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Population Dynamics: Poisson Approximation and Its Relation to the Langevin Process
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We discuss how to simulate a stochastic evolution process in terms of difference equations with Poisson
distributions of independent events when the problem is naturally described by discrete variables. For
large populations the Poisson approximation becomes a discrete integration of the Langevin approxi-
mation [T. G. Kurtz, J. Appl. Prob. 7, 49 (1970); 8, 344 (1971)]. We analyze when the latter gives
a reasonable representation of the original evolution for finite size systems. A simple example of an
epidemic process is used to organize the discussion and to perform statistical tests that underline the
goodness of the proposed method.
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The description and analysis of interacting populations
with a discrete number of individuals is a common subject
in several branches of physics and other sciences [1,2].
The members of the population can be molecules (as in
chemical reactions) [3–7], photons (as in lasers) [8–10],
or individual organisms (as in population biology) [11].

We are particularly interested in stochastic systems
which have a certain kind of deterministic limit. Namely,
for some size parameter V large enough, the solutions
of individual realizations follow closely the solutions of
a system of ordinary differential equations [12–15] (see
[16] for a recent rediscovery of the inverse problem).

Early results in the physics of Brownian motion led
physicists to simulate population dynamics in terms of a
Langevin process. The approximation of the evolution
equations for the probabilities of such systems can per-
formed following Van Kampen’s V expansion [1]. The
Fokker-Planck equations [1,17,18] resulting from these
approximations suggest that individual realizations of the
stochastic dynamics follow a Langevin equation with
Gaussian noise (see [14,15,19] for rigorous results). One
of the conceptual difficulties with this presentation is that
it cannot be used to simulate individual realizations of the
stochastic process since the probability distributions for
sufficiently small times cannot be considered smooth, a
requirement for the applicability of the approximation.

In contrast with early attempts, recent developments
have come to emphasize the “importance of being discrete”
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[20,21], i.e., that the replacement of populations that take
discrete values by continuous variables can lead to large
errors.

In what follows we introduce and discuss a finite dif-
ference Poisson approximation of the stochastic process
which respects the discreteness of the populations, has the
exact process as its infinitesimal (in time) limit, and can
be, in turn, approximated by a Gaussian-Langevin process
under conditions that are discussed. We also emphasize
the relation with previous work by Kurtz.

To avoid making the present discussion unnecessarily
abstract, we focus our attention on an epidemiological
model for measles consisting of six stochastic events: birth
and death of a susceptible individual, infection, recovery
of an infected individual, death of an infected individual,
and migration into the system (that can be thought of as a
city) of an infected individual.

The transition probabilities and effects on the popu-
lations of susceptible (S) and infected (I) individuals
exerted by each of the stochastic events in the model is pre-
sented in Table I. The interval of time between events is a
randon variable exponentially distributed with mean t �
�wb 1 wf 1 wc�S, I� 1 wds�S� 1 wdi�I� 1 wr�I��21.

The model for the disease implemented corresponds to
an open community (city) [11]. The model is related to
those used for closed communities (no migration of infec-
tive individuals) that has been a traditional and important
subject of study in mathematical epidemiology. For more
TABLE I. Event type, effects on the populations, and transition rates for the epidemic model.

Event Effect Transition rate

Birth �S, I� ! �S 1 1, I� wb � mV

Inflow of infected �S, I� ! �S, I 1 1� wf � eV

Contagion �S, I� ! �S 2 1, I 1 1� wc�S, I� � bSI�V

Death susceptible �S, I� ! �S 2 1, I� wds�S� � dS
Death infected �S, I� ! �S, I 2 1� wdi�I� � dI
Recovery of infected �S, I� ! �S, I 2 1� wr �I� � gI
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information, readers are referred to a recent work by Nåsell [22]. We emphasize that the open community model does
not have an absorbing state while the closed community does.

The master equations describing the epidemic process read

dP�S, I�
dt

� wbP�S 2 1, I� 1 wfP�S, I 2 1� 1 wc�S 1 1, I 2 1�P�S 1 1, I 2 1� 1 wds�S 1 1�P�S 1 1, I�

1 wdi�I 1 1�P�S, I 1 1� 1 wr �I 1 1�P�S, I 1 1�

2 �wb 1 wf 1 wc�S, I� 1 wds�S� 1 wdi�I� 1 wf�I��P�S, I� (1)
and the associated deterministic differential equation reads

ds
dt

� m 2 ds 2 bsi ,

di
dt

� e 1 bsi 2 �g 1 d�i ,
(2)

where s � S�V and i � I�V are approximated by real
numbers in the V ! ` limit.

The total population consist of susceptible, S, infected,
I , and recovered, R, individuals. The recovered individuals
are thought to have acquired full immunity and do not
affect the dynamics of (S, I). The recovered population
obeys the equation

dR
dt

� gI 2 dR . (3)

The scale factor V can be thought of as the total popu-
lation number at the fixed point of the equation for the to-
tal population, i.e., R 1 I 1 S � V�m 1 e��d for long
enough times.

A fixed time-step (coarse) realization of the stochastic
process can be realized throwing a “dice” with probability
P�S, I , Dt; S0, I0�. This probability is a solution of (2) with
initial condition P�S, I , 0; S0, I0� � 1 if S � S0 and I �
I0 and zero otherwise. Hence, our interest is to propose a
reasonable approximation to this transition probability.

The zeroth order approximation can be given in intuitive
terms. If as a result of a relatively small number of steps in
the random walk [of the population in the �S, I� space], the
population numbers are unlikely to change significantly,
and, consequently, the transition rates are likely to suffer
only small alterations, we can approximate the transition
rates by their initial values at t � 0. In this approximation
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each of the events respond to a Poisson distribution with
li � Dtwi , where i [ �b, f, c, ds, di, r�.

Note that the basis for the heuristic is not directly the
smallness of the time interval but rather the smallness of a
likely change in the relative value of the populations.

The changes in the infected populations during the time
interval Dt can be written as

DS � nb 2 nc 2 ns ,

DI � nf 1 nc 2 ni 2 nr ,
(4)

where nb is the number of newborn, nc is the number of
infected individuals, ns is the number of susceptible people
death, nf is the inflow of infected individuals, and nr is the
number of recovered individuals, all occurring in the time
interval Dt. Each of the variables presents an independent
Poisson statistic as explained. We further notice that in
the limit Dt ! 0 this approximation corresponds with the
original process.

Alternatively, the process (I) can also be represented by
[13–15]

Z�t� � Z�0� 1
X

l

dlYl

√
V

Z t

0
wl�Z�s��V� ds

!
, (5)

where Z � �S, I�, the index l runs over all the events,
l [ �b, f, c, ds, di, r�, dl is the vector representing the
change in the populations for the event l, and Y �l� repre-
sents a Poisson process with mean l. The approximation
introduced heuristically is equivalent to neglecting the time
dependence of the stochastic variables on the right side of
Eq. (5), an approximation equivalent to a Euler scheme for
the Ito differential process [23].

A consistent estimation of the conditions of validity in-
voked in the heuristic arguments gives
	DS2
 � �VDt�2�m 2 ds 2 bsi�2 1 Dt�wb 1 wds 1 wc� ø S2,

	DI2
 � �VDt�2�e 1 bsi 2 �g 1 d�i�2 1 Dt�wf 1 wc 1 wdi 1 wr � ø I2.
(6)
From (6) we see that there are two contributions, the
first one corresponds to the deterministic drift and requires
a small enough Dt for Eq. (2) to be realistically inte-
grated, while the second contribution is of stochastic na-
ture and dominates near the fixed point of the deterministic
approximation.

The increment per unit time of the mean values
scale with V while the stochastic contribution of (6)
presents a dispersion that scales with V1�2 and be-
comes negligible in the V (deterministic) limit except
perhaps for limV!` I�V � i � 0 or limV!` S�V �
s � 0.

The marginal distribution of DI (DS) can be written in
terms of pi � Dt�wf 1 wc�, qi � Dt�wdi 1 wr � �ps �
Dtwb qs � Dt�wc 1 wds�� as the distribution of the dif-
ference between two independent Poisson-distributed ran-
dom variables.

When pi , qi ¿ 1 the Poisson distributions can be ap-
proximated by Gaussian functions and the same can be
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said for the marginal distribution. Hence the marginal dis-
tributions are approximately normal when

pi , qi ¿ 1, ps, qs ¿ 1 . (7)

These conditions are necessary for the Langevin approxi-
mation to be a reasonable difference integration scheme of
the stochastic process.

In the Langevin approximation the increments of the
populations in the interval of time Dt take the form

DS � DtV�m 2 ds 2 bsi� 1 c1 2 cc ,

DI � DtV�e 1 bsi 2 �g 1 d�i� 1 cc 1 c2 ,
(8)

where ci , i � 1, 2, c are Gaussian random vari-
ables with variance s

2
1 � Dt�wb 1 wds�, s

2
2 �

Dt�wf 1 wdi 1 wr �, and s2
c � Dtwc, respectively.

Equation (8) is a numerical implementation of the
Langevin process [23]. However, to take the limit
Dt ! 0 on this process is definitely wrong since the
conditions for its introduction would be violated.

We further add that while we have been able to find
sufficient conditions for (8) to be an approximation of the
process (2), none of them is optimal, and in our expe-
rience the necessary conditions (7) are a better guide to
applicability.

In what follows we compare the stochastic process
[Eq. (2) and Table I] and its approximations (4),(8) for
three different sets of parameter values for the model (I)
differing only in the values of V. The remaining parame-
ter values are m � 1�45, e � �1�45� �1�2000�, b � 360,
d � 1�45, g � 180�7, and the units of all the parameters
are year21. A time step of Dt � 1023 years has been
used for the integration of the Poisson and Langevin
approximations. Representative runs (realizations) of
100 years are obtained for the original stochastic process
(two independent runs), the Poisson approximation (4),
and the Langevin approximation (8).

The time series are sampled at the same rate (every
1022 years) so that the finer structure of the original pro-
cess does not affect the comparison.

Since the approximations can eventually produce
meaningless negative populations we have set the involved
population to zero every time it happens (less than once
every 104 steps in the worst cases with population value
of I � 21). We notice that the Poisson approximation
will propagate the absence of infected individuals (I � 0)
until a new infected individual arrives without need of new
corrections. A different possibility to avoid this problem
is to reduce the time step of the integration for small
populations in the case of the Poisson approximation.

We use as discriminating statistics the maximum num-
ber of ill people during an epidemic outbreak. We consider
that an epidemic outbreak begins (ends) when the num-
ber of infected members of the population satisfy I . th
(I , th) th being a detection threshold consistently taken
as the average number of ill people as predicted by the de-
terministic dynamics of Eq. (2), i.e., th � I0.

The maximum infected population detected during epi-
demic outbreaks are put in three bins based in a single ref-
erence run of the original process. If Imax is the maximum
number of infected individuals during the reference run,
the three bins are �0, �1�3�Imax�, ��1�3�Imax, �2�3�Imax�, and
��2�3�Imax, `�. The results are presented in Table II. The
number associated to each bin corresponds to the average
in 100 runs of the number of peaks with the maximum
number of infected individuals belonging to the bin.

We set the significance level to 0.10 meaning that one in
every ten realizations of the original process will be mis-
takenly discriminated by the test; i.e., the significance level
is set to a high value. The value for the x2 for the aver-
aged distribution is x

2
0 � 6.25�100 � 0.0625. Values of

x2 larger than x
2
0 imply the rejection of the hypothesis that

the tested distribution corresponds to the original process.
We notice that the x2 test is sensible to the average

number of epidemic outbreaks present in each case.
We further test the probability distribution associated to
our discriminating statistics (obtained with the numerical
simulations) comparing them with a Kolmogorov-Smirnov
(KS) test [24].

In the examples shown it is not possible to reject the
Poisson approximation nor a different realization of the
original processes in any case at the significance level
fixed.

The Langevin approximation, however, can be rejected
in the cases V � 104 and V � 105. For V � 106 the x2

test does not discriminate the Langevin approximation, but
the KS test does by a small margin.
TABLE II. Comparison of the statistics for the stochastic process and its approximations for different values of the size parameter
V. We show the average frequency for the three bins of the maximum epidemics values, the x2 value resulting from the comparison
with the original process and the acceptance probability of the KS test. The data labeled original and original-2 refer to the original
stochastic process run with a different seed for the random number generator, i.e., a different realization of the same stochastic
process.

V � 104, th � 10 V � 105, th � 100 V � 106, th � 1000

Process Bin 1 Bin 2 Bin 3 x2 KS Bin 1 Bin 2 Bin 3 x2 KS Bin 1 Bin 2 Bin 3 x2 KS
Original 5.01 1.62 0.88 31.88 3.46 0.87 67.73 12.78 8.99
Poisson 5.59 1.68 0.77 0.04 0.25 30.98 3.58 0.90 0.015 0.42 67.70 12.75 8.75 0.02 0.89
Langevin 104.16 0.00 0.00 92.54 ,1026 70.66 0.00 0.00 18.99 ,1026 65.63 13.59 9.21 0.03 0.02
Original-2 5.18 1.67 0.83 0.005 0.87 31.32 3.22 0.96 0.02 0.53 67.10 13.45 8.5i0 0.03 0.26
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The performance of the Poisson approximation was
excellent in all cases considered, even though, when
V � 104, 105 there are large periods of time when the
infected population is zero and the conditions invoked
in the heuristic arguments (6) are not satisfied. The
reason for the success of the Poisson approximation for
small populations is related to the fact that for Dt ! 0
it has the same limit and derivative as the original process.

It is important to notice that the mean time between epi-
demics obtained with the Poisson approximation presents
a dependence with the “size of the city” (V) qualitatively
similar to the dependence reported in the classical study by
Bartlett [25,26]. In contrast, the Langevin approximation
cannot account for this dependence.

There are several ways in which the Poisson approxi-
mation introduced should be improved. First, the algo-
rithm should produce higher order approximations (in Dt)
to the integration of (2) in the deterministic limit. Second,
the ad hoc mechanism used to avoid negative populations
should be replaced by one built in the approximation; this
step might prove to be a difficult one since the main rea-
son for the occurrence of nonzero probabilities for nega-
tive populations is the failure to satisfy the conditions (6)
at very low populations. Third, linear approximations to
the transition rates can be used. The need for these im-
provements is not yet clear given the excellent performance
obtained.

In conclusion, we have introduced a Poisson approxi-
mation to the stochastic process describing population
dynamics. This approximation produces reliable numeri-
cal simulations of the dynamics and has the proper limits
for infinitesimal times and for large populations (the
Langevin process). It is then able to produce reliable
results in a range of situations substantially larger that
the Langevin approximation with equivalent simplicity.
One of the main reasons for these abilities is that the
approximation is respectful of the discrete character of
the populations.
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