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Stochastic population dynamics: The Poisson approximation
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We introduce an approximation to stochastic population dynamics based on almost independent Poisson
processes whose parameters obey a set of coupled ordinary differential equations. The approximation applies
to systems that evolve in terms effentssuch as death, birth, contagion, emission, absorption, etc., and we
assume that the event-rates satisfy a generalized mass-action law. The dynamics of the populations is then the
result of the projection from the space of events into the space of populations that determine the state of the
system(phase spage The properties of the Poisson approximation are studied in detail. Especially, error
bounds for the moment generating function and the generating function receive particular attention. The
deterministic approximation for the population fractions and the Langevin-type approximation for the fluctua-
tions around the mean value are recovered within the framework of the Poisson approximation as particular
limit cases. However, the proposed framework allows to treat other limit cases and general situations with
small populations that lie outside the scope of the standard approaches. The Poisson approximation can be
viewed as a generghumerica) integration scheme for this family of problems in population dynamics.
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I. INTRODUCTION Carlo simulationgthe name comes from solving an inverse
problem: the approximation of solutions to differential equa-
In this paper, we consider the time evolution of interactingtions by stochastic jumps obtained by the Monte Carlo
populations, i.e., the time evolution of systems which aremethod. Monte Carlo simulations are simple realizations of
described by non-negative integers counting the members d¢fie Markov process. This approach is sometimes called
the different species acting in the problem. Molecljlies5], Feller procesq10] in the mathematical literature.
photons[6—8], predators, preys, infected individuals, etc., Considering the trasition rates, a widely used assumption
can be regarded as populations under a diversity of situationghich is reasonable for a large number of natural process is
[9]. The different nature of the systems will be apparent bythe “mass-action” law which formalizes the following intui-
the characteristic interactions of each particular problem inive idea: if a system is made twice as large duplicating each
consideration. Henceforth, we will consider a rather generapopulation as well as the environment, then the number of
class of interactions. interactions per unit time will be roughly twice the original
The time evolution of discrete populations is describedfigure.
with jumps in the population values that occur “instanta- When the mass-action law holds and in addition the popu-
neously” (meaning that the time taken to dissociate a mol-lations are large, the fractions of the total population repre-
ecule, emit a photon, hatch an egg, cut the umbilical cordsented by each species are the relevant variables. A Markov
etc., must be considerably shorter than the time between oljamp process complying with the mass-action law can be
servations, and essentially unimportant for the purposes dpproximated by the combination of a deterministic differen-
the analysis We shall refer to each of these jumps as antial equation and a stochastic correction describing the depar-
event ture from the deterministic law in the form of a Langevin
We will consider that this time evolution responds to aequation(Brownian process/10—13. The approximation is
Markov process, i.e., the probability of occurrence of anysound provided that the description is not applied to rela-
event in an infinitesimal time intervalt,§ +dt) will only tively small-time intervals hosting too few events.
depend on the number of individuals at the titnand on Large-system limits where the description can be per-
parameters that might depend oiwWe shall further consider formed with a deterministic law or Langevin equations rely
that the time between events is exponentially distributed witlon two requirements: first, that we are interested in fractions
a characteristic frequendyransition ratg that only depends of the total population and/or fluctuations of these fractions
on the state of the systefi6]. rather than in the actual population numbers and second, that
This setting has been successfully applied to a large anthe total populations are as large as neeiefihite popula-
diverse class of systems and is usually modeled with Mont&ion size to make the approximation valid. In terms rutu-
ral sciencesthis limit needs to be reinterpreted. Normally,
natural scientists are not allowed to change their problem,
*Electronic address: solari@df.uba.ar i.e., we cannot change city if our model is not good enough
"Electronic address: Mario.Natiello@math.Ith.se for the small city where the study of, for example, an epi-
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demic outbreak is required. In this work, we shall deal withX— X+ §; in the state of the system, whiw;(X)dt is the
this difficulty indicating the order of magnitude of the errors probability of occurrence of the eveptin an infinitesimal
introduced in our approximations. time interval[t,t +dt] given that the state of the system at
As a general rule, whenever we introduce an approxithe timet is X. We shall often refer taV;(X) as the “tran-
mated evolution law the predictions deteriorate with time.sition probability.” Without loss of generality we can con-
The approximations presented in this work will not be thesider thats;# &; for i +#]j.
exception, they will “improve” with our tolerance and dete-  We shall further assume that the formulation is consistent,
riorate with time. The different limits will then represent dif- meaning that the corresponding transition probability for an
ferent balances between time of evolution and precision oévent that would eventually produce a meaningléssn-
the description. physical, nonbiological,. . .) state is zero. Also we define
Between the event-by-event realizations of the Montew;(X)=0, j=1, ... E if Xis a meaningless stataegative
Carlo method and the “as many as needed” events per unjyopulations are the most noticeable meaningless $tates
time (large population limix of the Langevin method there is ~ We shall consider that at time=0 the system is in the
room and need for a description that applies to large andtateX(0)=X,. Let P(n,, ... ng;t/X,) be the probability
small populations indistinctly. Such possibility has beenthat at timet, exactlyn;, j=1, ... E events of each differ-
demonstrated recently14] introducing a naive Poisson ent kind have occurred, given that the initial stéetimet
approximation. As pointed out in Refl4], this naive =0) wasX,. Let {;, i=1,... E be non-negative integer
approximation requires several improvements if it is going torandom  variables  distributed ~ with  probabilities
achieve a fully respectable status. Mainly, it should matchp(n,, . .. Ne;t/Xg). Then,
the Langevin approximation in the large population limits
and thead hocprocedure at the boundary of the population
space(when one or more populations are zeshould re- X=X0+Z %, 1)
ceive careful consideration. =
The aim of this paper is to present a Poisson approxima-
tion in which the parameters of thgruncated Poisson dis- meaning that the random variab¥erepresents the state of
tributions obey a set of ordinary differential equationsthe system at timeéand its probability distribution is the one
(ODE). We intend to show that such approximation will pro- resulting from the effects of the different possible events.
vide an adequate tool to handle systems with large and small Note that the decomposition in terms of events carries
populations indistinctly, being especially suitable when themore information than the transition probabilities from the
population is not as large as required for a deterministic destateX, to the stateX since, in principle, several combina-
scription. tions of events can produce the same final state. Such com-
The basic description will be performed in the space ofpinations are distinguished in the present formulatitimk,
events which can be projected down onto the phase spa¢er example, of a birth-death process, tkeleath k-born
(the population numbeyof the problem. We will show that events all lead to a transition froi, to X, and our prob-
in the large population limit the Poisson approximation con-ability distribution keeps track of the contributions of each
verges to the solutions of the Langevin problem but furthersituation.
more, it converges to the Monte Carlo process when the Our interest is then to produce suitable approximations to
mean number of events per unit time is kept fixed in thep(n,, ... ng;t/X,) that can be used in a direct analysis of
limit. the problem in question or efficient numerical realizations of
The rest of the work is organized as follows: In Sec. Il, the process under consideration.
we formulate the problem in terms of its probabilities and the
class of events involved. In Sec. Ill, we present the Poisson
approximation. Section IV contains the core results of this B. Time evolution of the probabilities and the generating
work since the quality of the approximations is asserted un- function
der different potential uses. Section IV B is rather technical The probabilitiesP(ny, . . . ,ng;t/X,) satisfy the forward
as well as parts of Sec. lll and it might be skipped in a firstk gimogorov equatior(sometimes referred as Master equa-
reading. Section V works out a simple example where justion in the natural sciences literatiire
one class of events is involved. Concluding remarks are left

for Sec. VI. d
aP(nl, .. Ng;t/Xo)

E

Il. STATEMENT OF THE PROBLEM AND BASIC

E
PROPERTIES :J_Zl [W,(X=8)P(Ny, ....n—1, ... Ng;t/Xo)]

A. Phase space and space of events

We shall consider a stochastic process in which the state
of the system is described by a vector of integer variables _(]21 WJ'(X)) PNy, ... Nest/Xo), )
(population$, X;, i=1,... N.

The evolution of the system is described by the occur-
rence ofE (classes dfevents. The eventproduces a change where X=X+ EjEzléjnj and P(nq, ...,ng;0/Xp)
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:HjE:150nj (& is the Kronecker delta We notice that £;(X,) is an operator that acts by multiplying each term in

P(ny, ... ng;t/Xq)=0, whenever one or mone; is nega- the analytical expansion @b (z,t;X,) by the transition rate
tive. associated to thpevent in the statX=Xy+ = 5Ny .

The generating function associated to the probabilities We have implicitly used that the transition probabilities
P(ny, ... .ng;t/Xp) is are zero when they imply a transition to a meaningless state

and that the probabilities of the meaningless states are iden-

E tically zero, hence allowing to extend the sums formally up
D(zy, ... 26 %X0)=> (H Zf‘i) P(ny, ... Ngit/Xo). to infinity in all cases. Since5i(zy, ...,z,)=0 and
{nj} \i=1 . —1)=<0, we have ¢ —1)Gi(z,, . ..,z,)<0 and the result
(3)  follows immediately. [ |
The previous results shows that the time derivative of the
®(zy, ...,ze;Xp) can, as a function df, be regarded as generating function can be written as the action of a linear
an analytic function defined via a non-negative series on theperatorZ on ®. Moreover,£(X,) in Eq.(6) can be thought
unit cubeR, namely,R=|z|e[0,1], j=1,... E (actually, of as applying not only to generating functions but to any
we may regard; as real and non-negative variables, exceptanalytic function ofze R. The evolution operator can now
for Sec. IV B. Moreover, for allt values,®(z;=1,... z¢  formally be written as explt). In particular, it transforms

=1;Xo)=1 and itsz derivatives can be computed by term- analytic functions into analytic functions.
by-term derivation with the possible exception of the border Furthermore, when applied to any monomial, the equality
of R.

Proposition Let ®:R—R defined as above. The® is = n
non-negative, has non-negative derivatives with respect to ]1:[1 z;!
everyz; andd®/dt is nonpositive.

Proof. The only statement which is not obvious is the lastcan be easily verifiedit follows immediately from the fact
one. First, we note that the fact that the time coefficients inhat £ maps generating functions into generating functions
®(z,t;Xo) are probabilities(therefore, non-negative and  gqo every analytic  function (2", ... z%)
summing ong guarantees thab(z,t;X) is uniformly con- E

8

E
ext)[1 2
=1

n n .
vergent for alt=0 and allze [0,1]. Hence, the derivatives =Zn,,.ongdny,..ngZ s - - Zg consider the nomi|g||
of ® can be computed term by term. =20, ..., nE|an1 ..... nE|-
Hence, we have Proposition The evolution operator ekg(X)t] is
bounded by the identity, i.e.,
E
ECD(Z,I;XOF > (H Z;‘j) Ep(nl, ..NgtlXe) |lexd LOXOt1ol|<|[ |- 9
a mikXo 1= at (4) Proof. By definition ®(z,t;Xy) =exp(Lt)P(z,0;Xy) for
every generating functio® (z,0;X,). Since the sum of the
E E probabilities of all the states is 1, it is clear that the statement
ST S wix-6) of the the_orem is t_ruﬁhe equal sign ho_ldswhen ¢(2,0) is
i izt ] -1 ) ! a generating function. Moreover, exfij is a linear operator
and the generating functiom§!, . . . z2* form a basis of the

XP(y, =1 ng it Xo) space of entire functions, hence

E
_21 W (X)P(ng, ... .ng;t/Xy) (5) llexd £OOt] > 2, 'ZEEanl .... ol
1= Ny, .esy ng
(_vvhereX=X0+ EjEzlﬁjnj), changing the index of sum in the =l > an, .. ne exd LOOtI(Z), ... .2)|
first term fromn;—1—n;, we obtain Np, ... Ng
d < < 2 lan, . nl u
aCD(z,t,XO)—JZ,l (z—1)Gj(zy,, - . . Ze) 1 e (10

Notice thatd(z,t;X,) satisfies(6) with initial condition
®(z,0;Xy) =1 according to Eq(3). We will allow in this
paragraph more general initial conditions associated to Eq.
where (6). Let ¢(z,t;X,) be a solution of Eq(6) with initial con-
dition ¢(z,0;Xq) zzjm representing a system with probability

=L(Xg)®(z,t;Xo), (6)

_2 IE[ n _ 1 att=0 of being in the statX=X,+mé;, we have that
Gj(z,, ... Ze)= Lz Wi(X)P(ny, ... .Ng;t/Xo) d(z2,1;X) =2"D(z,1;X), sinced(z,t;X) represents the gen-
{njt \j=1 . ! o L
erating function with initial condition at the reference state
=L;(Xo)P(z,t; Xo), (7) X Hence, the following result holds:

031918-3



H. G. SOLARI AND M. A. NATIELLO PHYSICAL REVIEW E 67, 031918 (2003

d d while for if {n;} £ B;(X,) andn;#0 (the general cage
=ZJ'£(X0+ 5J)<D(Z,t,X0+ 5J) dt "o Ne
=L(Xo)[ZP(2,t;Xo+ )], (1) —P) (D], (17)

which can be independently verified starting from the defi-anq finally,
nition of £(X) in Egs.(6) and (7).

C. The border between admissible and meaningless states ﬁpnl ----- ne(Aj) Tdt T npeeeenmLing (A, (18
We will further characterize the states in the border of the

region of admissible states.
Let B;j(X,) be the set of events such that

if the state belongs to the boundary &t Further notice

that the expressiond6), (17), and(18) resemble the contri-

butions of thejth event to the change of the probabiliti®s

for boundary and non boundary states.

X=Xo+i 12 oin; 12 We propose the following expression as an approxima-
B tion:

is an admissible state, but
P(nq, ....ng;t/Xg)~

E
i
L
Y=Xo+ 2 &n+4, (13)
T £ :P(nl, - ,nE;t/XO), (19)

is not. In such cases, we shall say that}i=1, ... E be-
longs to thejth component of the bordés;(X,) of the ad-
missible region(note that the different components of the
border are not necessarily disjoint

After this preparatory section, we are ready to introduce
the Poisson approximation in the following section.

where the expression is valid for dlh;} such thatX=Xg
+2;6;n; is an admissible state and the coefficient functions
N (t) are still to be determined.

Once again, the probabilities of inadmissible states are
zero and the evolution of Eq19) is completely decoupled
from the probabilities of the inadmissible states as can be
seen from the expressida8). We could formally extend the
expression to all possible values {ff without introducing
errors.

A. The Poisson approximation The generating function associated wRhreads

Ill. APPROXIMATION BY (ALMOST ) INDEPENDENT
POISSON PROCESSES

We will now attempt to approximate the probabilities E
P(ny, ... .ng;t/Xo) by a product of probabilities represent- w(z, | ...z t;Xy) = >, (H zf‘i)ﬁ(nl, L NE o),
ing independent Poisson processes with paramatéty, i j=1 !
=1, ... E which satisfy a differential equation that we shall (20
prescribe.

The main aim of this paper is to understand the qua“,[ywhere the summation is extended to all the admissible states

(size of errors and convergence propeitiesthis approxi- and can be formally extended to all combinations of non-
mate model. negative integer numbefs;}.

: ; j _ Proposition W (0.t;Xy) = 1.
Consider the event we letPy, ne (M) be Proof. Notice first that this is equivalent to say that the
)\nj probability of being in any admissible state is 1. The propo-
()\ )=exp(—\)—-, (14) sition is proved realizing that it is true for=0 and that Eqgs.
""" n;! (16), (17), and(18) assure thatlW (0.t;X,)/dt=0.

To completely specify the proposed approximation, we
whenever{n;} £ B;(X,) and have to establish the dependence of the Poisson parameters
{\j} with respect to time. We propose that the parameters

i N1\ ! : Lo s N
()\ )=exg — \; )2 —1-exp—\)) I_J satisfy the following ODE with initial conditior;(0)=0:
..... “ T
15
(19 Ny, Xo) = 3 WOOP(, e X0
|f {ni} € B] . ]
Notice that forn;=0, Efj()\)/\/j(t,xo), (21)
d dA where the function$;(\) are defined by the right-hand side
_PJ n(Nj)=— PJ ne(Nj)s (16) - =,
dt Moo E dt M E of the equatlons/,\/j(t,xo)ZE{H}éBjP(nl, .. .Ng,t; Xp) de-
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notes the sum of approximated probabilitiescludingthe  where znznjz?i_ The expression for the errak(z,t;Xo)
border of the admissible region and=Xo+X2(8jn;), this  can be rewritten using Eq&6), (11), and(24) as follows.
choice will render the errors of the approximation more man-  First we compute the time derivative with Eq(24) and

ageable, as we will see in E(B1). o _ the action of£(X,) on ¥ with Eq. (6). We have
Having introduced the Poisson approximation the remain-

ing task ahead is to evaluated the quality of the approxima-
tion. We shall address this central issue in the following sec-
tion.

d
ﬁ(xo)_d—s)q’(zﬁ;xo): > (31 2 WX

j=1,...E {n} €8

—fj]ZnE(nL . ,nE,S;XO)'
(29

B. Evaluation of the Poisson approximation

We shall proceed in two steps. In the first step, we will
find a suitable expression for the difference between the ex- :
act generating function and the approximated one; while in Second, the exponential operator p&@(o_)(t—s)] act-
the second step, we will find some bounds and limiting be!N9 ON POWETS ok can be recastEed as the _tlme evolution of
havior (“order of” relations) for the difference between gen- shifted reference stateé=Xo+2,6jn; as in Eq.(11):
erating functions.

We begin by writing a formal solution to E¢6) in terms expl L(Xo)(t—8)]z2"=72" exf L(X+ 6))(t—s)1]

of our guess?(t) and the correctior (z,t;X,) in the form =2"z; ex L(X+ 6))(t—9)]
D (z,t;X0) =V (z,t;Xg) +A(Z,t; Xp), (22 X®(z,0X+6))
where =ZnZJ-CD(Z,t—S,X+ dj).
td{exd L(Xp)(t—5)]W¥(z,s;X i :
A(z,t;X0)=—f {exd L(Xo)( - )W ( o)}dS Finally, we rearrange Eq23) as follows:
0
A(z,t;Xo)

t d
- [fostcoasnf cxo- g [l 2L 3, 2Pnsxomwioo-1)
j=1,..E {n}Z8 ! :
XW(z,s;Xq)ds, (23

which holds for anyW¥(z,t;X,) provided that®(z,0;X,) X[zj®(z1-5X+6) - P(zt=sX)] |ds, (26)

=T (z,0;Xp).
The formal expression involves the evaluation of the ex'whereX=Xo+E-E_15jnj as usual.
ponential of an operatgwhich might be a formidable tagk We can now ;J)roceed to find upper bounds for the expres-

However, as soon as we realize that the exponential propg;gn, (26).
gates in time an initial condition in the stat&

+3j-1,.. gdjn;, we understand that it can be written in
terms of solutions of Eq(2) with the appropriate value for IV. RESULTS
the initial stateX. _ In this section, we will present our main results. Some of
We first notice that according to Eq4.6), (17), and(18),  them will make contact with previous results: the determin-
we have istic approximation to density dependent jump Markov pro-
d cesses described in R¢L1], see also Ref$13] Chap. 5 and
—W(z,t;X) = E f, 2 z”[E(nl,nj [10] C_:hap_. 11(also knovyn as thlﬁyv of_ Iarge_ numbensand
dt j=L...E "\{n}¢Bj.nj#0 the diffusion or Langevin approximation directly connected

_ to the central limit theoremexpressions for the deviations
=1, ... ne.tXo)=P(ng, ... ng,t;Xp)] from the deterministic limit obtained by Kurtz in RefL2],
see also Refq.10,13.

— E Z”E(nl, gt Xo) Other results are completely nét our knowledggsuch
{n}&Bj.nj=0 as the Poisson limit and most importantly the explicit error
bounds and, hence, range of applicability associated to all the
+ 2 z”[E(nl,nj—l, o ,”E,t;xo)]) approximations which are needed in natural sciences. In ad-
{n}eB; dition, we must emphasize that all the limit cases and error
bounds are obtained within the framework of the Poisson
= E (z;—Df, approximation hence unifying several limit cases as different
j=1,... E realizations of the same approximation method.
We shall show in this section the main results of this
x| > Z'P(ng, ... ne ,t;xo)), (24)  work, namely: convergence of several approximated moment
{n}eB; generating functions to the exact moment generating func-
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tions as well as convergence for short times of the probabil- supﬂg}‘— Siu®(z,t;X)||
ity generating function. k

< ) —
A. The generalized mass-action law tSldeWk(X+ 5) = Wi(X)|

In what follows, we will consider that the system is re-

stricted to(or at least unlikely to escape region of the Xexp t>, sugWi(Y+8)—Wi(Y)| |,
phase space %

[X[[1=Q. (27) (33

We shall callQ the size of the system. In most physical, which as we shall see is approximately independent of the

chemical, and biological systems such restriction appear$Ze of th_e system when the transition probabilities satisfy a
naturally as a consequence of the finiteness of the availabf@@ss-action law. , ,
energy, number of molecules, total population, or carrying Thgre is a more obvious bound fét;. Since <[z,
capacity of the environment. |®(z,t;X)|<1, we have

We shall further consider when taking limits that |Kj(z,t)|S1. (34)

Wi (X)=Qw;(X/Q), 28 .
i) it ) @8 The expressiolri33) has the advantage that produces the ex-

a generalized mass-action law which renders explicit the ide@Ct result forzi=1 and, as such it is better suited for the

that if the system is, for example, made twice as large duplistudy of expectation values which correspond to expansions

cating each population as well as the environment, then tharoundz;=1 of the generating function. .

number of interactions per unit time will be roughly twice ~ The correction to the generating functi@@6) is then

the original figure. bounded by
t —
B. Inequalities ‘A(z,t;xa— f ( > ZP(n,)[W;(X)— ;]
Before we proceed further, we shall notice that the expres- 0L Einiedy
sion
x(zj—l)CID(z,t—s;X))ds
Ki(z,t=5)=[z;®(z,t =5, X+ ;) = P(Z,t=s;X) ],
that is, part of Eq(26), satisfies the equation < ft(t—s)ds( D S z“E(n,s)|Wj(X)
0 j=1

..... E {n}eB;

d

—Kj(z,t) = L(X)K|(z,1), (29

dt ! J —f”[; (1—zk)]sude(Y+5j)—Wk(Y)|
kY

with initial conditionz;—1. The functionK; can be written

as

Xexp[(t—s)Z skquk(v+ 5|)—wk(Y)|m. (35)
Y

Kizh)=2 (2= 1)g(zV. (30
C. Deterministic limit

After making use of Eqs(6), (7), and(11), we have The standard process to obtain a deterministic limit for
q the random variableX proceeds by noting that under ad-
Sk k _ [ equate conditions, in particular, fa2 —c, the variablex

=L(X)gi + Li(X+6)— L (X)]g:, (31 A . .
dt9i (X)gj Z alLd )= L0]g;, (D) =X/Q obeys a deterministic differential equation, up to de-
viations going to zero witn(Q) = 1/y/Q [10,13 The crucial

with initial condition g}((Z,O)= Ok - matter with this limit is that in order to disregard the devia-
Writing Eq. (31) in integral form as tions, ) must besufficientlylarge, i.e.,as large as neededn
. applications to natural sciencd3,is often fixed and whether
k _ . it is large enough or not depends on the specific problem.
9j(2,0) =5 P(2,t:X) foexr[/j(X)(t S)] Our approximations aim to cast some light on the frequent

situation where() is not large enough to accept the deter-
_ [ ministic limit as a good approximation.
8 §|: ALE(X+8) ~ LX) ]g)(z,s)ds (32) We shall consider the behavior of the different momenta
_ of the stochastic variables representing the changes in the
and considering the differen¢egy— ®(z,t;X) 6;] as wellas  populations as a function of time in the scal€)1/For such
the inequality(9), we can use Gronwall’s inequality to esti- purpose it is convenient to introdua@oment generating
mate the errors: functions The generating functio® (z) is one of such func-
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tions since its(left) derivatives atz=1 are linear combina- Let us now fulfill the transition to the Q-
tions of the moments of the distributidd We will for the  scaled variables using the generalized mass-action
moment writed «(z) to render explicit which stochastic vari- law: |W;(n) —W;(m)|=Q|w;(n/Q) —w;(m/Q)|<Cj|n

able is in action. The moment generating functiép(w) is  —m|=QC;|4|[(n/Q)—(m/Q)|. Thus,

defined viaHy(w)=®y(expfv)), i.e., by just replacing

with expfv) in ®. The name arises by the fact that the mo- (IW;—(W))[)=<(QC;8)X|(n/Q) — (m/Q)|?)

ments ofX are given by the derivatives ¢fy atw=0 (pro-
vided they exist, in other words, ifM are the moments of
X, we haveHy(w) ==7Mw¥/s!.

At this point, the reader can verify that the moment gen-
erating function for the random variale= X/() is obtained
by replacingw by v/Q in Hy, i.e., Hy(v) =Hx(v/Q) or in
other wordsH,(v)=®x(exp@/{))). The moments ok are
now given by the derivatives dil, at v=0 (assuming exis- <t Al s
tence. We have then the following theorem. Ri=t\,Cil3| 39

Theorem 1 (truncated Poisson approximationgt V; be 5. the first contribution goes to zero as
the minimum distance to thgborder states, i.e., the mini-
mum of all n such thatXy+ZXy.nd+néje B;. Assume € _
also that the generalized mass-action [@8) holds and that gl1+o(e)] > Rj=0(et JAAVQ). (40
|W;(X) —W;(Y)|<Cj|X-Y| with C; (j=1,..., E) finite. J=L...E
Then, for €>0 sufficiently small and —e<y;<0,
Wy (exd Z;v;/(1]) converges uniformly tdd,(») in the limit
Q—o, provided thatvj, \;/V;<1.

Proof. We will show that under the conditions of the theo- J' (t— s)ds( 2 E Z"P(n, s)|W,(X)— 1|
rem, ¥y (exp(/())) converges tdH,(v)=dy(exp@/Q})) by [Jo  \i=1..., {n}¢B;
checking that the differencé (exp(¥/(})) goes to zero in the
limit ) —c (v stands forX;v; throughout the proof when

=(C;5)X|In—(ny[?),
the average always taken with the weightén,s).
Hence, SIHCGIN|<1 and noticing thafn;)<\; while

((n; (n,)) )=<\; using that the weightQ(n,s) correspond
to a truncated P0|sson and thgt—\;>0,

Turning to the second term, we proceed as above, namely,

X Ek (1_Zk)}5kUF1Wk(Y+ ;) — Wi (Y)]
Y

neededl
We begin by noting from Eq35) that|A| is bounded by
the sum of two terms. We study each term separately. For the « n
first term, we note thalz;— 1|=¢€/Q[1+O(e/Q)]. There- exp (t=s) E sude(Y ) = WilY)|
fore,
Ee t
t _ > —[1+0(e/m]f ds((t—s)
f "P(n,s)[W;(X)—f;1(zj—1)D(z,t =i .. Q 0
0j=1"..E {n} 8

><exp[<t—s>CEI |5||}C|5,-|)<JXJC,-|6,-|>, (41)

€
—-sX)ds<=[1+0(e/Q)] > R;, (36
Q j=f . E
o whereC=2,Cy.
Wherez=exp(v/Q) and the COﬂthbUthij reads Putting everything together, we obtain
ds{}Eé |2"®(z,t—s;X)|  [W;(X)—f;|P(n,s). |A(exp(v/Q),1,X0) — O(et VA/\Q))|
0 n
3 =
37 = 2 (VR,Cls o2y, (42
Letting Vj(t,X,) as in Eq.(21)_and using Schwartz’ inequal- R
ity with the weightsQ(n,s) = P(n,s)/N(s,X,), we have It is hence clear tha¥,(exp(/€))) converges tcH,(v)
t =Dy (exp(/Q)) as fast astVA/Q. [ ]
R< | ds\i(s,X \/ Wi (X)— f:[2Q(n,s), Theorem 2 (large-size limit}Junder the conditions of the
) fo i(8:Xo) {n}zésj W0 =fiI"Q(n.s) previous theorem and if, additionally, lim...\; /V;=b;<1

(88 then Wy(exp(/)) converges uniformly to exp{y\)),

after noting tha{z"®(z,t—s;X)|<1 for [z]<1 and anyt. whererj=limq_..\;/Q) satisfies the differential equation

Recalling Eq.(21) f; —E{H}éB Q(n,s)W;(X) so the argu-

ment of the root can be written W, —(W,)|?) averaged dAj_ lim f_J
with the weights Q(n,s). Moreover, <|W (W))[?) dat 4.0
= (12| W;(n) - W(m)|2> In the same way (1/2)n

-m|%)= <|n (n)|? ) Proof.
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_ Notice that when projected onto the phase space, the
Wy (exp( V/Q))Zz exp(vn/Q)P(n,t) populations obey the following deterministic equation in the
limit Q—oo:

= E .exp(vn/Q)E(n,t) dx
n,n; <V, azg 5JW](X), (48)

+ > expvn/Q)P(n,t), (43
n,ni=V where, lettingxg=Ilimq_,..Xy/Q), we have

where both sums include only admissible states. Note that
each term takes its largest value fio=0 and that(43) can X=Xo+ >, SNi, (49)
be recasted more explicitly as T

E
_ a result that corresponds with the main theorem in Rif]:
Wx(exp( V/Q)):H ngf\,j [Nj exp(v ) 1N/t exp(=X) e aw of large numbers.

+ > exp(vn/Q)P(n,t), (44) D. Poisson limit
Y A different limit is obtained wheif)— o andt—0, while
while \; is kept bounded.
Theorem 3 (Poisson limit)under the assumption of the
E mass-action law and [fV;(X) —W;(Y)|<C;|X—Y| with C;

E exp(vn/Q)E(n,t)sH E [)\?i/nj! exp(—A\j)]. (j=1,... E) finite, then ®(z,t;Xq;Q)—¥(z1;Xq;Q)
n.n=Vi Ioni=vi 4 converges uniformly to zero as a functionzifi [ 0,1] in the
(45 jimit e, t—0, while \; is kept bounded.

: ; . : Proof. The proof proceeds along the lines followed in
After rearranging the right-hand side, using known proper- i .
ties of thel" function and the Stirling approximation for Theorem 1 with the only difference that we now bourahd

factorials, it is easy to verify that the right-hand side of Eq.(l_z) by 1. The_n, the two contributions to the error in Eq.
(45) is bounded from above b{ exp(—Z2c;V;) for some (35 computed 2'” Eqs.(39) a_md (42) becomg of o.rd.er
positive constant<,c; (see the Appendix for the explicit O(ty)) andO(t*\X), respectively. The latter is negligible
computation. The hypothesis of the theorem imply thd in fropt of the flr.slt one fort— 0. Both contributions go to
—o0 with Q at least linearly and hence the right-hand side?€" in the conditions of the theorem wher 0 as 1(). M
goes to zero witl) exponentially fast, regardless of Rea-

soning along the same lines, we note that the error intro- E. Fluctuations around the deterministic limit

duced by continuing the sums of the first term of E4g) We shall now estimate the distribution function for the
beyondV; also decreases roughly exponentially f@gte also  fluctuations around the deterministic limit. To accomplish
the Appendix for an illustrationin the limit 1 —. Hence, this end, we shall proceed in several steps: First, we will

we have exponentially fast convergence of improve the error bound for the deterministic limit; second,

we will estimate the error for the mean values, and finally we

Wy (expl V/Q))—ex;{ S\ (et 1)) 0. O will proceed to estimate bounds for the errors in the gener-
T ' ating function of centered momenta.

(46)

1. Improved error estimates

To conclude the proof, we note that under the assumption
of the mass-action law

exp( > (e ’Q—l)> :exp< > Ay
I J

The relation between the generating function correspond-
ing to the Poisson approximation and the one corresponding
to the exact process has been formulated in (B6) as an

+0(»?%Q). W estimation forA and an error bound for this estimation.

The estimation reads

(47)
Corollary (deterministic limit) In the conditions of the A(z,t:X )th 2 2"P(n S)[W: (X)—f,1(z;
above theorems, the fluctuation of the variabtgsire zero; T o\ =17 (e B I
i.e., the variables have a deterministic behavior in the limit

Q—oo0,

Proof. The momenta of ordek generated byH,(v) or,
equivalently, by exp{;\;y;) in the limit Q—c are \¥.
Hence, in the limit(IT;(n;/Q—1X,)%)=0 for any collection ~and it actually goes to zero quadratically when
of integersk. [ | \/EJ'(ZJ'_]_)Z*)O. To realize this fact it is enough to notice

—1)<I>(z,t—s;X))ds, (50
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that every term in the right-hand side of E§0) includes a
factor (z;—1) and the evaluation of the remaining factors at
z=1 produces

> P(,s)[W;(X)—f]
n}éB;

A(Z,t;xo)”J

0\]

X(z;—1)|ds+O

Ej: (Zj_1)2>

: (51
j

=0(2 (z;—l)z).

Recalling the definition of; in Eq. (21) it follows that the
first term sums to zero.

PHYSICAL REVIEW E 67, 031918 (2003

with [n;]p as above.

Second, we realize that in order to produce error bounds
for our approximations we can simply use those developed
for the deterministic approximation changing the range of
the variable fromv|<e to | v|<€’ Q. Hence, according to
Egs.(52) and (53),

| A (exp(/ Q) — O 2t\R/Q12)]

<

=

j=1

(56)

.....

(57)

This observation has two immediate consequences, first,

the convergence in Theorem 1 is improved to
|A(exp(v/Q),t,Xg)— O(2t\A/Q3?)|

=

(52

Second, the estimation in E€35) has no terms linear in

We can state the result by the following.

Theorem 4 (Fluctuations around the deterministic limit)
The fluctuations ofn; around its mean valugn;), in the
scale /), i.e., (nj—(n;))/\/Q) converge towards a Brown-
ian process under the conditions of Theordfnand 2 in the
limit Q—co for any fixedt<t* and the proper does the
motion in phase space for the variabd—(X))/\Q.

Proof. According to the preceding discussion, the fluctua-

v; and hence, its correction to the mean value is zero. Inions have a moment generating function

other words, the exact mean valuesrgfrelate to the ap-
proximate ones as follows:

[nj]_[nj]P=j7

where [n;]p is the mean value oh; using the Poisson
weightsP.

2. Fluctuations around the mean value

In this section, we shall consider the stochastic variables

Z=(n;—[n;])/\/Q that represent properly scaled fluctua-

E(v):ex;{ -> uj[nj]/@)xp(exp(v/@))
J

i (VR,Cjl8)o(t2e"). (58)

Using the standard form of the generating function for a
Poisson distribution verify that for fixed<t*, Eq. (58) has
limit

E(v)zexp(E (v?\))/2+0(|v[*A1 Q)
]

tions around the expectation values of the stochastic vari-

ablesn; ([n;] is the exact mean value of).
The moment generating function redd$]

E(v,t)=exp( - vj[n,-]/@)
J

X O (54

exp(zj: vj/\/ﬁ),t,xo),

with — e’ <»;=<0. We shall now analyze the different con-
tributions to Eq.(54) taking into account the expressi(26).
First, notice that

E(Ecjléj-l)oaze'), (59)

which converges to the generating function of the centered

momenta in a normal process.

The increments of the variablex=X/Q=[X,
+2;(8jn))1/Q in a time intervaldt are then(using Theo-
rems 1 and P

dx=| 2 &w;(x)+ (1) |dt, (60)
J

where ¢ is a normally distributed variable with zero mean

E(v,t>=exp(—$ v,»([nj]—[nj]pwﬁ)
xexr{ —; vj[nj]p/\/ﬁ)

X{W (exp(v/\Q)) + A(exp(v/Q))}, (59

and covariance matrix'(t)£™(t")], which can be estimated

as['(t){™(t") ]~ 8(t—t') 28] 5w;(x). [
The expressio60) corresponds to a Langevin process or

Brownian motion in phase space with a noise amplitude

which is state dependent, this process is also known as the

diffusion approximatiof10] and, as far as we know, it has
always been introduced heuristically rather than as a limit

031918-9



H. G. SOLARI AND M. A. NATIELLO PHYSICAL REVIEW E 67, 031918 (2003

case like in the present wofK 10] p. 459. The linearization

of Eq. (60) assuming small departures of the solution of the
stochastic process with respect to the deterministic solutior
leads to the central Limit Theorem stated by Kufiz2]. 0.04
However, such linearization will drastically shorten the time
range where the approximation can be used, a fact that is nc
apparent wheff) can be taken as large as needed but matters
when() and the time are large but finite. 0.03 1

V. EXAMPLE

Let us consider as an example a Markov process describo.02
ing the extinction of an isolated species. Mebe the initial
population and furtheE=1 denotes the only event-class
present in the system, namely, the death of an individual. As
above, letP,(t) denote the probability ofi events taking 0017
place up to time, so the natural limits of this problem are
Pn(t)=0, forn<0 andn>V and alsoP,(0)= &y, .

The Kolmogorov forward equation for the generating

function of the problem reads, 0T"""02 04 06 o038 71» 12 14 16 18 2
ad(z,t) d . .
=(z—1)|V—z—|®(z,1) (61) FIG. 1. Norm of the difference between the approximated and
at Jz exact generating functions as a functionhofor V= 20.

and after a standard computation, we can obtain the exact . . o .
probabilities as approximately distributed by a normal distributidi{0,1) in

|X|<A when V—o and the convergence is of order
v O(1/\V) for fixed A.
Pn(t):( n)[exp(—t)]v‘”[l—exp(—t)]“. (62 Hence, (n—V[1—exp(t)])/yV is distributed as
N(O\ exp(-t)). According to Theorm 4 , the variable(n
The corresponding Poisson approximation to the prob—V[1—exp(-t)])/\yV is distributed approximately as
abilities reads N(O\) in the limit V—oo for fixed t* sufficiently small.
Vo1 \n 'I;]hisb_resul_t ils (E]onsister?tl_wi_th thg n_(c)jrmal approximation of
the binomial when both limits coincide.
V(2 X0)=2"+ ZZO exp(—)\)m(z”—zv), 63 Both approximations are based in considering a time in-
terval where there is a large number of evefas large as
where the time-dependent Poisson parametesatisfies required to keep the approximations within a prescribed tol-

A(0)=0 and erance. For the approximation described in Theorem 4 it
may be also necessary to make the time interval sufficiently
dx AV (v=1) small to achieve the desired tolerance.
—=V-N -7 |- Although Theorem 4 is more restrictive that the approxi-
dt . : ) : oo
Z N mation of a binomial by(integrals of a normal distribution,
= : it can be applied to problems where exact solutions in terms

of binomial distributions are not available, i.e., to general

The deterministic limit ofn/V for V— is then problems. o o
Recalling the standard approximation of the Binomial

n . (p,q) by a Poisson distributiorisee Ref.[15]) when Vp
v M [l-exp -], —b and realizing that iV[1—exp(—t)]—b andV—« then

t—0 as 1¥, we verify in this example the result announced

which is the solution ofiA/dt=1—A =1—lim, (n), IV. in Theorem 3 as a short-time approximation. Finally, we
To illustrate the meaning of Theorem 4, we consider theshoW the evolution of the norm of the error faf=20

variable (Fig. 2).
x={n—V[1-exp—t) ]}/ VVA(t)exp( 1), VI. CONCLUDING REMARKS
for [x|<A and A arbitrary but fixed and independent of The art of approximating the dynamics of the populations

This variable has mean value zero and dispersion one. Fuconsists in providing algorithms which are simpler than the
thermore, a well-known limit relation between the binomial defining process and which produce approximated results
and the normal distributiofisee Ref[15]) states thaix is  within a prescribed tolerance for a given problem.
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In this work, we have introduced and studied in detail a =~ APPENDIX: INCOMPLETE GAMMA FUNCTIONS
Poisson approximation to population dynamics recovering

o o . We perform the computations in Theorem 2 explicitly for
the standard limits for the description of the fractions of large,, o acer— 1 We drop hereafter all labejs The left-hand

populations and their fluctuations and establishing the Orde§ide (Ihs) of Eq. (46) consists of two terms, one of them is
of magnitude of upper bounds for the errors introduced. 14 |hs of Eq.(45), while the other is

In general, we can state that the approximation improves
decreasing the time interval and decreasing the total number
of events in the time interval, as manifested by the occur->' {[x exp(»/Q)]"/nlexp(—\)}< > [A\"/n!lexp(—\)].
rence of factors proportional tot? and \A; in the error "=V n=Vv
estimates. (A1)

We have studied three limit cases: the deterministic limit,
the fluctuations around the deterministic linflioth of these
limits were already known to a large extgmind we have "

. R X ) : AK
established a third limit case in which the population dynam- _ N
. : : . [lhs(46)]= >, e (e
ics corresponds exactly with the approximated dynamics. K=V+1 k!

Hence,

wWIQ evk/Q)

Most importantly, the three limit cases are nothing but par- v re 1
ticular situations within one, unifying, approximation where e’ N eMem ) g0
e ttvdt—T
0 : 0

the errors are controlled by the combinations of several vari- V!
ables as stated in the E(85),(52), and(53).

The occurrence of different limit cases and the explicit
dependency witl) (rather than\;) is, up to some point, Vo
artificial. It results, obvious, that the validity efhy approxi- e’ JX

e tVdt

(A2)

e tVdt

mation “improves” by increasing our tolerance. Whether to VI
consider the variablé&X or x=X/Q or (X—(X))/{/Q is a
decision that can only be taken knowing the accuracy re- (e

)\eV/Q

e tVdt. (A3)

WIO ex(e”“—l)) fxey,ﬂ

quired for useful answers to our questions and as such is V!
foreign to the approximation.

Having these considerations in mind, the main result ofSince the integrand has its maximumtatV and the inte-
this work consists in having established that the errors introgration interval lies on the region<V the change of vari-
duced by the Poisson approximation can always be corables t=V+u and Stirling’'s approximation V!
trolled with sufficiently small time intervals, hence establish-=(V/e)V\27Ve ¥ for 9[0,1], yield
ing a suitable(eventually numericalintegration scheme for

0

the class of stochastic processes we are analyzing. Note, vy

however, that the time intervals are still quite “large.” In  ||hqa6)|= e”V’“J' e Y(1+u/V)Vdu
other words, the time-intervals requirésee Theorem dare [Ihs(46)| [2 2V ey ( )
not so small as to consider that the probability of two events

occurring in the same time interval is negligilile situation NI e 1) ety

in which the Poisson approximation trivially converges to the —(e""—e ) v e

exact process

The present integration scheme can be used even when
the size of the involved populations fluctuates strongly, as in X (1+u/V)Vd u)
epidemic outbreaks where the number of infected people
rises from zero at the beginning of the outbreak and reaches Ry
zero after the outbreak, i.e., When one or more populations - e (eI \/e,(V,K)Z,V_e,(v,mv/ﬂ)z,v
can go permanently or temporarily extinct.

Finally, this work introduces an appealing relation be-
tween deterministic dynamics and stochastic dynamics wWIQ_ ne"-1) \/ —(v-re"NH2v_ v

. : X L +e e [Ve e V).

through the differential equations satisfied by the parameters
of the Poisson approximation.

Under the conditions of the theoremis nonpositive and/
—xe”?=V—-\~V(1-b) and hence, both roots are

bounded from above by ekpV(1—b)]. Therefore,
ACKNOWLEDGMENTS

We would like to acknowledge fruitful discussions with |Ihs(46)|<e (1~ DIV2, (A4)
Juan Aparicio and Ingemar ‘Nell. This collaboration was
partially financed by Fundacin Antorchas and STINT. H.G.S Notice further that Eq(A2) is the difference of two positive
acknowledges support from the University of Buenos Airesterms and each one goes exponentially to zero in the limit
under Grant No. X208/00. considered. Moreover, |hg6) is exactly zero forv=0.

031918-11



H. G. SOLARI AND M. A. NATIELLO PHYSICAL REVIEW E 67, 031918 (2003

[1] P. Glansdorff and I. PrigogineThermodynamic Theory of York, 1986.
Structure, Stability and Fluctuation@Viley, London, 1971 [11] T.G. Kurtz, J. Appl. Probabz, 49 (1970.
[2] R. Balescu,Equilibrium and Nonequilibrium Statistical Me- [12] T.G. Kurtz, J. Appl. Probal8, 344 (1971.

chanics(Wiley, New York, 1975. [13] H. Andersson and T. BrittorStochastic Epidemic Models and
[3] G. Nicolis and I. PrigogineSelf-Organization in Nonequilib- Their Statistical AnalysisLecture Notes in Statistics Vol. 151
rium SystemsgWiley, New York, 1977. (Springer-Verlag, Berlin, 2000
[4] D.T. Gillespie, J. Phys. Cher81, 2340(1977. [14] J.P. Aparicio and H.G. Solari, Phys. Rev. L&, 4183(2001).
[5] J. Giemez and M.A. Mats, Phys. Rev. 51, 3059(1995. [15] A. Renyi, Caculo de Probabilidades(Editorial Reverte
[6] C.H. Henry, IEEE J. Quantum Electrob8, 259 (1982. Madrid, 1976.
[7] C.H. Henry, IEEE J. Quantum Electroh9, 1391(1983. [16] Situations in which the probability of occurrence of an event
[8] W.W. Chow, S.W. Koch, and M. Sarger@emiconductor-Laser depends on the history of the individuals are usually handled
Physics(Springer-Verlag, Berlin, 1994 by introducing subpopulations. For example, if the time re-
[9] E. RenshawModelling Biological Populations in Space and quired to reach sexual maturity is relevant, we can introduce
Time (Cambridge University Press, Cambridge, 1991 an age-structured population: only the sexually mature sub-
[10] S.N. Ethier and T.G. KurtzMarkov ProcessesWiley, New population will be involved in reproductive events.

031918-12



