (d jnj ), this
choice will render the errors of the approximation more m
ageable, as we will see in Eq.~51!.

Having introduced the Poisson approximation the rema
ing task ahead is to evaluated the quality of the approxim
tion. We shall address this central issue in the following s
tion.

B. Evaluation of the Poisson approximation

We shall proceed in two steps. In the first step, we w
find a suitable expression for the difference between the
act generating function and the approximated one; while
the second step, we will find some bounds and limiting
havior ~‘‘order of’’ relations! for the difference between gen
erating functions.

We begin by writing a formal solution to Eq.~6! in terms
of our guessP̄(t) and the correctionD(z,t;X0) in the form

F~z,t;X0!5C~z,t;X0!1D~z,t;X0!, ~22!

where

D~z,t;X0!52E
0

td$exp@L~X0!~ t2s!#C~z,s;X0!%

ds
ds

5E
0

t

exp@L~X0!~ t2s!#S L~X0!2
d

dsD
3C~z,s;X0!ds, ~23!

which holds for anyC(z,t;X0) provided thatF(z,0;X0)
5C(z,0;X0).

The formal expression involves the evaluation of the
ponential of an operator~which might be a formidable task!.
However, as soon as we realize that the exponential pro
gates in time an initial condition in the stateX0
1( j 51, . . . ,Ed jnj , we understand that it can be written
terms of solutions of Eq.~2! with the appropriate value fo
the initial stateX.

We first notice that according to Eqs.~16!, ~17!, and~18!,
we have

d

dt
C~z,t;X0!5 (

j 51, . . . ,E
f j S (

$n%¹Bj ,njÞ0
zn@ P̄~n1 ,nj

21, . . . ,nE ,t;X0!2 P̄~n1 , . . . ,nE ,t;X0!#

2 (
$n%¹Bj ,nj 50

znP̄~n1 , . . . ,nE ,t;X0!

1 (
$n%PBj

zn@ P̄~n1 ,nj21, . . . ,nE ,t;X0!# D
5 (

j 51, . . . ,E
~zj21! f j

3S (
$n%¹Bj

znP̄~n1 , . . . ,nE ,t;X0! D , ~24!
03191
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where zn5) j zj
nj . The expression for the errorD(z,t;X0)

can be rewritten using Eqs.~6!, ~11!, and~24! as follows.
First, we compute thes time derivative with Eq.~24! and

the action ofL(X0) on C with Eq. ~6!. We have

S L~X0!2
d

ds
DC~z,s;X0!5 (

j 51, . . . ,E
~zj21! (

$n%P” Bj

@Wj~X!

2 f j #z
nP̄~n1 , . . . ,nE ,s;X0!.

~25!

Second, the exponential operator exp@L(X0)(t2s)# act-
ing on powers ofz can be recasted as the time evolution
shifted reference statesX5X01( j 51

E d jnj as in Eq.~11!:

exp@L~X0!~ t2s!#zjz
n5zjz

n exp@L~X1d j !~ t2s!1#

5znzj exp@L~X1d j !~ t2s!#

3F~z,0,X1d j !

5znzjF~z,t2s,X1d j !.

Finally, we rearrange Eq.~23! as follows:

D~z,t;X0!

5E
0

tS (
j 51, . . . ,E

(
$n%P” Bj

znP̄~n,s;X0!@Wj~X!2 f j #

3@zjF~z,t2s;X1d j !2F~z,t2s;X!# Dds, ~26!

whereX5X01( j 51
E d jnj as usual.

We can now proceed to find upper bounds for the expr
sion ~26!.

IV. RESULTS

In this section, we will present our main results. Some
them will make contact with previous results: the determ
istic approximation to density dependent jump Markov p
cesses described in Ref.@11#, see also Refs.@13# Chap. 5 and
@10# Chap. 11~also known as thelaw of large numbers! and
the diffusion or Langevin approximation directly connect
to the central limit theoremexpressions for the deviation
from the deterministic limit obtained by Kurtz in Ref.@12#,
see also Refs.@10,13#.

Other results are completely new~to our knowledge! such
as the Poisson limit and most importantly the explicit er
bounds and, hence, range of applicability associated to al
approximations which are needed in natural sciences. In
dition, we must emphasize that all the limit cases and e
bounds are obtained within the framework of the Poiss
approximation hence unifying several limit cases as differ
realizations of the same approximation method.

We shall show in this section the main results of th
work, namely: convergence of several approximated mom
generating functions to the exact moment generating fu
8-5
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tions as well as convergence for short times of the proba
ity generating function.

A. The generalized mass-action law

In what follows, we will consider that the system is r
stricted to ~or at least unlikely to escape! a region of the
phase space

uuXuu1<V. ~27!

We shall callV the size of the system. In most physica
chemical, and biological systems such restriction appe
naturally as a consequence of the finiteness of the avail
energy, number of molecules, total population, or carry
capacity of the environment.

We shall further consider when taking limits that

Wj~X!5Vwj~X/V!, ~28!

a generalized mass-action law which renders explicit the i
that if the system is, for example, made twice as large du
cating each population as well as the environment, then
number of interactions per unit time will be roughly twic
the original figure.

B. Inequalities

Before we proceed further, we shall notice that the expr
sion

K j~z,t2s!5@zjF~z,t2s;X1d j !2F~z,t2s;X!#,

that is, part of Eq.~26!, satisfies the equation

d

dt
K j~z,t !5L~X!K j~z,t !, ~29!

with initial condition zj21. The functionK j can be written
as

K j~z,t !5(
l

~zl21!gj
l ~z,t !. ~30!

After making use of Eqs.~6!, ~7!, and~11!, we have

d

dt
gj

k5L~X!gj
k1(

l
zl@Lk~X1d l !2Lk~X!#gj

l , ~31!

with initial condition gj
k(z,0)5d jk .

Writing Eq. ~31! in integral form as

gj
k~z,t !5d jkF~z,t;X!1E

0

t

exp@L~X!~ t2s!#

3(
l

zl@Lk~X1d l !2Lk~X!#gj
l ~z,s!ds ~32!

and considering the difference@gk
j 2F(z,t;X)dk j# as well as

the inequality~9!, we can use Gronwall’s inequality to est
mate the errors:
03191
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sup
k

uugj
k2d jkF~z,t;X!uu

<t sup
k

uWk~X1d j !2Wk~X!u

3expS t(
l

sup
kY

uWk~Y1d l !2Wk~Y!u D ,

~33!

which as we shall see is approximately independent of
size of the system when the transition probabilities satisf
mass-action law.

There is a more obvious bound forK j . Since 0<uzj u,
uF(z,t;X)u<1, we have

uK j~z,t !u<1. ~34!

The expression~33! has the advantage that produces the
act result forzi51 and, as such it is better suited for th
study of expectation values which correspond to expans
aroundzi51 of the generating function.

The correction to the generating function~26! is then
bounded by

UD~z,t;X0!2E
0

tS (
j 51, . . . ,E

(
$n%¹Bj

znP̄~n,s!@Wj~X!2 f j #

3~zj21!F~z,t2s;X! D dsU
<U E

0

t

~ t2s!dsS (
j 51, . . . ,E

(
$n%¹Bj

znP̄~n,s!uWj~X!

2 f j u H(
k

~12zk!J sup
kY

uWk~Y1d j !2Wk~Y!u

3expF ~ t2s!(
l

sup
kY

uWk~Y1d l !2Wk~Y!uG D U. ~35!

C. Deterministic limit

The standard process to obtain a deterministic limit
the random variableX proceeds by noting that under ad
equate conditions, in particular, forV→`, the variablex
5X/V obeys a deterministic differential equation, up to d
viations going to zero withh(V)51/AV @10,13# The crucial
matter with this limit is that in order to disregard the devi
tions,V must besufficientlylarge, i.e.,as large as needed. In
applications to natural sciences,V is often fixed and whethe
it is large enough or not depends on the specific proble
Our approximations aim to cast some light on the frequ
situation whereV is not large enough to accept the dete
ministic limit as a good approximation.

We shall consider the behavior of the different mome
of the stochastic variables representing the changes in
populations as a function of time in the scale 1/V. For such
purpose it is convenient to introducemoment generating
functions. The generating functionF(z) is one of such func-
8-6
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tions since its~left! derivatives atz51 are linear combina-
tions of the moments of the distributionP. We will for the
moment writeFX(z) to render explicit which stochastic var
able is in action. The moment generating functionHX(w) is
defined viaHX(w)5FX„exp(w)…, i.e., by just replacingz
with exp(w) in F. The name arises by the fact that the m
ments ofX are given by the derivatives ofHX at w50 ~pro-
vided they exist!, in other words, ifMs are the moments o
X, we haveHX(w)5(0

`Msw
s/s!.

At this point, the reader can verify that the moment ge
erating function for the random variablex5X/V is obtained
by replacingw by n/V in HX , i.e., Hx(n)5HX(n/V) or in
other words,Hx(n)5FX„exp(n/V)…. The moments ofx are
now given by the derivatives ofHx at n50 ~assuming exis-
tence!. We have then the following theorem.

Theorem 1 (truncated Poisson approximation). Let Vj be
the minimum distance to thej-border states, i.e., the min
mum of all n such thatX01(kÞ jnkdk1nd jPBj . Assume
also that the generalized mass-action law~28! holds and that
uWj (X)2Wj (Y)u<Cj uX2Yu with Cj ( j 51, . . . ,E) finite.
Then, for e.0 sufficiently small and 2e,n i<0,
CX(exp@(jnj /V#) converges uniformly toHx(n) in the limit
V→`, provided that; j , l j /Vj,1.

Proof. We will show that under the conditions of the the
rem, CX„exp(n/V)… converges toHx(n)5FX„exp(n/V)… by
checking that the differenceD„exp(n/V)… goes to zero in the
limit V→` (n stands for( jn j throughout the proof when
needed!.

We begin by noting from Eq.~35! that uDu is bounded by
the sum of two terms. We study each term separately. For
first term, we note thatuzj21u5e/V@11O(e/V)#. There-
fore,

U E
0

t

(
j 51, . . . ,E

(
$n%P” Bj

znP̄~n,s!@Wj~X!2 f j #~zj21!F~z,t

2s;X!dsU< e

V
@11O~e/V!# (

j 51, . . . ,E
Rj , ~36!

wherez5exp(n/V) and the contributionRj reads

Rj5E
0

t

ds (
$n%P” Bj

uznF~z,t2s;X!u uWj~X!2 f j uP̄~n,s!.

~37!

Letting Nj (t,X0) as in Eq.~21! and using Schwartz’ inequal
ity with the weightsQ(n,s)5 P̄(n,s)/Nj (s,X0), we have

Rj<E
0

t

dsNj~s,X0!A (
$n%P” Bj

uWj~X!2 f j u2Q~n,s!,

~38!

after noting thatuznF(z,t2s;X)u<1 for uzu<1 and anyt.
Recalling Eq.~21! f j5($n%P” Bj

Q(n,s)Wj (X) so the argu-

ment of the root can be written as^uWj2^Wj&u2& averaged
with the weights Q(n,s). Moreover, ^uWj2^Wj&u2&
5(1/2)^uWj (n)2Wj (m)u2&. In the same way (1/2)^un
2mu2&5^un2^n&u2&.
03191
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Let us now fulfill the transition to the V-
scaled variables using the generalized mass-ac
law: uWj (n)2Wj (m)u5Vuwj (n/V)2wj (m/V)u<Cj un
2mu5VCj ud j uu(n/V)2(m/V)u. Thus,

^uWj2^Wj&u2&<~VCjd j !
2^u~n/V!2~m/V!u2&

5~Cjd j !
2^un2^n&u2&,

the average always taken with the weightsQ(n,s).
Hence, sinceuNj u<1 and noticing that̂ nj&<l j while

^(nj2^nj&)
2&<l j using that the weightsQ(n,s) correspond

to a truncated Poisson and thatVj2l j.0,

Rj<tAl jCj ud j u ~39!

and the first contribution goes to zero as

e

V
@11O~e/V!# (

j 51, . . . ,E
Rj5O~etAl̂/AV!. ~40!

Turning to the second term, we proceed as above, nam

U E
0

t

~ t2s!dsS (
j 51, . . . ,E

(
$n%¹Bj

znP̄~n,s!uWj~X!2 f j u

3H(
k

~12zk!J sup
kY

uWk~Y1d j !2Wk~Y!u

3expF ~ t2s!(
l

sup
kY

uWk~Y1d l !2Wk~Y!uG D U
< (

j 51, . . . ,E

Ee

V
@11O~e/V!#E

0

t

dsS ~ t2s!

3expF ~ t2s!C(
l

ud l uGCud j u D ~Al jCj ud j u!, ~41!

whereC5(kCk .
Putting everything together, we obtain

uD„exp~n/V!,t,X0…2O~etAl̂/AV!u

< (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e/AV!. ~42!

It is hence clear thatCX„exp(n/V)… converges toHx(n)

5FX„exp(n/V)… as fast asetAl̂/V. j
Theorem 2 (large-size limit). Under the conditions of the

previous theorem and if, additionally, limV→`l j /Vj5bj,1
then CX„exp(n/V)… converges uniformly to exp((jnjl̂j),
wherel̂ j5 limV→`l j /V satisfies the differential equation

dl̂ j

dt
5 lim

V→`

f j

V
.

Proof.
8-7
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CX„exp~n/V!…5(
n

exp~nn/V!P̄~n,t !

5 (
n,ni,Vi

exp~nn/V!P̄~n,t !

1 (
n,ni>Vi

exp~nn/V!P̄~n,t !, ~43!

where both sums include only admissible states. Note
each term takes its largest value forn50 and that~43! can
be recasted more explicitly as

CX„exp~n/V!…5)
j

E

(
nj<Vj

@l j exp~n j /V!#nj /nj ! exp~2l j !

1 (
n,ni>Vi

exp~nn/V!P̄~n,t !, ~44!

while

(
n,ni>Vi

exp~nn/V!P̄~n,t !<)
j

E

(
nj>Vj

@l j
nj /nj ! exp~2l j !#.

~45!

After rearranging the right-hand side, using known prop
ties of the G function and the Stirling approximation fo
factorials, it is easy to verify that the right-hand side of E
~45! is bounded from above byC exp(2(jcjVj) for some
positive constantsC,cj ~see the Appendix for the explici
computation!. The hypothesis of the theorem imply thatVj
→` with V at least linearly and hence the right-hand s
goes to zero withV exponentially fast, regardless ofn. Rea-
soning along the same lines, we note that the error in
duced by continuing the sums of the first term of Eq.~43!
beyondVi also decreases roughly exponentially fast~see also
the Appendix for an illustration! in the limit V→`. Hence,
we have exponentially fast convergence of

CX„exp~n/V!…2expS (
j

l j~en j /V21! D→0, V→`.

~46!

To conclude the proof, we note that under the assump
of the mass-action law

expS (
j

l j~en j /V21! D 5expS (
j

l̂ jn j D 1O~n2/V!. j

~47!

Corollary (deterministic limit). In the conditions of the
above theorems, the fluctuation of the variablesxi are zero;
i.e., the variables have a deterministic behavior in the li
V→`.

Proof. The momenta of orderk generated byHx(n) or,
equivalently, by exp((jl̂jnj) in the limit V→` are l̂ j

k .

Hence, in the limit,̂ ) j (nj /V2l̂ j )
kj&50 for any collection

of integersk. j
03191
at
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Notice that when projected onto the phase space,
populations obey the following deterministic equation in t
limit V→`:

dx

dt
5(

j
d jwj~x!, ~48!

where, lettingx05 limV→`X0 /V, we have

x5x01(
j

d j l̂ j , ~49!

a result that corresponds with the main theorem in Ref.@11#:
the law of large numbers.

D. Poisson limit

A different limit is obtained whenV→` andt→0, while
l j is kept bounded.

Theorem 3 (Poisson limit). Under the assumption of th
mass-action law and ifuWj (X)2Wj (Y)u<Cj uX2Yu with Cj
( j 51, . . . ,E) finite, then F(z,t;X0 ;V)2C(z,t;X0 ;V)
converges uniformly to zero as a function ofz in @0,1# in the
limit V→`, t→0, while l j is kept bounded.

Proof. The proof proceeds along the lines followed
Theorem 1 with the only difference that we now boundz and
(12z) by 1. Then, the two contributions to the error in E
~35! computed in Eqs.~39! and ~42! become of order
O(tAl) and O(t2Al), respectively. The latter is negligibl
in front of the first one fort→0. Both contributions go to
zero in the conditions of the theorem whent→0 as 1/V. j

E. Fluctuations around the deterministic limit

We shall now estimate the distribution function for th
fluctuations around the deterministic limit. To accompli
this end, we shall proceed in several steps: First, we
improve the error bound for the deterministic limit; secon
we will estimate the error for the mean values, and finally
will proceed to estimate bounds for the errors in the gen
ating function of centered momenta.

1. Improved error estimates

The relation between the generating function correspo
ing to the Poisson approximation and the one correspond
to the exact process has been formulated in Eq.~35! as an
estimation forD and an error bound for this estimation.

The estimation reads

D~z,t;X0!;E
0

tS (
j 51, . . . ,E

(
{ n} P” Bj

znP̄~n,s!@Wj~X!2 f j #~zj

21!F~z,t2s;X! Dds, ~50!

and it actually goes to zero quadratically whe
A( j (zj21)2→0. To realize this fact it is enough to notic
8-8
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that every term in the right-hand side of Eq.~50! includes a
factor (zj21) and the evaluation of the remaining factors
z51 produces

D~z,t;X0!;E
0

tS (
j 51, . . . ,E

(
$n%P” Bj

P̄~n,s!@Wj~X!2 f j #

3~zj21! Dds1OS (
j

~zj21!2D
5OS (

j
~zj21!2D . ~51!

Recalling the definition off j in Eq. ~21! it follows that the
first term sums to zero.

This observation has two immediate consequences,
the convergence in Theorem 1 is improved to

uD„exp~n/V!,t,X0…2O~e2tAl̂/V3/2!u

< (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e/AV!. ~52!

Second, the estimation in Eq.~35! has no terms linear in
n j and hence, its correction to the mean value is zero
other words, the exact mean values ofnj relate to the ap-
proximate ones as follows:

@nj #2@nj #P5 (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2eAV!, ~53!

where @nj #P is the mean value ofnj using the Poisson
weightsP̄.

2. Fluctuations around the mean value

In this section, we shall consider the stochastic variab
z i5(ni2@ni #)/AV that represent properly scaled fluctu
tions around the expectation values of the stochastic v
ablesni (@ni # is the exact mean value ofni).

The moment generating function reads@15#

J~n,t !5expS 2(
j

n j@nj #/AV D
3FS expS (

j
n j /AV D ,t,X0D , ~54!

with 2e8<n j<0. We shall now analyze the different con
tributions to Eq.~54! taking into account the expression~26!.

First, notice that

J~n,t !5expS 2(
j

n j~@nj #2@nj #P!/AV D
3expS 2(

j
n j@nj #P /AV D

3$C„exp~n/AV!…1D„exp~n/AV!…%, ~55!
03191
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with @nj #P as above.
Second, we realize that in order to produce error bou

for our approximations we can simply use those develo
for the deterministic approximation changing the range
the variable fromunu<e to unu<e8AV. Hence, according to
Eqs.~52! and ~53!,

uD„exp(n/AV…2O~e82tAl̂/V1/2!u

< (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e8!, ~56!

~@nj #2@nj #P!/AV5 (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e8!.

~57!

We can state the result by the following.
Theorem 4 (Fluctuations around the deterministic limi.

The fluctuations ofnj around its mean value,̂nj&, in the
scaleAV, i.e., (nj2^nj&)/AV) converge towards a Brown
ian process under the conditions of Theorems~1 and 2! in the
limit V→` for any fixed t,t* and the proper does th
motion in phase space for the variable (X2^X&)/AV.

Proof. According to the preceding discussion, the fluctu
tions have a moment generating function

J~n!5expS 2(
j

n j@nj #/AV DC„exp~n/AV!)

1 (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e8!. ~58!

Using the standard form of the generating function for
Poisson distribution verify that for fixedt<t* , Eq. ~58! has
limit

J~n!5expS (
j

~n j
2l̂ j !/21O~ unu3l̂/AV! D

1 (
j 51, . . . ,E

~Al̂ jCj ud j u!O~ t2e8!, ~59!

which converges to the generating function of the cente
momenta in a normal process.

The increments of the variable x5X/V5@X0
1( j (d jnj )#/V in a time intervaldt are then~using Theo-
rems 1 and 2!

dx5S (
j

d jwj~x!1z~ t !/AV Ddt, ~60!

where z is a normally distributed variable with zero mea
and covariance matrix@z l(t)zm(t8)#, which can be estimated
as @z l(t)zm(t8)#;d(t2t8)( jd j

ld j
mwj (x). j

The expression~60! corresponds to a Langevin process
Brownian motion in phase space with a noise amplitu
which is state dependent, this process is also known as
diffusion approximation@10# and, as far as we know, it ha
always been introduced heuristically rather than as a li
8-9
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case like in the present work~ @10# p. 459!. The linearization
of Eq. ~60! assuming small departures of the solution of t
stochastic process with respect to the deterministic solu
leads to the central Limit Theorem stated by Kurtz@12#.
However, such linearization will drastically shorten the tim
range where the approximation can be used, a fact that is
apparent whenV can be taken as large as needed but mat
whenV and the time are large but finite.

V. EXAMPLE

Let us consider as an example a Markov process des
ing the extinction of an isolated species. LetV be the initial
population and furtherE51 denotes the only event-clas
present in the system, namely, the death of an individual
above, letPn(t) denote the probability ofn events taking
place up to timet, so the natural limits of this problem ar
Pn(t)50, for n,0 andn.V and alsoPn(0)5d0,n .

The Kolmogorov forward equation for the generati
function of the problem reads,

]F~z,t !

]t
5~z21!S V2z

]

]zDF~z,t ! ~61!

and after a standard computation, we can obtain the e
probabilities as

Pn~ t !5S V

n D @exp~2t !#V2n@12exp~2t !#n. ~62!

The corresponding Poisson approximation to the pr
abilities reads

C~z,t;X0!5zV1 (
z50

V21

exp~2l!
ln

n!
~zn2zV!, ~63!

where the time-dependent Poisson parameterl satisfies
l(0)50 and

dl

dt
5V2lS 12

lV21/~V21!!

(
k50

V21

lk/k! D .

The deterministic limit ofn/V for V→` is then

n

V
→l̂5@12exp~2t !#,

which is the solution ofdl̂/dt512l̂512 limV→`^n&l /V.
To illustrate the meaning of Theorem 4, we consider

variable

x5$n2V@12exp~2t !#%/AVl̂~ t !exp~2t !,

for uxu<A and A arbitrary but fixed and independent ofV.
This variable has mean value zero and dispersion one.
thermore, a well-known limit relation between the binom
and the normal distribution~see Ref.@15#! states thatx is
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approximately distributed by a normal distributionN(0,1) in
uxu<A when V→` and the convergence is of orde
O(1/AV) for fixed A.

Hence, „n2V@12exp(2t)#…/AV is distributed as
N„0,l̂ exp(2t)…. According to Theorem 4 , the variable„n
2V@12exp(2t)#…/AV is distributed approximately a
N(0,l̂) in the limit V→` for fixed t* sufficiently small.
This result is consistent with the normal approximation
the binomial when both limits coincide.

Both approximations are based in considering a time
terval where there is a large number of events~as large as
required to keep the approximations within a prescribed
erance!. For the approximation described in Theorem 4
may be also necessary to make the time interval sufficie
small to achieve the desired tolerance.

Although Theorem 4 is more restrictive that the appro
mation of a binomial by~integrals of! a normal distribution,
it can be applied to problems where exact solutions in te
of binomial distributions are not available, i.e., to gene
problems.

Recalling the standard approximation of the Binom
(p,q) by a Poisson distribution~see Ref.@15#! when Vp
→b and realizing that ifV@12exp(2t)#→b andV→` then
t→0 as 1/V, we verify in this example the result announce
in Theorem 3 as a short-time approximation. Finally, w
show the evolution of the norm of the error forV520
~Fig. 1!.

VI. CONCLUDING REMARKS

The art of approximating the dynamics of the populatio
consists in providing algorithms which are simpler than t
defining process and which produce approximated res
within a prescribed tolerance for a given problem.

FIG. 1. Norm of the difference between the approximated a
exact generating functions as a function ofl for V520.
8-10
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In this work, we have introduced and studied in detai
Poisson approximation to population dynamics recover
the standard limits for the description of the fractions of lar
populations and their fluctuations and establishing the o
of magnitude of upper bounds for the errors introduced.

In general, we can state that the approximation impro
decreasing the time interval and decreasing the total num
of events in the time interval, as manifested by the occ
rence of factors proportional tot,t2 and Al j in the error
estimates.

We have studied three limit cases: the deterministic lim
the fluctuations around the deterministic limit~both of these
limits were already known to a large extent! and we have
established a third limit case in which the population dyna
ics corresponds exactly with the approximated dynam
Most importantly, the three limit cases are nothing but p
ticular situations within one, unifying, approximation whe
the errors are controlled by the combinations of several v
ables as stated in the Eqs.~35!,~52!, and~53!.

The occurrence of different limit cases and the expl
dependency withV ~rather thanl j ) is, up to some point,
artificial. It results, obvious, that the validity ofanyapproxi-
mation ‘‘improves’’ by increasing our tolerance. Whether
consider the variableX or x5X/V or (X2^X&)/AV is a
decision that can only be taken knowing the accuracy
quired for useful answers to our questions and as suc
foreign to the approximation.

Having these considerations in mind, the main result
this work consists in having established that the errors in
duced by the Poisson approximation can always be c
trolled with sufficiently small time intervals, hence establis
ing a suitable~eventually numerical! integration scheme fo
the class of stochastic processes we are analyzing. N
however, that the time intervals are still quite ‘‘large.’’ I
other words, the time-intervals required~see Theorem 4! are
not so small as to consider that the probability of two eve
occurring in the same time interval is negligible~a situation
in which the Poisson approximation trivially converges to t
exact process!.

The present integration scheme can be used even w
the size of the involved populations fluctuates strongly, a
epidemic outbreaks where the number of infected peo
rises from zero at the beginning of the outbreak and reac
zero after the outbreak, i.e., when one or more populati
can go permanently or temporarily extinct.

Finally, this work introduces an appealing relation b
tween deterministic dynamics and stochastic dynam
through the differential equations satisfied by the parame
of the Poisson approximation.
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APPENDIX: INCOMPLETE GAMMA FUNCTIONS

We perform the computations in Theorem 2 explicitly f
the caseE51. We drop hereafter all labelsj. The left-hand
side ~lhs! of Eq. ~46! consists of two terms, one of them
the lhs of Eq.~45!, while the other is

(
n>V

$@l exp~n/V!#n/n! exp~2l!%< (
n>V

@ln/n! exp~2l!#.

~A1!

Hence,

2@ lhs~46!#5 (
k5V11

`

e2l
lk

k!
~enV/V2enk/V!

5
enV/V

V! E
0

l

e2ttVdt2
el(enV21)

V! E
0

len/V

e2ttVdt

~A2!

5
enV/V

V! E
len/V

l

e2ttVdt

2
~enV/V2el(enV21)!

V! E
0

len/V

e2ttVdt. ~A3!

Since the integrand has its maximum att5V and the inte-
gration interval lies on the regiont,V the change of vari-
ables t5V1u and Stirling’s approximation V!
5(V/e)VA2pVe2u/12V for uP@0,1#, yield

u lhs~46!u5Ue2u/12V

A2pV
S enV/VE

le
n/V

2V

l2V

e2u~11u/V!Vdu

2~enV/V2el(e
nV

21)!E
2V

le
n/V

2V
e2u

3~11u/V!VduDU
<

e2u/12V

2
~enV/VAe2(V2l)

2
/V2e2(V2le

n/V
)
2
/V

1uenV/V2el(e
nV

21)uAe2(V2le
n/V

)
2
/V2e2V!.

Under the conditions of the theoremn is nonpositive andV
2len/V>V2l;V(12b) and hence, both roots ar
bounded from above by exp@2V(12b)#. Therefore,

u lhs~46!u<e2(12b)V/2. ~A4!

Notice further that Eq.~A2! is the difference of two positive
terms and each one goes exponentially to zero in the l
considered. Moreover, lhs~46! is exactly zero forn50.
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