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Abstract

Aedes aegypti is the main vector for dengue and urban yellow fever. It is extended
around the world not only in the tropical regions but also beyond them, reaching
temperate climates. Because of its importance as a vector of deadly diseases, the
significance of its distribution in urban areas and the possibility of breeding in labo-
ratory facilities, Aedes aegypti is one of the best-known mosquitoes. In this work the
biology of Aedes aegypti is incorporated into the framework of a stochastic popula-
tion dynamics model able to handle seasonal and total extinction as well as endemic
situations. The model incorporates explicitly the dependence with temperature. The
ecological parameters of the model are tuned to the present populations of Aedes
aegypti in Buenos Aires city, which is at the border of the present day geographical
distribution in South America. Temperature thresholds for the mosquito survival
are computed as a function of average yearly temperature and seasonal variation as
well as breeding site availability. The stochastic analysis suggests that the southern
limit of Aedes aegypti distribution in South America is close to the 15◦C average
yearly isotherm, which accounts for the historical and current distribution better
than the traditional criterion of the winter (July) 10◦C isotherm.
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1 Introduction

Aedes aegypti is mostly a domestic mosquito and the primary vector for urban
yellow fever and dengue. It is the most important vector for dengue in the
Americas, and it can be found in tropical and subtropical regions such as
Florida, Central America, the Caribbean Islands and Brazil. It is estimated
that about 2500-3000 millions of people live in areas where the transmission
of the dengue virus is endemic.

The limits for the geographical distribution of Aedes aegypti tentatively adopted
by Christophers (1960), and reproduced by several authors [WHO (1998);
FUNCEI (1999a)], are the winter isotherms of 10◦C (corresponding to July in
the southern hemisphere and to January in the northern hemisphere). This
criterion is far from being perfect as Christophers showed (we will come back
to the discussion of the geographical distribution and its relation with climate
later in this work). The July 10◦C isotherm is indicated in Figure (1) as a
thick solid line 1 .

Aedes aegypti has been reported, in the decade of the 1930s, in Bah́ıa Blanca
(on the Atlantic coast 38◦ 44’, S 62◦ 16’ W, average yearly temperature 15.4◦C,
July mean temperature 7.6◦C) before the Aedes aegypti eradication program
in the Americas, and is currently a permanent inhabitant of Buenos Aires
city (34◦ 38’ S, 58◦ 28’ W, average yearly temperature 18.0◦C, July mean
temperature 11.0◦C) [Schweigmann and Boffi (1998); de Gaŕın et al. (2000);
Carbajo et al. (2001)].

Historical records show that an epidemic of dengue in 1916 affected the cities
of Concordia (31◦ 22’ S, 58◦ 09’ W, average yearly temperature 18.9◦C, July
mean temperature 12.3◦C) and Paraná (31o44’S, 60o32’W, average yearly tem-
perature 18.2◦C, July mean temperature 11.2◦C), and yellow fever epidemics
decimated Buenos Aires city in 1852, 1857, 1870, 1871, 1896, 1899 and 1905.
Nowadays, dengue is present in tropical regions of Argentina, i.e., in the north-
ern provinces of Salta, Jujuy and Misiones [FUNCEI (1998, 1999b,a)].

In order to study the possible evolution of a dengue epidemic in any city

1 The temperature maps were produced by D R Legates and C J Willmott using ter-
restrial observations of shelter-height air temperature and shipboard measurements.
The combined database of the world consisted of 17986 independent terrestrial sta-
tion records and 6955 oceanic grid-point records. The data were interpolated to a
0.5◦ of latitude by 0.5◦ of longitude lattice. Most of the land station records are
for the years between 1920 and 1980. Median air temperatures over the oceans
are taken from the Comprehensive Ocean-Atmosphere Data Set (COADS) for the
years 1950-79. COADS data are 2-degree latitude-longitude resolution. Legates and
Willmott (1990).
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Fig. 1. July temperature in South America. The thick solid line represents the July
10◦C isotherm. The cities of (South to North) Bah́ıa Blanca, Buenos Aires, Paraná
and Concordia are indicated on the map. Adapted from Legates and Willmott
(1990).

with a temperate climate, such as Buenos Aires city, the seasonal variation of
adult mosquito populations has to be taken into account since the abundance
of adult females is the key factor for the transmission of the disease. Adult
mosquitoes are close to extinction during the winter months and re-emerge in
the spring. In contrast eggs are present all year long. The studies performed
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in Buenos Aires [Carbajo et al. (2001)] suggest that extinctions of all forms of
the mosquito as well as repopulation processes are common in localised areas
of the city.

The Aedes aegypti eradication program carried out in Argentina (1954-1963),
as part of the eradication program in the Americas was based on the use of
insecticide (DDT) and the systematic destruction of breeding sites [Ministerio
de Asistencia Social y Salud Publica (1964)]. As an application of the model
we will be discussing how the number of available breeding sites affects the
survival of the species.

The description of mosquito populations (as well as other insects) has been
addressed using Dynamic Life Table Models [Focks et al. (1993a,b); Powell
and Jenkis (2000); Depinay et al. (2004)]. These models are deterministic in
nature and their stochasticity depends solely on the stochastic components of
the climate data. Intrinsic stochasticity is not present and fixed rules are used
in place of stochastic phenomena. For example, in [Focks et al. (1993a,b)] egg
hatching cannot occur below an arbitrary temperature (an adjustable param-
eter, taken to be 22◦C in the original work). However, experimental reports
present several different minimal hatching temperatures varying from 20◦C to
13◦C [Christophers (1960)] (hatching of eggs at a temperature as low as 1◦C
has been reported, although the larvae were found dead). Indirect evidence of
egg hatching below 17◦C is provided by the observed sharp rise in the pop-
ulation of adults when the average daily temperature reaches approximately
18◦C (field studies performed at Buenos Aires [Campos and Macia (1996)]).
Reports of a sharp rise at 17◦C in the northern city of Córdoba [Domı́nguez
et al. (2000)] suggest that this value depends on additional factors and not
only on the instantaneous temperature.

Moreover, Dynamic Life Table models are computationally demanding, pre-
venting their use beyond homogeneous situations and do not allow for a simple
mathematical analysis [Powell and Jenkis (2000)].

In the present work we develop a model for the evolution of Aedes aegypti
as a (nonlinear or state dependent) Markov chain [Ethier and Kurtz (1986)]
considering the four life stages of a mosquito: egg, larva, pupa and adult. For
every life stage, the relevant changes are modelled in terms of random events
with rates determined from the biological data available for Aedes aegypti.
The rates depend on time through weather parameters. The relation with the
deterministic models, emerging in the infinite populations limit, will also be
addressed and their results compared with the stochastic model.

A minimalist stochastic model has several advantages over deterministic mod-
els. It shares much of the computational efficiency of models based upon dif-
ferential equations but can deal properly with extinction processes. It is also
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considerably less computationally demanding than following cohorts in dy-
namical table models and has the additional advantage that stochastic pro-
cesses, such as development, are described in stochastic terms without resort-
ing to additional (ad hoc) parameters to simulate them with deterministic
methods. Additionally, the stochastic process has been approximated in this
work with a Poisson method (see Appendix A) that represents a substantial
saving of computer time compared to a direct Monte Carlo implementation of
the stochastic process.

We will show in this work that the technical advantages allow for deeper
scrutiny of the biological problem. In particular, they allow us to reconsider
the habitat limits for Aedes aegypti.

In what follows we shall describe the basic biology of Aedes aegypti (Section
2), the formulation of the model (Section 3) and the evaluation of parameters
based on the biological data (Section 4). Section 5 discusses the limitations
of the model while Section 6 presents some results and issues of biological
interest. The geographical limits for Aedes aegypti are discussed in Section 7 as
a function of average yearly temperature, amplitude of the seasonal variation of
the temperature and availability of breeding sites. The last section is dedicated
to the summary, discussion and conclusions.

2 Biological notes on Aedes aegypti

The life cycle of a mosquito presents four distinct stages: egg, larva, pupa and
adult (see Figure 2). In the case of Aedes aegypti the first three stages take
place in or near water while air is the medium for the adult stage.

The eggs are laid on wet surfaces just above the water level (egg deposition).
Aedes aegypti prefers small containers such as cans, buckets, flower pots, bot-
tles, jars, urns and rain-water containers. Used car tires provide an ideal larval
habitat and an adult resting site. In tropical climates larvae can also be found
in natural cavities such as tree holes. The eggs of Aedes aegypti can resist
desiccation and low temperatures for up to one year. Under the weather con-
ditions considered in this work, desiccation is not a relevant mortality factor
and has not been further considered. Although hatching of mature eggs may
spontaneously occur at any time, it is greatly stimulated by flooding. Hence,
hatching is more likely to occur after rainfall [Christophers (1960)].

The larva moult four times in a period of a few days (depending on the tem-
perature) which culminates in the pupal stage (pupation). Both the larva and
pupa are active stages, but only the larvae eat.
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Fig. 2. Life cycle of Aedes aegypti

The pupal stage lasts from one day to a few weeks (depending on the temper-
ature). At the end of the stage the adult emerges from the pupal skin (adult
emergence).

The adult stage of the mosquito is considered to last an average of eleven days
in the urban environment. Dengue and yellow fever are spread only by adult
females. Mosquito females require blood to complete oogenesis. Aedes females
are mainly anthropophagic, they prefer human blood to other mammals’, al-
though they can also bite other vertebrates. In this process, the female ingests
human viruses with the blood meal. The viruses develop within the mosquito
and are reinjected into the blood stream with the saliva of the mosquito in
later blood meals.

Adult females lay an average of sixty-three eggs at each oviposition. The num-
ber changes according to the weight of the female and other factors. The
gonotrophic cycle is regulated by the temperature and is longer for the first
oviposition than for the subsequent ones [Christophers (1960)]. We will later
distinguish between adult females in their first gonotrophic cycle, (A1 females),
and in subsequent gonotrophic cycles (A2 females).

The natural regulation of Aedes aegypti populations has been discussed in
some depth in the literature. In general terms, mosquito populations may dis-
play intra-specific competition for food and other resources within the same
developmental cycle [Southwood et al. (1972); Dye (1982); Subra and Mouchet
(1984); Gleiser et al. (2000)]. In the present work we will only consider com-
petition within the larval stage, which is the only one well documented for
Aedes aegypti. Predation may also be a factor in controlling the population of
Aedes aegypti [Focks et al. (1993a)].

In practical terms many of these mechanisms may be indistinguishable, as
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all of them will increase, in a first approximation, the mortality rate of the
larvae as a function of larval density in the breeding site. In other words, each
breeding site will be characterised by a carrying capacity.

Other mechanisms of population control have been reported for mosquitoes. In
particular, inhibition of egg hatching due to a large density of larvae has been
reported for Ochlerotatus triseriatus (formerly Aedes triseriatus) and may also
affect Aedes aegypti populations[Livdahl et al. (1984)].

3 Mathematical model of the life cycle

The model considers five different populations: eggs (E), larvae (L), pupae
(P ), female adults not having laid eggs (A1), and female adults having laid
eggs (A2). The population of adult male mosquitoes is not considered explicitly
except that every time a female adult emerges, we will discount two pupae
from the pool of pupae since about one half of the emerging adults are females.
Actually, Arrivillaga and Barrera [Arrivillaga and Barrera (2004)] report a
ratio of 1.02:1 male:female. Since we lack statistical information regarding
oviposition, we will consider that each female lays a fixed number of eggs (63)
at every oviposition.

The evolution of the five populations is affected by ten different possible events:
death of eggs, egg hatching, death of larvae, pupation, death of pupae, adult
emergence, death of young adults (A1), death of A2 adults, oviposition by A1
females and oviposition by A2 females. Table 1 summarises this information.

Events occur at rates that depend not only on population values but also on
temperature, which in turn is a function of time since it changes over the
course of the year. Hence, the dependence on the temperature introduces a
time dependence in the event rates.

The inhibitory effect of larvae density on egg hatching, γ(L), is modelled with
a (negative) step function and its relevance will be later discussed in this work.

The evolution of the populations is modelled by a (state dependent) Pois-
son process [Ethier and Kurtz (1986); Andersson and Britton (2000)] where
the probability of the state (E, L, P, A1, A2) evolves in time following a Kol-
mogorov forward equation (also known as master equation) that can be con-
structed directly from the information collected in Table 1.

The associated deterministic differential equation model [Kurtz (1970, 1971);
Ethier and Kurtz (1986)] reads
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Event Effect Transition rate

1 Oviposition (A1) E → E + egn

A1 → A1− 1

A2 → A2 + 1 w1(A1) = ovr1 ∗A1

2 Oviposition (A2) E → E + egn w2(A2) = ovr2 ∗A2

3 Death of Eggs E → E − 1 w3(E) = me ∗ E

4 Egg hatching E → E − 1

L → L + 1 w4(E,L) = elr(1− γ(L)) ∗ E

5 Death of Larva L → L− 1 w5(L) = ml ∗ L + α ∗ L(L− 1)

6 Pupation L → L− 1

P → P + 1 w6(L) = lpr ∗ L

7 Death of Pupa P → P − 1 w7(P ) = (mp + (1− ef) ∗ par)P

8 Adult emergence P → P − 2

A1 → A1 + 1 w8(P ) = par ∗ ef ∗ P/2

9 Death Adults (A1) A1 → A1− 1 w9(A1) = ma ∗A1

10 Death Adults (A2) A2 → A2− 1 w10(A2) = ma ∗A2
Table 1
Event type, effects on the populations and transition rates for the developmental
model. The coefficients are ovr1,ovr2: gonotrophic cycle coefficient (number of
daily cycles) for adult females in stages 1 and 2.; egn: average number of eggs laid
in an oviposition; me: mortality of eggs; elr: hatching rate; γ(L) hatching inhibition
by larvae; ml: mortality of larvae; α: density-dependent mortality of larvae; lpr:
pupation rate; mp: mortality of pupae; par: pupae into adults development coeffi-
cient; ef : emergence factor; ma : mortality of adults. All the coefficients depend on
the temperature and hence present seasonal variations.

dE/dt = egn ∗ (ovr1 ∗ A1 + ovr2 ∗ A2)−me ∗ E − elr ∗ (1− γ(L)) ∗ E

dL/dt = elr ∗ (1− γ(L)) ∗ E −ml ∗ L− α ∗ L2 − lpr ∗ L

dP/dt = lpr ∗ L−mp ∗ P − par ∗ P (1)

dA1/dt = par ∗ ef ∗ P/2−ma ∗ A1− ovr1 ∗ A1

dA2/dt = ovr1 ∗ A1−ma ∗ A2

and is useful in the limit of infinite size homogeneous population with finite
population density. Notice that in this limit we require e = E/N, l = L/N, p =
P/N, a1 = A1/N, a2 = A2/N to be finite, with N some large number, an ad
hoc scale parameter to be identified later. The nonlinear mortality term for
larvae becomes then α ∗L ∗ (L− 1)/N and the limit exists provided α ∗N has
finite limit. Then limN→∞(α ∗N)L/N(L/N − 1/N) = l2 limN→∞(α ∗N). The
scale parameter has been restored to equation (1) while the correct dependency
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with the continuous variables, that only emerge in the limit, has been kept for
the nonlinear part of the larvae mortality. The parameter N will be identified
in Section 4.3

4 Biological parameters

The rates of occurrence of the events described in Table 1 are specified in what
follows for the case of Aedes aegypti. We will make several general simplifying
hypotheses, which are justified for our application case but may require a revi-
sion in the general case. These hypotheses are: we will neglect the dependence
on rainfall for the egg hatching rate, an assumption which is acceptable for
regions where there is no dry season. We will also consider the mean daily
temperature of breeding sites equal to the mean daily temperature of the air.

We shall make here the important distinction between breeding sites and wa-
ter containers. While every breeding site is, by the biological nature of the
mosquito, a water container, not every water container is a breeding site. For
example, water containers with high exposure to the sun or in places infested
by predators will not be effective as breeding sites and will not be considered
as such in this work. We avoid in this form the accumulation of uncertainties
produced by indirect calculations of breeding sites.

Since Buenos Aires is a city with temperate climate, we will neglect in this
manuscript the often deadly effect of high temperatures. Adult Aedes aegypti
seek cover under bushes and trees during hot weather and also choose their
breeding sites in protected places. In temperate climates, containers under tree
or bush protection reach temperatures substantially below the upper limits for
development.

The different parameters appearing in the stochastic process described by
Table 1 characterise Aedes aegypti. The stochastic population dynamic model
makes no attempt to follow individual cohorts of mosquitoes but considers the
full population as a homogeneous set. More detail could be incorporated into
developmental stages in the four populations following more closely in this
form the biology of the Aedes aegypti.

4.1 Developmental rates

There are four developmental rates in our model, and they correspond to egg
hatching, pupation, adult emergence and gonotrophic cycle. Each of these
rates is evaluated using the results of the thermodynamic model developed

9



Develop. Cycle (3) RD(T ) RD(298◦K) ∆HA ∆HH T1/2

Egg hatching elr 0.24 10798 100000 14184

Larval develop. lpr 0.2088 26018 55990 304.6

Pupal Develop. par 0.384 14931 -472379 148

Gonotrophic c. (A1) ovr1 0.216 15725 1756481 447.2

Gonotrophic c. (A2) ovr2 0.372 15725 1756481 447.2
Table 2
Coefficients for the enzymatic model of maturation (equation (3)). RD is measured
in day−1, enthalpies are measured in (cal / mol) and the temperature is measured
in absolute (Kelvin) degrees.

by Sharp and DeMichele [Sharpe and DeMichele (1977)]. According to this
model for poikilothermal development the maturation process is controlled
by one enzyme which is active in a given temperature range, the enzyme
is deactivated at low, TL, and high, TH , temperatures. The development is
stochastic in nature and is controlled by a Poisson process with rate RD(T ).
In general terms RD(T ) takes the form

RD(T ) = RD(298◦K)× (2)

(T/298◦K) exp((∆HA/R)(1/298◦K − 1/T )

1 + exp((∆HH/R)(1/TH − 1/T )) + exp((∆HL/R)(1/TL − 1/T ))

Here TH , TL are absolute temperatures (◦Kelvin) while ∆HA, ∆HH and ∆HL

are thermodynamic enthalpies characteristic of the organism, in particular,
∆HL is negative in general while ∆HH is positive. R is the universal gas
constant.

Schoofield et al. introduced a simplified model with only high temperature
deactivation [Schoofield et al. (1981)]. The model reads

RD(T ) = RD(298◦K)
(T/298◦K) ∗ exp((∆HA/R)(1/298◦K − 1/T ))

1 + exp(∆HH/R)(1/T1/2 − 1/T ))
(3)

where T1/2 is the temperature when half of the enzyme is deactivated because
of high temperature. We adopt Schoofield’s model since it is flexible enough
for fitting the available biological data.

In Table 2 we present the values for the different coefficients involved in the
events: egg hatching, pupation, adult emergence and gonotrophic cycle. The
values are taken from [Focks et al. (1993a)]. We will later discuss this particular
application of the enzymatic model.
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Fig. 3. Developmental rates according to Table 2 as a function of the temperature.
elr: hatching rate; lpr: pupation rate; par: pupae into adults development coeffi-
cient; ovr1,ovr2: gonotrophic cycle coefficient (number of daily cycles) for adult
females in stages 1 and 2.;

The resulting developmental rates are displayed in Figure 3 as a function of
temperature.

4.2 Mortality, emergence and oviposition rates

The different mortality rates as well as the emergence rate and average depo-
sition rate have been taken from [Focks et al. (1993a); Christophers (1960)]
and are as follows.

Oviposition Females lay a number of eggs that is roughly proportional
to their body weight (46.5eggs/mg) [Bar-Zeev (1957); Nayar and Sauerman
(1975)]. The mean weight of a three-day-old female is 1.35mg [Christophers
(1960)], hence we estimate the average number of eggs laid in one oviposition
as egn = 63. The gonotrophic cycle for the first oviposition takes longer than
in subsequent ovipositions, a fact reflected in the parameters of Table 2. The
number of ovipositions for an adult female estimated from the parameters of
the model are: one at 20◦C, four or five at 25◦C and six at 30◦C.
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Egg mortality The mortality of the eggs is chosen to be me = 0.011/day
and is independent of the temperature in the range 278◦K ≤ T ≤ 303◦K
[Trpis (1972)].

Larva mortality The death of the larvae is divided in two contributions
as explained above. One contribution accounts for natural mortality under
optimal conditions and depends only on the temperature. Its rate is approxi-
mated by ml = 0.01+0.9725 exp(−(T −278)/2.7035) and is valid in the range
278◦K ≤ T ≤ 303◦K. [Horsfall (1955); Bar-Zeev (1958); Rueda et al. (1990)].
The other contribution is the density-dependent (regulatory) mortality, due
to the accumulation of adverse factors. This contribution will be considered
separately in the next subsection.

Death of Pupae The intrinsic mortality of a pupa has been considered as
mp = 0.01+0.9725exp(−(T −278)/2.7035) [Horsfall (1955); Bar-Zeev (1958);
Rueda et al. (1990)].

Emergence Besides the daily mortality in the pupal stage, there is an im-
portant additional mortality associated with the sometimes unsuccessful emer-
gence of the adult individual. We assume a mortality of 17% of the pupae at
this event, which is added to the mortality rate of pupae. Some 83% of the
pupae that reach maturation will emerge as adult mosquitoes, hence the emer-
gence factor is ef = 0.83 and multiplies the developmental rate of the pupa
already described [Southwood et al. (1972)].

Adult death The mortality of adults is taken to be independent of the
temperature. The mortality rate for an adult is ma = 0.091/day in the range
278◦K ≤ T ≤ 303◦K [Horsfall (1955); Christophers (1960); Fay (1964)].

4.3 State-dependent rates

From a mathematical point of view, state dependent rates (also called density-
dependent rates in the mathematical literature) introduce the necessary non-
linearities that prevent an exponential growth (on average) of the populations.
Density-dependent transition probabilities reflect the regulatory processes that
affect the populations.

We have introduced two regulatory process: density-dependent mortality of
larvae and egg-hatching inhibition by larvae.
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Density-dependent mortality of larvae This regulatory mechanism may
be due to several concurrent processes such as food limitations, chemical in-
teractions, presence of specialised predators at the breeding site, and more.
It reflects not only a characteristic of the species but also a characteristic of
the environment. As such, it is expected to take different values at different
locations.

Crowding effects for larvae have been reported for Aedes aegypti [Dye (1982)].
Other Aedes mosquitoes such as Aedes albopictus are more exposed to preda-
tion as a consequence of being able to use breeding sites in the wilderness.

Predation is believed to be an important factor in the control of Aedes aegypti
in South America where Aedes aegypti is a domestic mosquito unable to sur-
vive in unprotected places such as large parks. Aedes aegypti can live in the
wilderness at other locations such as in North America and Central America.

In the present work this effect is taken into account as the simplest nonlinear
correction to the larvae mortality, i.e.:

ω5(L) = mlL + αL(L− 1) (4)

the value of α can be further decomposed as

α = α0/BS (5)

with α0 being associated with the carrying capacity of a single (standardised)
breeding site and BS being the number of breeding sites grouped as a single-
site-equivalent in the homogeneous model. The value of α0 can be fitted to
observed values in the region being simulated. Recalling the deterministic
model (1), the requirement for αN to have a finite limit when N goes to
infinity can be rephrased as limN→∞ N/BS = 1. In this way BS becomes the
internal parameter of the stochastic model that controls the approximation to
the deterministic model for population fractions. In the deterministic model
BS will only be a scale parameter.

Hatching inhibition by larvae The possibility of a complex regulatory
process, in which the high density of larvae inhibits egg hatching, inducing
the eggs to enter diapause, was unearthed by Livdahl [Livdahl et al. (1984)].
We have introduced this effect through a factor lowering the hatching rate
when the larvae exceed a predetermined density. The hatching rate becomes
then

w4(L) = elr(1− γ(L)) (6)
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with

γ(L) =





0 if L/BS < a0

0.63 if L/BS ≥ a0

(7)

where a0 is the critical value resulting from the product of the critical density
times the estimated average volume of the breeding sites.

According to Livdahl et al. (1984) the hatching fraction changes somewhere
between 10 and 70 larvae per litre. The region between these values has not
been explored, hence we have considered that the inhibition effect takes place
for densities above a given value named the critical density. Critical density
values between 10 and 70 larvae per litre have been considered as well as an
average size of the breeding site of 1/2 litre.

5 Discussion of the biological model

As in any phenomenological model, there are several compromises that have
to be addressed. They emerge between the precision of the description and
the analytical, as well as numerical, difficulties introduced.

The philosophy of our model is minimalist, i.e., we have attempted to produce
the simplest model for the dynamics of Aedes aegypti populations compatible
with existent data. It may be later necessary to introduce age structure (for
example, introducing the different instars in larvae development), adult male
populations or other details in the description. It may also be necessary to
improve the weather data incorporating humidity and rainfall for example.

The incorporation of the spatial extension of the model seems to be the most
urgent need. Dispersal strategies of mosquitoes might be a determining factor
in their survival in temperate climates as well as in environments with a low
density of breeding sites.

A second source of deficiencies of the model has its origin in the quality of the
biological data we have been able to collect.

Measurements of developmental rates at temperatures in a range larger than
278◦K−303◦K are needed if the parameters of the enzymatic model are going
to be retrieved in a realistic form. The parameters listed in Table 2 make little
biological sense in several cases. Temperatures as high as 14184◦K or as low
as 148◦K as well as negative deactivation enthalpies (ruled out by hypothesis
in the model) are easily explained as artifacts of a nonlinear fit based on

14



data within a range insufficient to display the behaviour associated with the
enzymatic model. Actually, it is possible to fit the same data with equivalent
accuracy with a substantially smaller number of parameters.

Statistics for egg deposition would also help to improve the quality of the
model by removing the hypothesis of a fixed number of eggs laid by deposi-
tion. Notice that egg deposition is influenced by environmental variables since
it depends on body weight of the females which, in turn, depends on feeding
conditions in the larval stage. Arrivillaga and Barrera [Arrivillaga and Bar-
rera (2004)] report body weights of females from 0.554mg to 2.338mg under
laboratory conditions, however, females collected in field studies in tropical
Venezuela show different weights at different seasons with weight averages
from 0.74 to 0.94 mg.

The inhibitory effect produced by larval population density on egg hatching
reported in Livdahl et al. (1984) presents hatching fractions for low densities
and for high densities while there are no measurements in the density range
10-70 larvae per litre where the transition from low to high density occurs.
Hence, there is room for improving the description of the inhibitory effect.

Other effects regulating the dynamics of the population such as inhibition of
oviposition in larvae saturated breeding sites may be also in action but very
little is known about them, and their present status is closer to “conjecture”
than to anything else.

The effects of food deprivation and starvation of larvae have not been explicitly
incorporated in the model although they might be a relevant mechanism for
the regulation of the mosquito populations [Arrivillaga and Barrera (2004)].

6 Results

6.1 Analysis of the deterministic model

We shall explore the elementary solutions of the deterministic model (1) using
standard methods of nonlinear analysis (Wiggins (1990); Solari et al. (1996)).

The fixed points of (1) satisfy

E0 = L0
egn ∗ (ovr2 + ma) ∗ ovr1 ∗ par ∗ ef ∗ lpr

2 ∗ma ∗ (me + elr ∗ µ)(mp ∗ma + mp ∗ ovr1 + par ∗ma + ovr1 ∗ par)

P0 = L0
lpr

mp + par
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A10 = L0
par ∗ ef ∗ lpr

2 ∗ (mp ∗ma + mp ∗ ovr1 + par ∗ma + ovr1 ∗ par)

A20 = L0
ovr1 ∗ par ∗ ef ∗ lpr

2 ∗ma ∗ (mp ∗ma + mp ∗ ovr1 + par ∗ma + ovr1 ∗ par)

0 = elr ∗ µ ∗ E0 −ml ∗ L0 − α ∗ L2
0 − lpr ∗ L0 (8)

with µ = 1− γ(L0).

There are at most three solutions of (8). The trivial state, with all the popu-
lations zero and two non trivial solutions, one corresponding to γ(L0) = 0 and
the second one corresponding to γ(L0) 6= 0 (in both cases they are the root of
a homogeneous polynomial of order two).

The non trivial solutions are biologically significant only when the populations
are positive, a condition that is written as

L0 ∗ α = elr ∗ µ
(

E0

L0

)
− (lpr + ml) ≥ 0 (9)

where equality in the last term corresponds to the condition for the trans-
critical bifurcation that signals, in parameter space, the point at which the
population is viable under constant temperature conditions. This case corre-
sponds to considering µ = 1 since the density of larvae is zero. The bifur-
cation occurs, using the parameter values given in the previous sections, at
10 ≤ T ≤ 10.5◦C.

We further notice that the equilibrium point is always proportional to 1/α
and by (5) it is proportional to BS/α0, i.e., the environmental variable BS
determines the size of the equilibrium population in the deterministic model
(to obtain the result, notice that γ(L) depends only on the quotient L/BS
in (7)). Further notice that the occurrence of BS in (1) can be suppressed
by a change of scale, rescaling all the population variables by 1/BS. Hence,
the occurrence of BS in (1) is somewhat artificial, the deterministic model is
actually a model for population densities (Kurtz (1971)).

It is important to realize, at this point in the discussion, that the condi-
tion for the bifurcation is independent of the number of breeding sites, BS.
This result is expected since the deterministic equations are, in essence, equa-
tions for the variables (A1, A2, E, L, P )/BS valid in the limit BS →∞ with
||(A1, A2, E, L, P )/BS|| finite (Ethier and Kurtz (1986)), such a population
has an indefinitely large number of available breeding sites.

The third solution of (8) is not associated with a bifurcation since the function
γ(L) is not smooth. We will not discuss it further since the discussion does not
carry significant contributions to the understanding of the biological problem.
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Fig. 4. Fit of Buenos Aires mean daily temperatures using equation (10). The data
corresponds to Ezeiza (Buenos Aires airport) station of the Servicio Meteorológico
Nacional, Argentina.

6.2 Seasonal variation

The discussion of the viability of the mosquito under constant weather condi-
tions is relevant only for laboratory studies, but in any urban area the mosquito
will be subject to seasonal changes in the temperature. In what follows we have
adopted a simple model for mean daily temperature variation that contains
only the deterministic component of the temperatures. The model is taken
after [Király and Jánosi (2002)] and takes the form:

T = a + b cos(
2πt

365.25days
+ c) (10)

with the time measured in days beginning on the first of July. The values
for the parameters a, b and c fitted from temperature records in the period
1980-1990 (when Aedes aegypti reappeared in Buenos Aires) are: a = 18.0◦C;
b = 6.7◦C and c = 9.2. The temperature variation during the day has not
been taken into account in the model, keeping the model simple. This simpli-
fication is not expected to introduce important distortions in the population
dynamics (Focks et al. (1993a); de Gaŕın et al. (2000)) at this level of the
description since the characteristic times of all the processes involved are of
several days and their probabilities are ruled by time-integrals of the rates.
Hourly temperature fluctuations are then smoothed by the dynamics.

The adjusted parameters for the observations corresponding to Buenos Aires
city (Ezeiza station of the Servicio Meteorológico Nacional, Argentina) are
presented in Figure 4, for which the fit was performed using a Levenberg-
Marquardt algorithm.
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6.3 Deterministic stability analysis of the trivial solution

Once again, the viability of the mosquito population corresponds to the loss
of stability of the trivial solution (absence of the mosquito). The stability
analysis using Floquet’s method requires finding the monodromy matrix after
a one year period. Notice once again that the transition rates in (1) depend
indirectly on time because of their dependence on the temperature which by
(10) is periodic.

The equation for the monodromy matrix around the trivial fixed point reads:

dM

dt
=




−elr −me 0 0 egn ∗ ovr1 egn ∗ ovr2

elr −ml − lpr 0 0 0

0 lpr −(mp + par) 0 0

0 0 par ∗ ef/2 −ma ovr1

0 0 0 ovr1 −ma




M

(11)

with the initial condition M(0) being the identity matrix.

The extinction solution is stable when all the eigenvalues of the monodromy
matrix M(1year) are less than one in modulus. When the first eigenvalue
crosses the unit circle the extinction solution loses stability and a (stable)
periodic solution emerges in a transcritical bifurcation. The bifurcation set
obtained numerically is presented in Figure 8 (solid green curve). Technical
details on the application of stability theory to the present case are presented
in Appendix B.

6.4 Numerical explorations of the stochastic model

Simulations for the homogeneous model (1) were carried out using the Poisson
Approximation for fixed time intervals [Solari and Natiello (2003b,a)] (see
Appendix A).

The characteristic volume of a breeding site was estimated to be about half a
litre and an average of 7 larvae per breeding site are found during the most
favourable week of the year.

The time evolution of the population was considered with initial conditions in
the winter time, when all the subpopulations are presumably extinct or near
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Fig. 5. Dependence of the egg population with initial value. Different values for the
egg subpopulation were arbitrarily specified at the coldest day of the winter. The
populations presented no observable sensitivity to the initial conditions when the
next favourable cycle (spring-summer) developed. The example corresponds to the
egg population for BS = 50.

extinction except the subpopulation of eggs.

Runs with different initial values presented no significant differences in any
population numbers provided the mosquito survived until the following (spring-
summer) favourable season (see Figure 5). These results show a strong regula-
tory capability of the environment. The carrying capacity of the environment,
as reflected by the parameter BS, regulates the mosquito populations which,
additionally, show little to no memory of the population situation one year
before. It could be said in this regard that the reproductive potential of Aedes
aegypti promotes the populations found at the beginning of the favourable
period (spring) up to the limits set by the environment.

6.5 Biological checkpoints

The homogeneous model introduces a representation of the individual biolog-
ical processes involved in the life cycle of Aedes aegypti. It also allows for the
calculation of some observed quantities not used in the construction of the
model.
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Fig. 6. Adult mosquito populations plotted against the temperature for 150 breeding
sites for two years. The wide line represents the average of one hundred individual
realizations.

Under regulated (constant) laboratory conditions Aedes aegypti is able to per-
sist above 10◦C [Christophers (1960)]. According to the results of the present
model the minimal temperature lies between 10◦ and 10.5◦C provided an infi-
nite number of breeding sites are available (results based on the deterministic
model).

In temperate Buenos Aires, the population density of adult Aedes aegypti
exhibits a sharp rise during the spring time (6). The rise depends on the tem-
perature as well as population variables. According to a field study [Campos
and Macia (1996)] the effective emergence of adults is observed at 18◦C. Simu-
lations made with 150 breeding sites/ha (corresponding to the largest density
of breeding sites found in Buenos Aires) suggest that the population of adult
mosquitoes begins to increase almost monotonically when the temperature
is between 15◦ and 19◦C (see figure 6) depending on random factors. This
temperature is roughly independent of the number of breeding sites provided
there are enough to avoid the extinction of the mosquito during the winter
time. Hence the observed temperature is compatible with the range predicted
by the model. The temperature for the effective emergence of adults depends
not only on the biology of the mosquito but also on the temperature patterns
of the environment and is expected to change from city to city. It is important
to realize that this effective emergence temperature was not directly included
in the model and is not associated with any particular parameter.
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The cycle of the mosquito follows the temperature with some delay (see Figure
6). The adult population reaches its minimum after the coldest days of the
year, the reproductive season is then triggered by the temperature and the
population number reaches a maximum (controlled by the carrying capacity
of the environment) after the hottest days of the year.

7 Extinction/survival thresholds

What is the world wide potential habitat for Aedes aegypti? What percentage
of breeding sites has to be destroyed to eradicate the mosquito from a given
city? These two questions might appear, in a first inspection, unrelated but
we will show they are closely related.

Christophers considered the first question [Christophers (1960)]. Given the fact
that Aedes aegypti cannot proliferate (develop) under laboratory experiments
at temperatures below 10◦C, it was then argued that, if mosquitoes were
to survive the winter in larval or adult form, the 10◦C winter (July in the
South or January in the North) isotherm would then give an idea of their
potential habitat. Notice that with the temperature profile adopted in equation
(10) the average July temperature results from averaging the temperature
profile during the 31 days of the month of July, resulting in TJuly = a −
b 0.98732, hence Christopher’s criterion is represented by a = 10◦C +b 0.98732
(Christophers’ criterion is illustrated in Figure 8 -straight line-).

A serious problem with Christophers’ criterion is that the hypothesis of larva
or adult winter survival does not hold. Mosquitoes can survive the winter in
the egg form as it is verified in Buenos Aires [Schuster (1984)]. Christophers
realized that there were abundant exceptions to his criterion, he mentioned in
particular the case of Bah́ıa Blanca (South America) as well as records of the
presence of the mosquito at several cities on the East coast of North America
(the northernmost one being Boston) as well as many other cities around the
world.

The importance and relevance of egg winter survival was advanced before
Christophers’ criterion by Carter [Carter (1931)] where the occurrence of Aedes
aegypti in ports is discussed in the following terms:

If breeding places were available and the temperature on landing high
enough for the full functional activity of the insects, a colony could be
established and would be permanent or not, according to the winter tem-
perature of the locality, and the colony would last until the species (eggs)
were destroyed by the cold, which might be the first winter; or, in border-line
places, the species might live several years, to be destroyed eventually by
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some winter of unusual length or severity. Such seems to have been the case
in Philadelphia and possibly New York in the latter part of the eighteenth
century.

Carter’s survival criterion (based on egg winter survival) acknowledges not
only winter temperature as a factor but also the duration of the winter. We
will show in section 7 that our simulations are fully compatible with Carter’s
considerations.

If the potential habitat of the mosquito is going to be discussed, some addi-
tional specifications are needed. We will consider in this section the influence
of the temperature in terms of average yearly temperature and the seasonal
amplitude as presented in equation (10). We will also specify different envi-
ronmental conditions represented by different values of the parameter BS.
Additionally, we will see that the deterministic limit is achieved for unrealis-
tically large numbers of breeding sites.

By a continuity argument, the transition between a region where the mosquitoes
can live permanently and another region where they cannot live at all must be
mediated by a transition region where both the presence of the mosquito for
several years and its extinction are likely to occur. The definition of this region
has a certain degree of arbitrariness. After all, the Markov process describing
the problem has the extinction state as an absorbing one.

We arbitrarily defined a region to be at the border of the potential habitat
when an already established population (i.e., a population that has survived
at least one year in the habitat) has a survival probability for the next year
of 1/2. A system with parameter values satisfying this condition will be said
to be at threshold. In Figure 7 we show the dependence of the next year
survival probability as a function of average yearly temperature. The transition
from 0.99 to 0.01 probability takes place with an approximate change from
20.8◦C to 14.5◦C in the average temperature for a seasonal amplitude of 6.7◦C
considering 50 breeding sites (see Figure 7).

The threshold is then a hypersurface in parameter space, in our case a curve
relating the values of the parameters a, b in equation (10) controlling the
temperature and the number of breeding sites assigned to the homogeneous
region.

For infinitely many breeding sites available, the threshold corresponds to the
lost of stability of the extinction solution in the deterministic model (1). The
deterministic threshold begins at around 10.5◦C when there are no seasonal
variations and is lower for higher seasonal variations (see figure 8).

Infinitely many available breeding sites are, clearly, unrealistic. We tentatively
estimated the extinction thresholds for a homogeneous place having a number
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Fig. 7. Probability for the next year extinction as a function of average yearly
temperature. The thermal amplitude is 6.7◦C and the number of breeding sites is
BS = 50. The probabilities were estimated as the number of extinctions in 200
simulations.

of breeding sites between the highest (BS = 150) and the lowest number of
breeding sites (BS = 15) found in a (100m)2 patch in field studies at Buenos
Aires. Also displayed in Figure 8 are calculations performed for unrealistically
large number of breeding sites for illustrative purposes.

The parameter α0 in equation (5) was fitted to reproduce the number of larvae
per breeding site found during the most favourable week of the year (in terms
of number of larvae) in field studies performed at Buenos Aires cemeteries
[Vezzani et al. (2004)] and was given the value α0 = 1.5. Since α0 is the
only adjustable parameter of the model, we produced simulations with various
choices of α0 under the conditions corresponding to cemeteries in Buenos Aires,
adjusting the α0 value to match the average number of larvae per breeding site
during the summer week with the largest number of larvae. This value is only
a rough estimation, and it is not worth refining the value of this parameter
considering the accuracy of the available data. Each container was considered
to have an average of half a litre of water producing an estimated 14 larvae
per litre (7 larvae per half litre breeding site), a number that is relevant only
when considering egg hatching inhibition.

The results of the simulations are displayed in Figure 8 (dots). Notice that
the stochastic thresholds show an average temperature higher than in the de-
terministic case as one would have expected, but also, that an increase in the
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thermal amplitude (seasonal variation) renders the settlement of Aedes aegypti
more difficult. Figure 8 also shows the temperature values corresponding to
Buenos Aires city in the period 1960-1991 (squares), a period of time that
includes the end of the eradication program as well as the years of the rein-
festation. It is interesting to notice that with the highest values for BS the
populations can survive even in isolation, however, with the lower values local
extinctions are expected, hence emphasising the roles as reservoirs of places
with high density of breeding sites.

There are different aspects of Figure 8 worth mentioning. On the mathematical
side, the slow convergence of the stochastic results towards the deterministic
curve is noticeable. As many as 106 breeding sites are needed to get close to
it, a number sharply contrasting the estimation of no more than 150 breeding
sites within a (100m)2 patch.

On the biological side it is interesting to notice that, for relatively high seasonal
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thermal amplitude, the effects of the favourable weather are less relevant than
the effects of the not favourable weather, i.e., higher average yearly tempera-
tures are required for higher amplitudes. Actually, the population is regulated
in spring-summer by the environment and its carrying capacity. Even when
the weather is more favourable, the mosquito populations cannot increase be-
cause of the saturation of the breeding sites. Hence, egg populations at the
beginning of the winter are expected to be roughly independent of the high
temperatures of the summer.

The mosquito spends parts of the winter in the egg stage suffering a daily
mortality of eggs, which is roughly independent of the temperature. It is then
the duration of the unfavourable period that makes a difference for the survival
of the mosquito population. Hence, the mortality increases with the thermal
amplitude (for the same average temperature). The lines of equal unfavourable
(winter) time are straight lines with positive slopes in Figure 8 (not shown) and
this is the apparent form that the threshold curves take for large amplitudes.

The biology encoded in the model is then fully compatible with the qualitative
discussion given in [Carter (1931)].

According to the present results, a map of South America with the cities likely
to support domestic populations of Aedes aegypti can roughly be based on
the 15◦C isotherm (yearly average). This criterion corresponds to the average
yearly temperature of the threshold with seasonal amplitudes and maximum
number of breeding sites as those found in Buenos Aires.

Of the 661 towns and cities of Argentina with present or historical records of
Aedes aegypti populations, we have displayed on the map of average yearly
temperatures those lying below the July 10◦C isotherm (data extracted from
[Morales et al. (2004)]). Notice that the 15◦C average yearly temperature
isotherm gives a reasonable idea of the habitat limits for Aedes Aegypti.

7.1 Egg hatching inhibition

The effects of egg hatching inhibition by high larvae density on the threshold
are minimal in this study. We repeated the threshold calculations changing
the critical density (7) from 10 to 70 larvae per litre. The resulting threshold
values are almost identical, with the threshold slightly lower in mean tem-
perature for the lower critical density. This result was in part expected since
egg-hatching inhibition by larvae will produce a higher reserve of eggs for the
winter period and then, a larger probability of surviving the unfavourable sea-
son. However, in the environmental conditions considered, the effect is only
evident in the peak of the breeding season and most of the produced eggs will
not reach the larva stage (see Figure 10).
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Fig. 9. Average temperature (yearly) in South America. Dark grey for regions with
average temperature above 25◦C, grey for temperatures between 20 and 25◦C, light
grey for temperatures between 15◦C and 20◦C and white for temperatures lower
than 10◦C. The dots represent towns and cities of Argentina below the 10◦C July
isotherm where the mosquito has been detected. The black contour line represents
the 15◦C average yearly isotherm.
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Fig. 10. Differences in egg and larva populations for the two extreme values of the
egg hatching inhibition effect, simulated for 50 breeding sites. The shoulders in the
population data are an artifact of the step function (7) used to simulate the effect
in the absence of better experimental data determining the function.

7.2 Extinction probabilities as a function of initial conditions

As another example of the information that the model can provide, we studied
the changes in the probability of extinction during the first year as a function
of the number of eggs remaining in the winter. The study is motivated by
a possible strategy against the mosquito that consists of removing as many
eggs as possible in the winter time, thereby trying to drive the population into
extinction.

We considered the case of 150BS in Buenos Aires climate and produced ex-
tinction statistics based on 1000 runs for each initial condition. All runs began
the coldest day of the year with a population consisting only of eggs.

The results of the simulations are presented in Figure 11. Two solid lines have
been drawn in the plot. The first one connects the results for initial number
of eggs below 100 and is a straight line in the logarithmic scale of the plot. It
clearly represents the fate of small numbers of eggs and is accounted for the
probability of one egg (or its biological evolution) to die. The processes are
independent when the population is small (where “small” is relative to the
carrying capacity of the patch) and hence, the exponential dependence with
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Fig. 11. The extinction probability after one year of evolution as a function of the
initial condition. The population at the beginning of the runs was in the form of
eggs. The probabilities of extinctions are computed as the number of runs that
produced total extinction in 1000 runs. The number of breeding sites is BS = 150

the number of eggs follows from statistical independence (Pext = ((0.9926 ±
0.03%)eggs) are the fitted values).

However, for initial conditions larger than 100 eggs, the extinction probability
follows a law of the form: 5.81(eggs)0.49±0.04 (the uncertainty corresponds to
the standard deviation of the fitted coefficient). The point corresponding to
100 eggs is at border of the region with this dependence and far from the
exponential dependence.

It is interesting to notice that the probability of extinction decreases more
slowly when there are interactions than in the independent case. A result
that can be attributed to the fact that the only interaction among individuals
corresponds to an increase of mortality in the larval stage.

The number of eggs estimated on July 1st for BS = 150 and temperatures
corresponding to Buenos Aires for an established population of mosquitoes
is approximately 1000 according to our numeric simulations. Hence, nine of
every ten eggs should be removed to achieve an extinction probability of 0.6.
Furthermore, to achieve a probability of 0.8 less than 30eggs should remain,
this is, half the average number of eggs laid by a female, requiring a very
efficient eradication campaign.
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8 Summary and conclusions

We have developed a stochastic model for Aedes aegypti populations based
on the life cycle of the mosquito. The number of eggs, larvae, pupae, young
female adults and female adults after the first oviposition are the five stages
of the mosquito life included in the description.

The evolution of the subpopulations is considered in terms of ten random
events with transition probabilities prescribed in terms of the biology of Aedes
aegypti and the environment.

The model is able to deal with extinction processes and is ready for extensions
to spatially heterogeneous environments and as such is particularly appropri-
ated to study the potential evolution of Aedes aegypti populations in temperate
climates.

The construction of the model has led us to a critical revision of the available
data and modelling of the different biological events and several opportunities
for improvements have been detected (see Section 5).

The model is based on realistic parameter values and we have shown that it is
able to produce results that correspond well with field data not used as input
for the model.

Based on our results we have discussed the temperature and environmental
conditions that are needed for the survival of a local population of Aedes
aegypti. Such data are critical for the design of eradication campaigns as well
as for the evaluation of the effects of global weather changes in the distribution
of the mosquito. The results indicate that average yearly temperature, seasonal
temperature variation and numbers of breeding sites are relevant parameters
required to evaluate the potential of a city to host a local population of Aedes
aegypti.

The criterion introduced tentatively by Christophers resulting in a distribution
limit based on the 10◦C winter (July in the South, January in the North)
isotherm was discussed concluding that the most relevant effect for temperate
climates emerge from the number of breeding sites available for reproduction
and the duration of the winter, rather than winter temperatures. The model
fully supports an earlier criterion proposed by Carter [Carter (1931)] through
the critical observation that Aedes aegypti can survive the winter in egg form.

The stochastic nature of the model allows for the maintenance of Aedes aegypti
populations for a (random) number of years until extinction eventually occurs.
A situation already envisioned by Carter as the likely case for the populations
in Philadelphia and New York by the end of the eighteenth century. Such a
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possibility contrasts with the conjecture that Aedes aegypti populations in
ports were linked to summer infestations by mosquitoes landing from the
boats that could not survive the first winter [Ministerio de Asistencia Social y
Salud Publica (1964)].

The model also shows an important dependency of thresholds with the envi-
ronment represented by the breeding site parameter. This feature explains the
observations made during the eradication campaign in Argentina [Ministerio
de Asistencia Social y Salud Publica (1964)] where the environment (where
the mosquito thrived) changes from North to South following the general rule
that the colder the site the higher the concentration of breeding sites required
for finding Aedes aegypti.

While the stochastic model has a deterministic limit in terms of large popula-
tion (as large as needed) we have shown numerically that such populations are
several orders of magnitude larger than realistic homogeneous populations.

The criterion for the persistence of Aedes aegypti populations, discussed in this
work, depends on the average yearly temperature, the seasonal variation and
the carrying capacity of the environment. These data will change from city
to city. Considering the maximum carrying capacity found at Buenos Aires
cemeteries and the seasonal temperature amplitudes characteristic of Buenos
Aires, the threshold for the persistence of the mosquito was roughly estimated
to be the 15◦C isotherm (average yearly temperature). This rough criterion is
the result of a number of compromises with the data readily available. Tem-
perature choices are then 10◦C, 15◦C and 20◦C; carrying capacity represented
by breeding sites and thermal amplitude corresponding to estimated values for
Buenos Aires. Historical records of the presence of Aedes aegypti in Argentina
below the 10◦C July isotherm are consistent with this criterion, these latter
records are also affected by uncertainties: were they just summer infestations
or did the population persist, detected or undetected, at least one year? Infes-
tations depend not only on favourable conditions but also on the probability
of the mosquito reaching the city.

The introduced criterion helps to understand, and potentially explains, why
Aedes aegypti has not been found in the Atlantic region below Buenos Aires
(between approximately 38.5 ◦S to 38.0 ◦S on the Atlantic coast) in coincidence
with a region with average yearly temperatures below 15◦C but has been
historically reported in Bah́ıa Blanca (average yearly temperature 15.4◦C)
just south of this region on the Atlantic coast 2 .

Finally, the fact that a large part of Buenos Aires city presents a density of

2 The climate in Bah́ıa Blanca is greatly affected by the large amplitude of the
ocean tides and the very shallow estuary that extends from Bah́ıa Blanca to the
north for a few hundred kilometres [Perillo and Piccolo (2004)].
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breeding sites that cannot support populations of Aedes aegypti is in concor-
dance with field results that suggest that repopulation processes are taking
place every year during the warm season. The dynamics of such re-population
processes in heterogeneous habitats requires the explicit inclusion of the space
in the model as well as the biological and environmental data associated with
the dispersal of mosquitoes.
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A Appendix: the Poisson approximation

We shall briefly describe in this appendix the main ideas involved in the Pois-
son approximation for a density-dependent Markov process.

Let X be an integer vector having as entries the populations under consid-
eration, and eα, α = 1 . . . κ the events at which the populations change by a
fixed amount ∆α in a Poisson process with density-dependent rates. Then, a
theorem by Kurtz [Ethier and Kurtz (1986)] allows us to rewrite the stochastic
process as:

X(t) = X(0) +
κ∑

α=1

∆αY (

t∫

0

(ωα(X(s))ds (A.1)

where ωα(X(s) is the transition rate associated with the event α and Y (x) is
a random Poisson process of rate x.

This expression is the starting point for several approximations. In particular,
the deterministic limit is obtained for transition rates of the form ωα(X) =
NΩα(X/N) (a relation known as the mass-action law) and considering the
stochastic variable X/N in the limit N →∞ for fixed t [Kurtz (1970)] (in this
approximation only the mean values of the Poisson variables are relevant).

The deviations from the deterministic limit scaled by a factor 1/
√

N cor-
respond in the same limit to a Brownian process [Kurtz (1971); Andersson
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and Britton (2000)] (in this case, the Poisson variables are approximated by
Gaussian variables).

The Poisson approximation to the stochastic process represented by equation
(A.1) consists in introducing a self-consistent deterministic approximation for
the arguments of the Poisson variables Y (x) in equation (A.1) [Solari and
Natiello (2003b); Aparicio and Solari (2001)]. The rationale under such a pro-
posal is that the transition rates change at a slower rate than the populations.
The number of each kind of event is then approximated as independent Poisson
processes with deterministic arguments satisfying a differential equation.

The probability of nα events of type α having occurred after a time dt is
approximated by a Poisson distribution with parameter λα. Hence, the prob-
ability of the population taking the value

X = X0 +
κ∑

α=1

∆αnα (A.2)

at a time interval dt after being in the state X0 is approximated by a product
of independent Poisson distributions of the form

Probability(n1 . . . nκ, dt/X0) =
κ∏

α=1

P (λα) (A.3)

Finally,

dλα/dt =< ωα(X) > (A.4)

where the averages are taken (self-consistently) with the proposed distribu-
tion (λα(0) = 0). Actually, there are some small (O(dt2)) corrections to this
presentation when one of the populations is one event away from extinction
[Solari and Natiello (2003b)]. Such correction has not been implemented in
the present case because the extinction processes are very slow.

From the Poisson approximation it is possible to recover the deterministic
equation and the Brownian approximation of the fluctuations in the proper
limit. The approximation is accurate not only in the N → ∞ (with fixed
t) limit, but also in the infinitesimal time limit when the average number of
events is small. It is this latter property what makes it specially suitable for
the study of a process involving extinction.

The use of the Poisson approximation represents a substantial saving of com-
puter time compared to direct (Monte Carlo) implementations of the stochas-
tic process.
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The details of the particular implementation for the population dynamics
of the Aedes aegypti are tedious. The computer code, written in C, can be
requested from the corresponding author.

B Stability analysis of the trivial solution

We refresh stability theory in this appendix, further details can be read in
(Hill (1877); Wiggins (1988); Solari et al. (1996))

The deterministic model (1) presents coefficients that depend periodically on
time through the temperature, equation (10). The phase space of the prob-
lem is then (R+)5S1 with R+ the non-negative real numbers and S1 the one
dimensional circle corresponding to the time of the year. The trivial solution
is then (L, P,A1, A2, H, t) = (0, 0, 0, 0, 0, t).

Small perturbations of the trivial solution will evolve according to the linear
equation (11). Notice that the fate of a perturbation, for example the intro-
duction of a few adults, will not only depend on the type of the perturbation
but also the time of the year in which it was produced, since it is not the
same to introduce the adults under unfavourable winter conditions as during
the favourable summer time. If the perturbation performed at t0 is x0 its time
evolution is x(t) = M(t, t0)x0. The evolution up to a time t + s consists in
further integrating the problem by a time s with initial condition x(t), hence
M(t+s, t0) = M(t+s, t)M(t, t0) which is nothing but the semi-group property
for the flow.

The long time evolution of a perturbation of the trivial state, say after a
time t − t0 = kyears + s, with k integer, will be given by M(t, t0) = M(s +
t0, t0)M(1year + t0, t0)

k where we have used that M(t + nyear, nyear + t0) =
M(t, t0) for n integer.

Hence, any perturbation will have the trivial solution as time-infinite limit
if all of the eigenvalues of M(1year + t0, t0) are smaller than one in absolute
value (asymptotic stability). Further notice that the eigenvalues of M(1year+
t0, t0) are exactly the same than those for M(1year, 0) since both matrices are
conjugated by M(t0, 0)

M(1year + t0, t0)M(t0, 0) = M(t0, 0)M(1year, 0) = M(1year + t0, 0)

meaning that the stability does not depend of the time of the year chosen as
t0.
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