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We discuss the dynamics in the laser with an injected signal from a perturbative point of view
showing how different aspects of the dynamics get their definitive character at different orders in the
perturbation scheme. At the lowest order Adler’s equafmoc. IRE34, 351(1946)] is recovered.

More features emerge at first order including some bifurcations sets and the global reinjection
conjectured in Physica D09, 293(1997. The type of codimension-2 bifurcations present can only

be resolved at second order. We show that of the two averaging approximations prpppsed
Commun.111, 173(1994); Quantum Semiclassic. O@, 797 (1997); Quantum Semiclassic. Opt.

8, 805(1996] differing in the second order terms, only one is accurate to the order required, hence,
solving the apparent contradiction among these results. We also show in numerical studies how a
homoclinic orbit of the $nikov type, bifurcates into a homoclinic tangency of a periodic orbit of
vanishing amplitude. The local vector field at the transition point contains a Hopf-saddle-node
singularity, which becomes degenerate and changes type. The overall global bifurcation is of
codimension-3. The parameter governing this transitiof) ike cavity detuningwith respect to the
atomic frequencyof the laser. ©2001 American Institute of Physic$DOI: 10.1063/1.1397757

The dynamics of a laser under the influence of an exter-
nal signal is an important issue in laser applications, es-
pecially in the fields of communications and signal steer-
ing. This reason and the variety of nonlinear behavior
that it can display have turned this laser into the subject
of several studies. The lockedunlocked (to the external
signal) transition can proceed in a simple form(for small
injected signal9 such as the one predicted by Adler’s
equation' or display period doubling cascades, Bnikov
chaos, quasiperiodic solutions and more for larger values
of injected signals. The organization of the dynamics can
be understood by the concurrent effects of a Hopf-saddle-
node (local) bifurcation coupled with a global reinjection
mechanism. The back-bone of this organization was ana-
lytically unraveled using averaging (i.e., perturbative)
techniqueg which classified these systems in three quali-
tatively different regimes depending on the detuning of
the host. The back-bone classification and the under-
standing achieved were partially challenged in Ref. 3 us-
ing a similar averaging technique. In the present work we
review the different perturbation techniques orderwise,
starting from Adler’s equation. We find that the results in
Ref. 2 have a larger range of applicability than those in
Ref. 3 thus rendering a more accurate description of the
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laser than the one achieved in Ref. 4. We also provide a
sound perturbative basis for the model advanced in Ref.
5. Furthermore we establish more accurate estimates of
the critical detunings of the host where the transitions
occur using normal-form analysis. The dynamics in the
large detunings regime was studied previously in Ref. 5,
where SI'nikov chaos close to the locked-unlocked tran-
sition was revealed. The dynamics in the small detuning
regime was described in Ref. 6, displaying a complicated
sequence of secondary bifurcations as well. In the present
study we analyze the transition to the intermediate de-
tuning regime of the host laser. Instead of $nikov chaos,

a complex structure of homoclinic and heteroclinic con-
nections associated to an unstable periodic orbitknown
as undamped relaxation oscillation is found. This new
complex scenario is once more compatible with the Hopf-
saddle-node local bifurcation coupled to a global reinjec-
tion of the type presented in Ref. 5.

I. INTRODUCTION

Early analysis of a laser with an injected sigrialS)’
revealed that the competition between different frequencies
involved in the laser leads to a “locking” phenomenon. For
very low injection amplitude and comparatively large fre-
quency mismatch, the output frequency changes slightly with
respect to the unperturbed laser, while fothaghen critical
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injection, locking to the external frequency occurs. The first Y T =
model to capture this behavior was Adler’s phase equdtion, = . AHep
. . . . L s s = POmType i1 [—
which in bifurcation terms exhibits a saddle-node infinite- —_—
periodic or Andronov bifurcatiofi:this is a well studied ex- = (—
ample of a local bifurcatiorisaddle-nodginteracting with a > = e —
global reinjection. 0 ——y
However, numerical experiments on the full e
3-dimensional LIS rate equations produced a wealth of other ————
phenomena (Hopf bifurcations'®  period-doubling SR
cascade$!'? quasiperiodicity®® which cannot be ac- 0
counted for with just a phase variable. By the use of the n

averaging technique, a phase and amplitude reduced model _ _ o
was put forward, which allowed a thorough analytical study El)?iélﬁo?r%g?r?;“rﬁ t‘é’gizﬁg)a”;ifrl:;fugcgft'i’}:‘ed';%r;;” ;z;;hﬁegoﬁizadd'e'
. . ) . , (26). u - i ,

of an extended porjuon of the rich bifurcation set of LIS. while the locus of the Hopf bifurcatiofdashed curvelies on the parabola
Among the main features of LIS accounted for by the, - ,2/a2 The HSN singularity lies at the tangent point of both sets. The

averaged equations there are the previous Andronov bifurcadopf bifurcation creates a periodic orbit in the parameter region?/a?

tion' and the occurrence of undamped oscillations of the am‘_or Type ||.| (PO inz'l'yge 1, yvhile a saddle periodi_c orbit for Type IlI exists

plitude of the electric fieldknown as relaxation oscillatiopns " "€ regionv=u%/a” (PO in Type I, dashed region

which originate in a Hopf bifurcation. Solari and Oppaiso

discussed the occurrence of a Hopf—sadd!e—nodg bifurcatiog,qied. Global bifurcations for Type Ill were analyzed in

(HSN), when the saddle-node and Hopf t:_)lfurcatlon becomezet. 5, for the full 3-dimensional LIS equations. Numerically

tangent in a two-parameter bifurcation $&t°The unfolding e studied the existence ofl'Bikov orbits to saddle-focus

of this local bifurcation presents four different cas@s  fixeq points of HSN. Furthermore, one of these homoclinic

types depending on the sign of the nonlinear resonancg)ifrcations was found to become degenerate ifi'aiov-
terms'**° Solari and Oppo established that the cavity detun- - - o -
' pp y saddle-node bifurcation, where a homoclinic orbit to a

ing 6 controlled which of the HSN types occurs in LIS as gaqdle-node-focus fixed point occliréAnalytically, we de-

follows: veloped a geometric model to study the periodic orbit orga-
Type II: 0<6<6,,; nization around this degenerate bifurcation, which conjec-
tured a global reinjection mechanism as a basic ingredient

Type I: 6, <60<6, ; (1) for the global bifurcations in this type. A recent analysis of

this laser systefit’ corresponding to a cavity detuning in
Type I, supports the results that the global reinjection
with 6,,=1 andé,,,, =v3 [wheredis a dimensionless quan- present in LIS together with the HSN type are responsible
tity measuring the detuning of the cavity in terms of thefor the organization of bifurcations. The global reinjection
characterized decay frequencies, see E8)3. appears in the averaged equation as an invariant subspace.
In view of the fact that there is a morphological identity Our goal in this manuscript is twofold. On one hand,
between the equations for a gaseous laser where the polgresent a consistent perturbation-approximation framework
ization has been adiabatically eliminatédand those of a to the laser equations in order to consistently incorporate
semiconductor lasér! the results of the present discussion larger degrees of complexity in the model, going from the
apply to the latter lasem being interpreted as the line en- Adler equation at the lowest order to the averaged equations
hancement factofusually named thex-facton. of Ref. 2 [with correct second order and errors of order
However, a recent analy$iof the equations obtained O(r®)] and giving a perturbative basis to the conjectured
after a similar averaging technique by Ref. 3 did not displayfeatures of the geometric model of Ref. 5. We establish that
the intermediate regiof, < 6#<#6,,, , in contradiction with LIS equations in fact have the three different types organized
the previous results in Ref. 2. One of the crucial differencess in (1) and we obtain accurate values of the criti¢d
between Types | and Ill of HSN is the location of the peri- where the transitions occuwe explain the differences with
odic orbit in parameter space. Figure 1 illustrates a schematiRef. 3 in the Appendix
two-parameter bifurcation diagram for the normal form On the other hand, we analyze the global bifurcations
equation for HSN see Eqs(26)]. The saddle-node bifurca- present in the 3-dimensional LIS equations as the type of
tion set divides the HSN parameter plane in two connectetiSN varies from Type Il to Type I. We analyze this problem
regions; the Hopf bifurcation set lies within one of thesenumerically and show how thel®ikov bifurcation to fixed
regions(the upper regionbeing tangent to the saddle-node points persists precisely up to the critiaz 6, , where a
line at the HSN point. In Type lll, the periodic orbit born in new higher codimension global bifurcation is found. In Type
the Hopf bifurcation exists in the upper region, above thel (6,.,<6<6,,,), homoclinic bifurcations due to the global
Hopf-line while in the Type | it exists in the lower regidall ~ reinjection persists, but instead of involving the locking so-
the way up to the Hopf-lineand it is of saddle type. lutions it involves the saddle periodic orbit, which distin-
This difference is of decisive importance when a rigor-guishes Type | from Type Il in the HSN. We analyze the
ous analysis of global bifurcations associated to either thglobal manifold organization and show that the homoclinic
fixed points or the periodic orbit in the HSN unfolding is tangencies tend asymptotically to the HSN point in a two-

Type lll: 6,,,<86,
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parameter unfolding of the bifurcation. Our result also im-HSN), while y is regarded as a small coefficient. Moreover,

plies that the resulting homoclinic tandfés shown to exist although many solid state lasers hayef order one, we will

in parameter regions having no locking solutigas opposed sometimes seg=0 since this simplification does not alter

to Type lll, where chaos is observed coexisting with thethe qualitative bifurcation features. The pumping will always

locking region). remain A=0(1). For thesake of perturbation theory our
In the next section we introduce the LIS equations, we*small” parameters will be as it is in practic@ and y, cor-

revisit the averaging procedure and derive its simplest invariresponding to a small injected sigfabn a low-dissipation

ant solutions. In Sec. Il we derive the locus of the Hopf-laser device. All the numerical results presented in the fig-

saddle-node bifurcation for the 3-dimensional LIS equationsires, unless otherwise stated, are computediferl, g=0

and perform the normal form computations around this sinand y=0.3.

gularity. In Sec. IV we study numerically how the global In polar coordinate€(t)=R(t)e'*", (2) reads as

bifurcations change when the local bifurcation changes from

Type IIl to Type I. In Sec. V we discuss and sum up our R’ =RW+pBcosy,

results. W' =A2—R?— yW(1+gR?), (5

Il. THE LASER EQUATIONS

, B .
The single-mode rate equations for a laser with an in- Y=t oW RSN ¥.

jected signal can be deduced from the Maxwell-Bloch equa-
tions, which consist of an equation for the slowly-varying Without perturbations g=»=x=0) the laser equations
complex electric field, one for the complex material polar-present reflection and rotation symmetries in té=0
ization and finally an equation for the population inversion.planes® which account for at©(2) symmetry in(5). This is
Physically, the system presents a competition between differeflected in the circle of fixed points havingRW, )
ent frequencies: the cavity eigenfrequensy, the atomic = (A,0,), for arbitrary . When the reflection symmetry is
eigenfrequencyw,, and the external injection signals,,.  broken (»#0), a periodic orbit appears, and exists for a
The electric field decays with a time constant proportional to'ange ofg roughly up to the region where locking solutions
1/k, the polarization with Iy, , and the population inversion appear. Physically this solution corresponds to the (con-
with 1/y,. It has been shown that when<y, +k, the po-  tinuous wave) solutioof the unperturbed laser, and has been
larization of the medium can be adiabatically eliminatéd®  studied with perturbation theory.
This effectively reduces the laser equations to a Due to the competition of the various frequencies, this
3-dimensional dynamical system in termsEft), the com-  System presents locking behavior. For a given injection am-
plex electric field andW(t), which is proportional to the plitude g, there is a detuning such that the phase of the
population inversion. We will write the equations on a refer-électric field locks to the injected source. This corresponds,
ence frame rotating withgy:* in the rotating frame we are considerig), to an equilib-
, ) rium point. Actually, we find from the fixed point equations,
E'=(1+i0)EW+inE+ S,
W’:AZ_XW(1+Q|E|2)—|E|2, (2) ﬁCOSlﬂ"l’RW:O,
with the time t measured in units of[(1+ 6%)(y, A?—R?— yW(1+gR?) =0, (6)
+k)/ky, ,]Y2 The three frequencies define two detunings:
—Bsing+(n+ 6W)R=0,
We™ Wy Kwa+ v, o
0= 17 vt T O T, 3 athird order polynomial ilR? (after having eliminateg and
W) whose roots correspond to three possible fixed points.

0 is proportional to the (_:avity det_uning with respec_t to theFor the parameter values of interésinall 8) it is found that
atomic eigenfrequencyy is proportional to the detuning of ., o them(corresponding to the locked solutigrexise in

the injected frequency with the unperturbed laser frequencya saddle-node bifurcation, while the third, approximately at

while (R,W)=(0,A%/y), corresponds to the “zero-intensity” equi-
yi(1+ 6% (y, +k)\ 1?2 librium. Physically, this solution represents a laser radiating
= Ky, (4 no electric field while the population inversion is saturated; it

_ o ) ~must be an unstable solution when the laser is on.
is the decay rate of the population inversion measured in the

new time units. The analysis of this paper covers a largd\: Consistent approximations

literature of semiconductor laser dynamics, in which case the e start by considering solutions far away frd&|/A

parameterd in (2) is the linewidth enhancement factor. The ~0, and perform the change of variables: In(R/A) on (5)

parameters corresponds to the rescaled amplitude of thetg gbtain

injection, g= v, /(k+ v,)(1+ 6% <1 comes from the pro-

cedure to adiabatically eliminate the material polarization

andA is the pumping with respect to the laser threshold.
We will considerB and # as bifurcation parametefgs

well as @ when considering transitions between types in ~ W'=A%(1—e?")— yW(1+gAZ%e?), (7)

v' =W+ ge‘” cosy,
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B _ (termU2V in U’) and do not vanish for general values of the
g'=nt OW= e ’siny. parameters. Indeed, in the variabled,{), we have the
Hopf normal form structuré? The oscillation(labeled RQ
For = x=0 the variables,W) respond to a Hamiltonian \yhich arises in thely,V) plane is physically interpreted as a
dynamic§1 with Hamiltonian H:W2/2+ Az(e2”/2—v), relaxation oscillation.
while the equation fow is decoupled. The next step in the procedure involves recast®gin
We review the approximation scheme of Ref. 2, whichthe standard “slow” vector field form required for
consists of two parts(i) the normal form theory to eliminate averaging'* x’=eF(x,t;e), where O<e<1l and F is
nonresonant terms for the unperturbed system, i.e., a Chang‘eperiodic int. We therefore make a new change of coordi-
of variables to render the equations more manageabl@iand nates which rotates with the unperturbede=(x=0)
averaging of the fast motion. The normal form calculationhagrmonic solution: V(t)=r(t)cogft— &(t)),U(t) = —r(t)
eliminates quadratic term@(v,W)* which appear in a Tay-  x sin(ft— £(t)), where ¢,¢) are the new variables. In the
lor expansion of7) in terms ofv. The change of coordinates frame of reference of the RO, the resulting dynamics is ef-

reads as fectively “slow” and we can average those time dependent
V2 2 terms in the equation over one period of the RO. We arrive at
p=V——o- §U2, the averaged equations:
r sin(¢p+2a)
W=f(U+3UV), 8 T 2 > e
( sUV) 8 r > (1+A“g)x+« sin(a) ,
=¢+6v+a,
¢ ¢ vTa Cog(}z)) r2 (10)

with f=v2A anda=arctan(16) (we will hence us& and« ¢ =n—k (cos¢p—2 cog p+2a)),

alternatively in order to display the simplest equatiofie

transformed systeni7) becomes then, for small, V, «  With & =0, with errors of order qir®,«?,x?).
=pBIA and y: Another set of averaged equations has been derived in

Ref. 3. Their resulting system departs frqt0) in the qua-
dratic terms, thus being insufficient to describe the original

" — K "
sina 4 sirfa

V' =fU+kcod p+ a)—«kV(Osin(d+ a)

+cog ¢+ @)/3)+ g, xUZ+g, kU2 equations beyond first order. For an analysis of the validity
5 . limits of the results in Ref. 3 see Appendix A, where we
+0y3xV+0(x,x,U, V)%, recover the averaged system analyzed in Ref. 4. Since the
V(14 A2 2 n second_—order terms are crucial to despnbe the bllfurcauon
v X( 9)U-zxUcodd+a) scenario of LIS(see below, the model in Ref. 3 will not
+4fUV+g, xUV+g,kUV+0(k,x,U,V)4, display the features of the system in a proper way. Indeed,

0 the (otherwise thoroughanalysis in Ref. 4 does not present
the Type | behavior and expects a transition from Type Il to
Type Il of HSN at#=1. We will establish belowsee Sec.
I11B) using normal form theory that the classificatil) is
the correct description of the HSN bifurcation.

¢'=n— KC:if‘(li) +k(1+ 6%)Vsin(¢+ a)

+0416U%+040kV2+0(k,x,U, V)%,

where the explicit coefficients for the cubic terms are B. Adler's model and beyond
— _41+A2g), — _2codd+a), Let us perform an order-by-order analysis of E(®.
Gv1 3l 9. 92 scoddta) and (10). Retaining only first order terms in the expansion
B 11 6 ) parameters, y, U andV and performing then the averaging
937|187 2 cogp+a)+ 3 osin(¢+a), we obtain a decoupled system consisting of an oscillator plus
a phase equation, i.e., an Adler equation:

2sin¢p+2a)
0u=—2A%0, Op=—ao COS¢
3sina o
¢r=nx sina (1)
cos cog ¢p+2 . . . )
Ug1=— ¢ + S(dfrﬁ a), The system displays a saddle-node bifurcation at the fixed
3 3sim o point (r = constgp=) for
- cos¢ . cog ¢+2a) ksn=* 77 Sina. (12)
$2— i
6 Sif a This equation signals locking behavior for a sufficiently large
Notice that for no perturbationscE& y=0), andtruncat-  injection ratex= kgy.
ing at order QU,V)3, the system9) decouples in a har- The next step in the perturbation approach could be to
monic oscillatorV”+ f2V=0 and a trivial phaseb(t) = »t. include second-order terms proportional 0 (assuming
The change of coordinaté8) effectively eliminates all qua- hencex<y), which represents a situation where the dissi-
dratic terms of the formU'V?~', i=0,1,2 leaving a simple pation of the laser overwins the injection rate of energy. We
analytic solution from which to perturb. The lowest resonantapproximate then the equation fot in (10) asr’~—[(1
terms are cubicU'V3™', i=0,...,3 evenwhen k=x=0  +A2g)/2] xr and notice that in this regime, the dynamics on
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r asymptotically goes to=0 after a short transient, and the cerns global bifurcations. For example, the saddle-node
Adler equation describes the motion in this submanifold. infinite-period global bifurcation appearing at=0 for «

Also, due to the invariant subspace 0 of (10) a global =kgy is a feature not expected to occur in the full
bifurcation occurs at the critical parameter value. This bifur-3-dimensional LIS equatiorfé.This fact may be traced back
cation scenario is known as Andronov or saddle-nodeo Eqgs.(9), where the only term breaking the=0 invariance
infinite-period bifurcatiorf, and involves the disappearance is k cos+«) in the equation folv’, which vanishes in the
at k=g Of the periodic orbit existing ar=0 for x  averaging procedurgafter changing coordinates to the
<Kg- “slow” variables (r,&), it is multiplied by a trigonometric

For injection rates of the order of=0O(y) we must function of ft with zero average Therefore, we may expect
consider the full equation far’ in (10). Finally, the next step that higher order corrections to the averaging model will
in the approximation procedure is to include the terms up tdoreak this particular invariant submanifold.
second order iJ andV and first order inx and x in (9), In this direction, we have conjecturethat a geometric
thus recovering the full equation$10). Normal form model of the full LIS equations with the following three
analysig* reveals that these terms are necessary to unfold thiagredients should display the homoclinic and heteroclinic
most important bifurcations. We will stop the perturbative features numerically observed on the full LIS equations:
expansion at this point, noting in passing that a more detaile
analysis beyond the results in this and the coming section
demands the inclusion of terms of order thredJirandV.

We may now refine the validation boundary of the Adler
equation considering where the coupling betwegand r
becomes important ifiL0). Indeed, a fixed point with>0 in

(10), corresponding to d@ransversalperiodic orbit of the We will address the existence of a Hopf-saddle-node

whole system, existsz fop= ¢y such thatr’=0, i.e., ¢y point in the full LIS equationgadvanced in Ref. )6in the
=—2a—arcsif(1+Ag) x sin(@)/x). Solving for the radius eyt section. The existence of the periodic orbit has been

) A Hopf-saddle-node local dynamics.
) A global reinjection resembling the periodic orbit at
r=0.
(3) A reinjection parameter destroying the=0 invariance
in the local normal form.

. . . 2 ’ .
of the periodic orbitrj; from ¢ we arrive at sufficiently discussed above, and its effect on the reinjection
4 sirf « 7 Sina— k COSgy will be clear from the equations below. We address now the
ra(m,x)= (13 remaining feature, which can be understood by perturbation
HA T K coSy— 2 Co% py+2a))’ 'ng ' , yp
_ _ o _ analysis in(9) already at first order.
which shows the existence of a periodic orbit whenayer Let us reconsider Eqg9) truncated to first order at the
>0. The condition for a Hopf bifurcation becomeg=0  parameter values for one of the saddle-node singularities
and is realized whenever 7= — klsina=—k\1+ 6%
P (7°+2mx sin 2a+(1+A%g)°x )2 (19 , U i
H cos 2z V7 nx 9)"x° ) V' =fU+ 1+02(000$(¢)—sm(¢)),
The Adler equation can be regarded to hold whenever U'=—fV (16)

<inf,rky(7,x)=x(1+ 9)2— (sin 2a)%
The Hopf and saddle-node local bifurcations considered ¢’ =— 7(1+cog ¢)).
above are not independent. The bifurcation sets become tao\-/ith this parameter choice the fixed point locatedVat 0

gent at U= 50/ (f(1+ 6%)), ¢= 7 destroys the periodic orbit signal-
sina ) ing the occurrence of the saddle-node bifurcation. The LIS
KHSN™ ginog (L TATOX, reinjection is here represented by the decoupled equation in
(15) ¢: Initial conditions fort— —o near the fixed point at
1+A%g) = it(i =— -
_ ( 9 ar return to it(in the form¢ ) for t—+c0. The equa
THSN sin2a X’ tion integrates tap(t) =2 arctangt). We can now solve for

. . . : V andU with suitable initial conditions near the fixed point.
;/tv;:cr:]hEdqesfl?fg)the location of the Hopf-saddle-node smgularwe let z=V+iU and obtain z+ifz=[7/(1+ 02)]
' ' X (6 cos@)—sin(¢)) which integrates to z(t)=Be '
+p(t) whereB is determined by the initial condition, which
C. Averaging and reinjection we take such that for very large positiv¥, z(—X)

=in0l(f(1+6%)). H
Solari and Oppbgave a comprehensive view of the bi- 176/(f(1+67)). Hence,

furcations of Eqs(10) organized around the HSN bifurcation oo " b it (1T n232)0+2nsd
for a large range of parameters. They extended the behavior p(t)= 1+62 ) ,° 1+ 5°s? S
observed in the simpler Adler’s phase equation, still permit- _
ting analytical tractability of local bifurcations. _ ! 76 (1—e i1ty

Nevertheless, some features of the averaged model in- f(1+6°)

volving global connections are nongenericde-1 dimen- it
sions, and deserve close attention. As noted in Ref. 14, the 27e ! eifs o+ ns
average procedure may obscure some things when it con- f(1+6%) ) -x  1+9°s°

ds,
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andB=inoe '™X/(f(1+ 6?)). Approximating the remaining

integral inp(t) by an infinite integral via letting, X— o we

obtain

27(i+0)
1+ 62

inb
fared)

Z(t): e*f/ﬂe*in, (17)

Global bifurcations 505
—  x(1+gA?
W= X229 L o,
w?=cy(W, 7,6)>0, (21)

0=co(W,7,6),

which represents a circle centered on the fixed point Witmaving expanded the solution @ in terms of smally. Note

radius

2me

Ji+62

Hence, initial conditions close to=0 are reinjected near the
fixed point with a value around=X, as conjectured in Ref.

that for fixedg, x, A and 6 the system(21) can be exactly
solved for the location of the fixed point and the parameter
values (usn:Busn), as illustrated in Ref. 6. Using the
above expression fow we can solve the last equation in
(21) for n(6). Using the fixed point equatior(§), we have
B=—RWI/cosy and together witt{19) and the first equation

5. As expected, the averaging wipes out this effect, which isn (21) we obtain the locus of the HSN at

important when global bifurcations associated to the HSN

fixed point/periodic orbit occurs.

Ill. DERIVATION OF THE CODIMENSION-2
SINGULARITY

We now turn to a detailed normal form analysis of the

Hopf-saddle-node (HSN) bifurcation in the full

3-dimensional LIS equations. First we obtain the locus ofwgy( ) =v2A+
this singularity in parameter space, and next we turn into the

computation of the normal form coefficients, from which we
may establish the critical cavity detuningswvhere the type
of HSN changes.

A. Hopf-saddle-node bifurcation

(1+ 6%)

Nusn(0) = — 50 (1+gAY)x+0O(x?), (22
A1+ 62
Brsn(0) = 2—0(1+9A2)X+ O(x?), (23
with
2 2\2
X A 7+ 10gA%+ 3g2At— (1%3&
+0(x?), (24

in agreement with(15).
Performing the exact computations without the expan-
sion in x, we obtain for§=2.0g=0.0x=0.3A=1.0, the

The Hopf-saddle-node bifurcation arises generally innumeric result:

vector fields whose Jacobian at the fixed poirg
=(R,W,¢) has a pair of purely imaginary eigenvalues to-
gether with a zero eigenvalugd,*iw} with ©>0*1°

The Jacobian of5) at xg is

W R —Bsinyg
J=| —2R(1+gyW) —x(1+gR® 0 ,
B siny/R2 0 — BcosylR,
(18)
and from the fixed point equatiori§) we find
_ AZ— YW
RW)=/—2=,
1+gxW
— (19
- n+ 6W
PY(W)=— arctar( — ) ,

in terms ofW, leaving the characteristic polynomial dfin
terms of W, »,0),

2

1+gA
1+g)(V_\/

CotCiA+ —2W | A%2+23=0. (20)

( TJHSN ,ﬁHSN) = ( - 0372816,,0162945), (25)

which compare very well with the approximate values using
(23).

We conclude that the HSN singularity is intrinsic to the
full LIS equations and not just a property of the averaged
model. Also note that fory—0, the codimension-2 point

approaches4, 8) usn=(0,0).

B. Derivation of the normal form coefficients

The normal form of HSN up to second order in cylindri-
cal coordinates 14

r'=(u+azyr+0(3),

Z =v+br’+c2+0O(3), (26)

{'=w+dz+0(2),

wherea,b,c#0 andu and v are the bifurcation parameters.
Moreover, we can let=—1 by rescalingthis is the tradi-
tional form).

The signs of andb classify the different types of flows:
Type | for (a>0,b>0), Type Il for (a<0,b>0), Type lll
for (a>0,b<0), Type IV for (a<0,b<0). Forvg,=0 one

As the roots of the characteristic polynomial at the HSNhas a saddle-node bifurcation, while fofq,= n?/a? the

bifurcation are{0,*iw}, the polynomial should read as

Hopf bifurcation occurs. The radius of the periodic orbit is

N(\?+ w?)=0. Equating the same order coefficients we ar-given by r{,=(u?/a?~v)/b. Hence, the difference be-

rive at
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former, the periodic orbit always co-exists with the fixed derive approximate equations fa(#), b(6), c(6), d(0)
points (v>u?/a*>0), while in the latter it may exist even assuming, once again, small

before the creation of the fixed pointfor v<<0, rp>0);

see Fig. 1. The stability of the periodic orbit for Type | can fixed DOINt X =
be shown to be saddle, while for Type Ill may be an unstabl P o=(
or stable node. The above properties will be reflected in th
global bifurcations found for either Typesee the next sec-

tion).

We start by linearizing LIS equation&) around the
R,W, ) at the HSN bifurcation parameter
Musn» Busns 8). This may be accomplished by choosing a
inear change of coordinates=U"%(x—x,), whereU is the
matrix having as first and second columns the real and

Numerical experiments in Ref. 5 suggested that | simaginary part of the eigenvector dfassociated to the ei-

equations have a Type Il singularity fé*=2.0. The ques-

genvaluel o while the third column is the eigenvector asso-

tion we address now is what happens for other choices of Ciated to the zero eigenvalue. We find the matfixeads{up
and particularly if the classification found in Ref. 18 holds to normalization constants, and showing upQ¢y) terms

for the three-dimensional LIS equatiois). We will now

for the sake of clarityas

V2
Ad —X(1+ 6%)(1+gA?) 0
40
U: X 2 2 ‘/— X 2 y (27)
L 1= —V2A A
20(1 0°)(1+gA) 0 26(1+9A)
6> 0 1
|
and the new systerdi=(x,y,v) reads as b(8)=(Hyx+Hyy)/4
2 2
X'=—wy+F(X,y,v), __(1+0 )(6°—3) 2 2
g (L+gA)X+O(X),
y'=wx+G(X,y,v), (29) (1+ 62)
C(0)=H,u2= = —;—(1+gA)x+O(x*), (29
v'=H(x,y,v),
d(0)=(Gy,—Fy,)/2=0(x?).

whereF (x,y,v), G(x,y,v) andH(x,y,v) carry only nonlin-
ear terms.

The nonlinear coefficients d26) can now be obtained
in terms of derivatives oF, G andH (see Appendix B for
the derivation. Up to first order iny, we obtain

(0%~

)
15 (1HaA)X+0(x?),

a(0)=(Fy,+Gy,)/2=

0.8 T T T T T T T !
- 1 -
A 4— Exacta
0.6 —\\ —
\ e—e Exactb
L \ _
oAl N 0000 mEm Aprox a

---- Aprox b

FIG. 2. Normal form coefficienta(6) andb(#) as a function ofg (g=0,
x=0.3,A=1).

We observe from(29) that a(#) changes sign ab,
=1+ O(x?) while b(6) at 6,;;, =v3+O(x?). In conclusion,
the Hopf-saddle-node singularity in the 3-dimensional LIS
equations change their type according to the Solari and
Oppo results(1), up to orderO(x?).

The whole procedure to obtain the linear and nonlinear
coefficients of the normal form may be evaluated numeri-
cally without using the expansions jp In Fig. 2 we com-
pared the numerical evaluation with the approximate formu-
las given in(29). We find for y=0.3g=0 that the critical
cavity detunings become

0|_||| = 171372, 0||_| =0.977794.... (30)

Note that for small enougl®, the exact and the numeric
approximation depart, due to the failure of the condition
wpsn>0 in (24) for evaluating the HSN coordinates.

IV. GLOBAL BIFURCATIONS

Simple numerical experiments on LIS equatidisys.
(5)] starting from thecw solution in 3=0, R=A, ¢= nt,
give us a qualitative picture of the dynamics in this laser. In
Fig. 3 we display for two parameter cutsinphase portraits
of this longitudinal orbiton theW=0 plang as the injection
level B is increased. It can be observed that part of the tra-
jectory develops small oscillations in the transversalthe
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0.5+ = 0.14 0.16 0.18 02 0.22 ) 0.150 0.160 0.170
g [ i B i
ET ]
05 . FIG. 5. AB vs 7 partial bifurcation set close to HSN far= 2.0 (Type IlI).
F 1 - The saddle-nodésn-fp) and the Hopflhp-pf) bifurcation become tangent at
S e e e . the Hopf-saddle-nodéHSN) bifurcation. In Type Il a secondary Hopf bi-

-1 05 0 05 1 -1 05 0 05 1 -1 -05 0 05 1 furcation (tr) leading to a transversal torus and a global heteroclinic bifur-
Re(E) Re(E) Re(E) cation between the two fixed pointsot shown originates from HSN. SSN
denotes the iBnikov-saddle-node degenerate bifurcation point. TB denotes
FIG. 3. Phase portraits of longitudinal attractors in LIS for increaging) a Takens—Bogdanov degenerate point, where a kiup#), a saddle-node
Type I: 6=1.25, = —0.3175,(b) Type Ill: 6=2.0, »=—0.38. The bottom  (sn-b and a homoclinic bifurcatiorinot shown, all collide at the same
right corresponds past the saddle-node bifurcation and is a strange attract®®!nt-
orbit.

transversal periodic orbits a Takens—Bogdanov singuférity
W=0 plane direction, and approximately on the phase po-was found, which guides another secondary Hopf bifurcation
sition where the fixed points will be boriR&=A, ¢=m) in  to the transversal orbitabeled hp-tand another homoclinic
a saddle-node bifurcation @t= Bsy. One also observes that bifurcation (not shown in the bifurcation set*
for higher 6 (stronger phase couplihgthe size of these os-
cillations is also larger. Below we will see that this orbit in
fact leads to a family of similar orbits, in the neighborhood In a previous study,we studied global bifurcations for a
of B~ Bsy, with more and more transversal oscillations in fixed §=2.0, which correspond to the Type Il regime of
that same region of phase space. HSN. The main bifurcations were twdl'8ikov homoclinic

We call y the transversal periodic orbit born at the Hopf orbits to either saddle-focus fixed poin& or S of the

bifurcation of fixed points. The properties of this orbit are in saddle-node bifurcation. The interesting phenomenon was
accordance with the results of the unfolding of HE8kc. that the branch of homoclinic orbit t8 approached on one
l11B) which depends strongly on the type of H3NFor  side asymptotically to the saddle-node bifurcatite SSN
Type Il the periodic orbity exists for 8= B> Bsy @and  point in Fig. 5. At the limit point there was alegenerate
may be stable or unstable, both situations connected by laomoclinic orbit® to a saddle-node fixed point. The orbit left
secondary Hopf bifurcatiorilabeled tr in Fig. 5 On the the vicinity of the degenerate equilibrium through the
other hand, for Type ly is a saddle orbit and exists f@  1-dimensional center manifold and returned through the
< Buopr» and may even exist before the locking solutions2-dimensional stable manifold. This interaction has been
appear 3<pBsyn) as illustrated in Fig. 4. With the aid of called a $'nikov-saddle-node and requires 2-parameters
>3 the periodic orbity was found to belong to a fam- (codimension-2to unfold it.

A. Extremely large detunings

AUTO94
ily of transversal periodic orbits bounded in the relevant pa- We extend these results now and study the behavior of
rameter space by a set of saddle-node bifurcations labeldatiis degenerate bifurcation, @ss decreased, in particular, as
sn-t in Fig. 5 and Fig. 6. The saddle-node companiory & it approaches the criticad= 6,,, parameter value. To per-
shown with a full curve in Fig. 4. Associated to this family of form the numeric continuation of theil'sikov-saddle-node

(a) (b)
4.90 — T T T T 4.90 -: T T T T FIG. 4. PeriodT vs g of periodic orbit
3 v born at the Hopf bifurcationia) For
; Bsn i Type | (6=1.25, »=-0.3184) the
‘ Hopf bifurcation creates a saddle peri-
odic orbit y which may exist before
i the creation of fixed points 4
i < Bsn) . Dashed strokes foy and full
I i 1 stroke for its saddle-node companion.
; (b) For Type Il (#=2.0, 7%
4.70 | - =—0.385) y is either a stable or an
' unstable node, coexisting with the
Hopf ] L | fixed points. The vertical dashed line
i Hopf corresponds to the occurrence of the
saddle-node bifurcation of the fixed

480 - 480 - | -

4.70 -

460 ot b 4.6 e e .
0.160 0.170 0.180 0.190 0.200 0210 0.220  0.160 0.170 0.180 0.190 points Bsy.
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FIG. 6. ABvs 5 partial bifurcation set close to HSN fé=1.25. See Fig. L | 1 | 1 | 1 | 1 | -
9 for a schematic bifurcation diagrantl( corresponds to the homoclinic -1 -0.5 0 0.5 1
tangency to the periodic orbiy, and similarly for ¢2). Also a Takens—

Bogdanov point is found as in Fig. 5. Re(E)

FIG. 7. A Srnikov orbit close to Hopf-saddle-node bifurcation
=1.72, nssn= — 0.3405825055 Bs5y= 0.1673253154. The change of type
occurs atf,y, =1.71372...,n=—0.341866...,4=0.168393... .
(SSN point, we implemented a simple shooting algorithm.
Choosing the parameters at the saddle-node bifurcation )
Bsn(7n) we took an initial condition on the center manifold at B- Large detunings
a small distance of the singularity and integrated forward in we now describe the global bifurcations fak, <6
time to a Poincareection away from the saddle-node equi- < g, ,, corresponding to the Type | regime. Note that from
librium. We then shot from a point/ on the local the local phase portraits for the HSlNee Ref. 1% we can
2-dimensional stable manifold backwards in time to thatsee that for parameter regions where fixed points exist, the
same Poincaresection, and chose the poigitsuch that it orientation of their manifolds is not suitable for homoclinic
minimized the distance of both intersections on the sectionerbits of the type found in the previous section. However,
Next we changedy in order to assure that=0. At this point  gbserving the local phase portraits in the parameter region
in parameter space we have an approximate orbit which folyhere there are no fixed points, the manifolds of the trans-
lows the degenerate Shinikov-saddle-node orbit. versal periodic orbity are in a suitable position in order to
In Table | we show the results of the continuation of theproduce homoclinic tangencies/ia the g|oba| reinjection
SSN point as a function df, together with the corresponding mechanism.
b(¢) coefficient of the normal forn(26). It is observed that To test this observation we used a multiple-shooting al-
the SSN degeneracy approaches the HSN singularity at thgorithm to locate the periodic orbit, together with its stable
detuning 6 corresponding to the transition from Type Ill t0 and unstable eigenvectors. We then shot a number of orbits
Type I: 6, =1.71372(last row. This is the reason for per- forward in time starting a small distance ¢fand on the
forming an accurate determination of the location of the criti-ynstable eigenvectors towards a Poincsaetion, and simi-
cal ¢ values in order to understand this limit behavior. larly backwards in time on the stable eigenvector. By fixing
These results suggest thagebal codimension-®ifur- 5 and adjusting8 we were able to detect two homoclinic
cation occurs for this laser model at,, . We are not aware tangencies toy (Fig. 8), labeledt1 andt2.
of any theoretical result on the unfolding of such a degener-  Figure 6 shows the numerical continuation of both ho-
ate bifurcation, so our numerical ﬁﬂdings can serve as @noclinic tangencies approaching the HSN Singu|a('ﬂ?e

“suggested” unfolding. Figure 7 displays the SSN ho- also the related Fig.)9 This result indicates that the limit
moclinic orbit very close to the transition point. We note that

as we approach the critical detunimgthe total integration
time of the shooting implementation diverges, because the
stable 2-dimensional manifold becomes a very slow mani-
fold.

TABLE I. Continuation of the $nikov-saddle-node point ag— 6, .

0 7ssN Bssn b(0) -
2.00 —0.355212 0.155423 —0.0601082 —
1.90 —0.349017 0.158996 —0.0391471 1
1.80 —0.343095 0.162927 —0.0181445 -1 -0.5 0 0.5 1
1.75 —0.340707 0.165260 —0.0076315
1.74 —0.340420 0.165827 -0.0055281 Re(E)
1.72 —0.340582 0.167325 —0.0013205
1.71372 —0.341865... 0.168392... 0.0 FIG. 8. The phase portrait of a homoclinic to the periodic ompity lies

within the densely oscillating regiom,=1.25, »=—0.32, 8=0.1944960.
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haves similarly for other constamtparameter cuts. The fol-
lowing rows illustrate how theé2 tangency may develop.
Two cases are observe@) the stable manifold of shrinks

to a point at the saddle-node bifurcation of equilibrion-
sideof the unstable manifolsecond row, (b) it shrinks to a
point inside the unstable manifoldlast row). The third row
shows approximately the transition point where the unstable
manifold of y just merges into the center manifold of the
saddle-node equilibrium, producing a heteroclinic cycle
I',.sn betweeny and the saddle-node fixed point. In Fig. 9
we display a schematic bifurcation diagram, displaying the
position of the global invariant manifolds of the most rel-
evant objects.

This new transition point corresponds to another codi-
mension 2 global bifurcation. The relevance of it may be
understood by studying a return map for both cases. For case

e (a) it is clear that any orbit leaving the unstable manifold of
VoY v after one global excursion will never return to the neigh-
borhood of the periodic orbit, for all the interval of parameter
Bio<B<PBsn- On the other hand for cagb) we expect that
further iterations of the return map may produce subsidiary
1 v o e ey o s . T iy omeclic (angencies g (wih > global excursions
p?oint, togetr?er with the tg«stddle-nc;)sﬁlsin) and I-}ilopf bifurcation are- shown. To comp!ete the picture We_ investigated the orgamzat_lon
(s corresponds to the creation of a heteroclinic cycle between the periodi®f the periodic orbits approaching the homoclinic tangencies.
orbit y and the saddle-node fixed point. Figure 11 shows the period vers@scontinuation for a con-

stant »=—0.32, starting from the orbit a{3=0 and
(R,W)=(A?,0), the unperturbed laser. It is observed that in

point of these global bifurcations seems to be the HSN sincontrast to the traditionaliikov periodic orbit organiza-
gularity. This can be understood by studying in more detaition found for Type Il (Fig. 5, Ref. 5, the periodic orbits
the boundary of the existence gftogether with its manifold became asymptotic to the values corresponding to the tan-
orientation. On the one hand the locus of existence igencies. Physically, as we incregdethese solutions corre-
bounded for small enouglg by a saddle-node bifurcation sponds to pulses which develop small oscillations in the am-
[shown in Fig. 4a)], and by the Hopf bifurcation to the right. plitude of the electric field, and its phase is unbounded,;
We can even sharpen the boundary of existence by notingsymptotically these small oscillations approach closer and
that at the saddle-node bifurcation of equilibriums, the stableloser the undamped relaxation oscillatiprisee Fig. 12
manifold of y “merges” with the 2-dimensional manifold of The bifurcation scenario for homoclinic tangencies has
the saddle-node fixed poifit.Also as the radius ofy de- been studied theoretically by Gaspard and \Wanghere
creases as one approaches the HSN point, one may expéley report that two sequences of saddle-node bifurcations
that the homoclinic tangencies also approach the HSN poinaccumulate to the parameter values where each tangency oc-

To illustrate in more detail how the tangencies behave asurs. More recently Hirshberg and Laffgleveloped a re-
we approach the HSN point, we display in Fig. 10 threeturn map model close to a Takens—Bogdanov degenerate
parameter cuts for fixed values @f displaying the relative point where they observe that for high enough periddsh
position of the invariant manifolds on a suitable Poincareperiodic orbits created at a saddle-node bifurcations die at
section asB is changed. We note that the chosg@ocal) another saddle-node bifurcation associated to the other tan-
PoincaresectionIl:{x € ReE)=0} is not a “standard” sec- gency, forming “bubbles” or “isola” of periodic orbits in
tion (i.e., the section does not intersect the periodic pibit  parameter space.
studying homoclinics to periodic orbits. Nevertheless itis a  The family of periodic orbits in Fig. 11 seems to be
section transversal to the flow in the region of interest whichbounded by thé2 tangency. However by the previous dis-
has the advantage of showing the closed topology theseussion on a return map, it allows the possibility of the ex-
manifold have in our case. Notice that the intersection pointsstence of unstable orbits in the region betwéRrtangency
of a stable and an unstable manifold correspond to interse@nd the creation of the saddle-node bifurcation. For this we
tion points in the typical PoincarsectionW=1, for a suit-  performed numerical integrations starting at the Poincare
ablel where the periodic orbit and the stable and unstablesection and inside the stable manifold. For negative time
manifold crosse$l. Whenever there is nlosuch that a mani-  steps, in Fig. 13 we display the crossings with the Poincare
folds crossing occurs, then the manifoldslii do not inter-  section, together with a phase-portrait. This shows the exis-
sect. tence of a repeller inside the stable manifoldyafhich turns

The first row displays how the unstable maniféiluside  into a periodic orbit of very high period as the stable mani-
grows, becomes tangent and creates a pair of homocliniold shrinks. At3=0.1969< 85y We find the period of this
orbits. This case corresponds to the tangetigyand it be- unstable orbitP~ 2500.

Hopf
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Finally, we note on passing that the analysis in Ref. 6tion corrections beyond the averaged model give a sound
completes the study of the effects of the HSN bifurcation orbasis to the geometrical model of LIS proposed in Ref. 5.

LIS by describing the case of very low detuni(i/pe Il of We analyzed with normal form theory how the Type of

HSN). the Hopf-saddle-node bifurcation changes with the param-
eters, verifying that the classificati¢h) found by Solari and

V. DISCUSSION Oppd in an averaged system is accurate.

We have shown that in the rate equations for a laser with This change of type ag s varied should affect the glo-

injected signal, the detuningplays an important double role bal bifurcations involving the invariant sets of the HSN bi-
in determining the type ofocal bifurcations close to the furcation. We therefore extended our previous numerical

locking regime, and changing the kindgibbal bifurcations. ~ findings’ showing that ford> 6,y ~v3+ O(-) the main sce-
We presented a systematic order-by-order analysis of theario for the development of “chaos” comes from the
LIS equations starting with the Adler equation at lowest or-Sil'nikov phenomenof®** (homoclinic bifurcation to a
der, all the way up to the averaged model, accurate up tsaddle-focus fixed pointinteracting with a saddle-node bi-
second order in the involved variables. Moreover, perturbafurcation. A new scenario was found in the regié 6,
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saddle-node bifurcation of fixed pointsn). FIG. 13. The left panel shows the Poincaeztions as in Fig. 10, while the

right panel shows the corresponding phase-portrait of unstable orbits. Notice
that as B increases the periodic orbit diverges in periog=(—0.3239
=1.25).

~v3+O(-), where homoclinic tangencies to a periodic or-
bit were fou_nd to or_iginate from the_HSN bif_urcation. Both sible to determine in which type the laser is working, and
the saddle-fixed points and the periodic orbit belong to thecontrast our numerical predictions.
unfolding of the Hopf-saddle-node local bifurcation.
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_ Most importg_nt _for the physicists i_s that the region of APPENDIX A: THE AVERAGING PROCEDURE
existence of the iBnikov phenomenon is bounded for low |\ rer 3
enough injection amplitudg by the disappearance of the
locking states, while for the homoclinic tangencies the cha-  We will now apply the averaging procedure to the relax-
otic regime occurs for injection amplitudgsjust “before” ation oscillations motion of the laser with injected signal
the locking states appear. model as written in Eq(l) of Ref. 4,
As it is well known, estimation of in real experiments
is difficult. We thus hope that with a close study of the exis- E= 5(14— ia)nE+ Km]—EmJei @injt
tence of locking states and chaotic regimes it might be pos-
h=—2xgn— (Do n)(|E]~ Py), .
with the electric fieldE, inversion populatiom, linewidth
(p=0.194100, T=347.2) (p=0.194691, T=343.2) enhancement factag, injection ratexi;, detuningwy; .

1| L AN L LN U We first re-write the system in a more convenient way,
following as close as possible the transformations used
in Ref. 3: E(t)— E(t)/\Pye '“n', and rescaledn
— (élwg) N, t=(7/wg), With wg=&I'(Py, we arrive at
the system

T T T T

Bl I O R i M B i AP B W P . ltia .
1 05 0 05 1 -1 05 0 05 1 E'= > NnE—inE+k,

Re(E) Re(E) (A2)

n'=1-xn(1+g|E[>)—[E[?
FIG. 12. Phase portraits for two saddle orbits close to tangeh¢eft) and
t2 (right). T corresponds to the period of the orbiy£ —0.329=1.25). where’ = d/dr and
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iy _ 2\g—£P &P KiniEiny This explains why the(othermse thorough normal form
n=— XT— — OXT——, K= —. analysis carried out in Ref. 4 only reveals Type Il for®
“WR R WR wR\/P—o <1 and Type Ill for 1<6. This was recognized as an

(A3) anomalous transition since it requires at a single critical pa-
Next we write the complex variablg in polar coordinates rameter §=1) two normal form coefficients to disappear
(v,) by E=ev21(4-avlzte1) \whereq, is a constant to be simultaneously. The order-consistent results of Ref. 2 revis-
determined at the end. Expanding in powers ofle obtain ited in this manuscript include the intermediate Type | re-
, gime and provides a smooth transition between types, in-
v'=n—«kF(v,n, ), - . .
volving for each critical parameter only a single zero
v? nonlinear term. Also, a more careful analysis of the third
n'=—-v- §+0(v3)+XG(v,n,l/f), (A4)  order terms irp in the normal form is required to study the
stability of the tori as intended in Ref. 4.
J'=n+xkH,n, ).

To apply the averaging theorem we must chaféyé) to a
“slow” system, which would require to find an analytic so- APPENDIX B: DERIVATION OF NORMAL FORM
lution to the nonharmonic oscillater” + v +v2/2=0. COEFFICIENTS

The procedure in Ref. 3 considers instead only the order

: . : . We will now give the derivation of the nonlinear coeffi-
O(v) in the equation and therefore studies the resulting Sysf:ients of the Hopf-saddle-node normal form in terms of de
tem as a perturbation of the harmonic oscilla#dr+v =0. P

This will of course imply that the correct solution is valig rivatives of the linearized vector field. This derivation fol-

to first orderyielding accordingly inaccurate results for sec- lows closely the analogous derivation for the Hopf

ond order and higher. For the sake of comparison of the ﬁnalflfurcatlon in Ref. 14(p. 163. First we write in complex

averaged equations we apply the averaging operator als\{aan‘”‘bleS the HSN normal form at the singularig6) (.

= = i = Ig
over theO(v2,v3) terms. Following the variables defined in ~ " 0) usingw=re’,

Ref. 3, W' =iw+(atid)wz+O(3), z'=bww+cZ+O(3),
5 (B1)
v= sin(—t+¢), n= cog —t+{), with a, b, c, d real coefficients, and the linearized equations
Vit+a® Vit+a® e (28) around the origin using=x+iy,
and averaging over one RO perittwe obtain Eq.(3) in ¢'=loti(&8v),
Ref. 4, v =h(&Ev), (B2)
b= —(r— 5sin(¢+a)) with f(£,£,0)=(F+iG)[(£+8)/2,(6—€)/2i , v] a complex
2 function, while h(&,&,0)=H[(é+&)/2,(§—¢&)/2i ,v] is a
B K real function. The overbar denotes a complex conjugation.
Xp— m— Esin(qsﬂL 2a))p3, As we are interested in eliminating frofB2) as many

second-order terms as possible, we expgidin power se-
(AB) . = B 5 >

- ) ries as f(w+ W+ ih,z+ ¢) = f w2+ f ww+ F;w/2
¢=w—Kcosp— cos¢+a)p?, +f Wzt fwz+ f,,2%2+ O(3), where the subscript in-
dexes stand for partial derivative, and propose a near-identity

choosinga,=A,/2+ 7/2, A,=2 arctang) and change of coordinates

r—X(1+g= 2R E=WHP(W,W,2), v=2+G(W,W,2) (B3)
2 “R (A7) where ¢ and ¢ have only second-order monomials:
K kinfEin A5 B wR YW, W,2) = AW2+ A,WwW+ AgW2+ A Wz+ Agwz

K= =——.
cogal2) g \/P, 2T,

This corresponds with the parameter identification published
in Ref. 4[except that we did not include for simplicity that
(A5) depends on the rescaled relaxation oscillation frequency +Bgz2+ O(3).

Q). . ) .
We have thus recovered the averaged equation studied IFﬁerformmg the change of coordinates, one arrives at a new

. L vector field in terms of \,z) where the second-order terms
Ref. 4 by the standard averaging method, which |nd|rectlydepend on the unknow\rglcc))nstantl.q (B.). Comparing term
).

shows the procedure used in Ref. 3 is cor@uy up to first
. . by term to(B1) we are able to solve for all unknown coef-
order in p. The second order terms are important for deter-

mining the change of signs in the coefficients of the HSNfIZIe,[n;Eern terms of derivatives df andh (usingw#0) ex-
normal form, and consequently inaccuracies in the second"?
order terms will be reflected when studying the normal form.  wza+id=f,,, ww:b=hg, z%:c=h,,/2. (B4)

+AgZ2+ O(3),

d(W,W,z)=B,;W?+ B,ww+ Baw?+ B,wz+ Bswz
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