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Global bifurcations in a laser with injected signal:
Beyond Adler’s approximation
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We discuss the dynamics in the laser with an injected signal from a perturbative point of view
showing how different aspects of the dynamics get their definitive character at different orders in the
perturbation scheme. At the lowest order Adler’s equation@Proc. IRE34, 351~1946!# is recovered.
More features emerge at first order including some bifurcations sets and the global reinjection
conjectured in Physica D109, 293~1997!. The type of codimension-2 bifurcations present can only
be resolved at second order. We show that of the two averaging approximations proposed@Opt.
Commun.111, 173 ~1994!; Quantum Semiclassic. Opt.9, 797 ~1997!; Quantum Semiclassic. Opt.
8, 805~1996!# differing in the second order terms, only one is accurate to the order required, hence,
solving the apparent contradiction among these results. We also show in numerical studies how a
homoclinic orbit of the S˘ il’nikov type, bifurcates into a homoclinic tangency of a periodic orbit of
vanishing amplitude. The local vector field at the transition point contains a Hopf-saddle-node
singularity, which becomes degenerate and changes type. The overall global bifurcation is of
codimension-3. The parameter governing this transition isu, the cavity detuning~with respect to the
atomic frequency! of the laser. ©2001 American Institute of Physics.@DOI: 10.1063/1.1397757#
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The dynamics of a laser under the influence of an exter-
nal signal is an important issue in laser applications, es-
pecially in the fields of communications and signal steer-
ing. This reason and the variety of nonlinear behavior
that it can display have turned this laser into the subject
of several studies. The locked–unlocked „to the external
signal… transition can proceed in a simple form„for small
injected signals… such as the one predicted by Adler’s
equation1 or display period doubling cascades, S˘ il’nikov
chaos, quasiperiodic solutions and more for larger values
of injected signals. The organization of the dynamics can
be understood by the concurrent effects of a Hopf-saddle-
node „local… bifurcation coupled with a global reinjection
mechanism. The back-bone of this organization was ana
lytically unraveled using averaging „i.e., perturbative…
techniques2 which classified these systems in three quali
tatively different regimes depending on the detuning of
the host. The back-bone classification and the under-
standing achieved were partially challenged in Ref. 3 us-
ing a similar averaging technique. In the present work we
review the different perturbation techniques orderwise,
starting from Adler’s equation. We find that the results in
Ref. 2 have a larger range of applicability than those in
Ref. 3 thus rendering a more accurate description of the

a!Electronic mail: zeta@df.uba.ar, http://www.nld.df.uba.ar
b!Electronic mail: solari@df.uba.ar
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laser than the one achieved in Ref. 4. We also provide a
sound perturbative basis for the model advanced in Ref.
5. Furthermore we establish more accurate estimates o
the critical detunings of the host where the transitions
occur using normal-form analysis. The dynamics in the
large detunings regime was studied previously in Ref. 5,
where S̆il’nikov chaos close to the locked–unlocked tran-
sition was revealed. The dynamics in the small detuning
regime was described in Ref. 6, displaying a complicated
sequence of secondary bifurcations as well. In the presen
study we analyze the transition to the intermediate de-
tuning regime of the host laser. Instead of S˘ il’nikov chaos,
a complex structure of homoclinic and heteroclinic con-
nections associated to an unstable periodic orbit„known
as undamped relaxation oscillation… is found. This new
complex scenario is once more compatible with the Hopf-
saddle-node local bifurcation coupled to a global reinjec-
tion of the type presented in Ref. 5.

I. INTRODUCTION

Early analysis of a laser with an injected signal~LIS!7

revealed that the competition between different frequenc
involved in the laser leads to a ‘‘locking’’ phenomenon. F
very low injection amplitude and comparatively large fr
quency mismatch, the output frequency changes slightly w
respect to the unperturbed laser, while for a~higher! critical
© 2001 American Institute of Physics
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injection, locking to the external frequency occurs. The fi
model to capture this behavior was Adler’s phase equati1

which in bifurcation terms exhibits a saddle-node infini
periodic or Andronov bifurcation:8 this is a well studied ex-
ample of a local bifurcation~saddle-node! interacting with a
global reinjection.

However, numerical experiments on the fu
3-dimensional LIS rate equations produced a wealth of o
phenomena ~Hopf bifurcations,9,10 period-doubling
cascades,7,11,12 quasiperiodicity9,13! which cannot be ac-
counted for with just a phase variable. By the use of
averaging technique, a phase and amplitude reduced m
was put forward,2 which allowed a thorough analytical stud
of an extended portion of the rich bifurcation set of LIS.

Among the main features of LIS accounted for by t
averaged equations there are the previous Andronov bifu
tion, and the occurrence of undamped oscillations of the
plitude of the electric field~known as relaxation oscillations!
which originate in a Hopf bifurcation. Solari and Oppo2 also
discussed the occurrence of a Hopf-saddle-node bifurca
~HSN!, when the saddle-node and Hopf bifurcation beco
tangent in a two-parameter bifurcation set.14,15The unfolding
of this local bifurcation presents four different cases~or
types! depending on the sign of the nonlinear resona
terms.14,15Solari and Oppo established that the cavity det
ing u controlled which of the HSN types occurs in LIS a
follows:

Type II: 0,u,u II-I ;

Type I: u II-I ,u,u I-III ; ~1!

Type III: u I-III ,u,

with u II-I 51 andu I-III 5) @whereu is a dimensionless quan
tity measuring the detuning of the cavity in terms of t
characterized decay frequencies, see Eqs.~3!#.

In view of the fact that there is a morphological identi
between the equations for a gaseous laser where the p
ization has been adiabatically eliminated2,9 and those of a
semiconductor laser,3,4 the results of the present discussi
apply to the latter laser,u being interpreted as the line en
hancement factor~usually named thea-factor!.

However, a recent analysis4 of the equations obtaine
after a similar averaging technique by Ref. 3 did not disp
the intermediate regionu II-I ,u,u I-III , in contradiction with
the previous results in Ref. 2. One of the crucial differen
between Types I and III of HSN is the location of the pe
odic orbit in parameter space. Figure 1 illustrates a schem
two-parameter bifurcation diagram for the normal for
equation for HSN@see Eqs.~26!#. The saddle-node bifurca
tion set divides the HSN parameter plane in two connec
regions; the Hopf bifurcation set lies within one of the
regions~the upper region! being tangent to the saddle-nod
line at the HSN point. In Type III, the periodic orbit born i
the Hopf bifurcation exists in the upper region, above
Hopf-line while in the Type I it exists in the lower region~all
the way up to the Hopf-line! and it is of saddle type.

This difference is of decisive importance when a rigo
ous analysis of global bifurcations associated to either
fixed points or the periodic orbit in the HSN unfolding
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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studied. Global bifurcations for Type III were analyzed
Ref. 5, for the full 3-dimensional LIS equations. Numerica
we studied the existence of S˘ il’nikov orbits to saddle-focus
fixed points of HSN. Furthermore, one of these homocli
bifurcations was found to become degenerate in a S˘ il’nikov-
saddle-node bifurcation, where a homoclinic orbit to
saddle-node-focus fixed point occurs.8,16Analytically, we de-
veloped a geometric model to study the periodic orbit or
nization around this degenerate bifurcation, which conj
tured a global reinjection mechanism as a basic ingred
for the global bifurcations in this type. A recent analysis
this laser system6,17 corresponding to a cavity detuning i
Type II, supports the results that the global reinjecti
present in LIS together with the HSN type are responsi
for the organization of bifurcations. The global reinjectio
appears in the averaged equation as an invariant subspa

Our goal in this manuscript is twofold. On one han
present a consistent perturbation-approximation framew
to the laser equations in order to consistently incorpor
larger degrees of complexity in the model, going from t
Adler equation at the lowest order to the averaged equat
of Ref. 2 @with correct second order and errors of ord
O(r 3)# and giving a perturbative basis to the conjectur
features of the geometric model of Ref. 5. We establish t
LIS equations in fact have the three different types organi
as in ~1! and we obtain accurate values of the criticalu’s
where the transitions occur~we explain the differences with
Ref. 3 in the Appendix!.

On the other hand, we analyze the global bifurcatio
present in the 3-dimensional LIS equations as the type
HSN varies from Type III to Type I. We analyze this proble
numerically and show how the S˘ il’nikov bifurcation to fixed
points persists precisely up to the criticalu5u I-III , where a
new higher codimension global bifurcation is found. In Ty
I (u II-I ,u,u I-III ), homoclinic bifurcations due to the globa
reinjection persists, but instead of involving the locking s
lutions it involves the saddle periodic orbit, which distin
guishes Type I from Type III in the HSN. We analyze th
global manifold organization and show that the homoclin
tangencies tend asymptotically to the HSN point in a tw

FIG. 1. Schematic two-parameter bifurcation diagram for the Hopf-sad
node normal form, Eqs.~26!. The locus of the saddle-node lies inn50,
while the locus of the Hopf bifurcation~dashed curve! lies on the parabola
n5m2/a2. The HSN singularity lies at the tangent point of both sets. T
Hopf bifurcation creates a periodic orbit in the parameter regionn.m2/a2

for Type III ~PO in Type III!, while a saddle periodic orbit for Type III exists
in the regionn,m2/a2 ~PO in Type I, dashed region!.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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502 Chaos, Vol. 11, No. 3, 2001 Zimmermann, Natiello, and Solari
parameter unfolding of the bifurcation. Our result also i
plies that the resulting homoclinic tangle14 is shown to exist
in parameter regions having no locking solutions~as opposed
to Type III, where chaos is observed coexisting with t
locking region!.

In the next section we introduce the LIS equations,
revisit the averaging procedure and derive its simplest inv
ant solutions. In Sec. III we derive the locus of the Hop
saddle-node bifurcation for the 3-dimensional LIS equatio
and perform the normal form computations around this s
gularity. In Sec. IV we study numerically how the glob
bifurcations change when the local bifurcation changes fr
Type III to Type I. In Sec. V we discuss and sum up o
results.

II. THE LASER EQUATIONS

The single-mode rate equations for a laser with an
jected signal can be deduced from the Maxwell–Bloch eq
tions, which consist of an equation for the slowly-varyin
complex electric field, one for the complex material pol
ization and finally an equation for the population inversio
Physically, the system presents a competition between di
ent frequencies: the cavity eigenfrequencyvc , the atomic
eigenfrequencyva , and the external injection signalvext.
The electric field decays with a time constant proportiona
1/k, the polarization with 1/g' , and the population inversion
with 1/g i . It has been shown that wheng i!g'1k, the po-
larization of the medium can be adiabatically eliminated.2,9,18

This effectively reduces the laser equations to
3-dimensional dynamical system in terms ofE(t), the com-
plex electric field andW(t), which is proportional to the
population inversion. We will write the equations on a ref
ence frame rotating withvext:

3

E85~11 iu!EW1 ihE1b,
~2!

W85A22xW~11guEu2!2uEu2,

with the time t measured in units of@(11u2)(g'

1k)/kg'g i#
1/2. The three frequencies define two detuning

u5
vc2va

k1g'

, h5vext2
kva1g'vc

k1g'

; ~3!

u is proportional to the cavity detuning with respect to t
atomic eigenfrequency,h is proportional to the detuning o
the injected frequency with the unperturbed laser freque
while

x5S g i~11u2!~g'1k!

kg'
D 1/2

~4!

is the decay rate of the population inversion measured in
new time units. The analysis of this paper covers a la
literature of semiconductor laser dynamics, in which case
parameteru in ~2! is the linewidth enhancement factor. Th
parameterb corresponds to the rescaled amplitude of
injection, g5 g' /(k1g')(11u2) <1 comes from the pro-
cedure to adiabatically eliminate the material polarizat
andA is the pumping with respect to the laser threshold.

We will considerb andh as bifurcation parameters~as
well as u when considering transitions between types
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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HSN!, while x is regarded as a small coefficient. Moreove
although many solid state lasers haveg of order one, we will
sometimes setg50 since this simplification does not alte
the qualitative bifurcation features. The pumping will alwa
remain A5O(1). For thesake of perturbation theory ou
‘‘small’’ parameters will be as it is in practiceb andx, cor-
responding to a small injected signal19 on a low-dissipation
laser device. All the numerical results presented in the
ures, unless otherwise stated, are computed forA51, g50
andx50.3.

In polar coordinatesE(t)5R(t)eic(t), ~2! reads as

R85RW1b cosc,

W85A22R22xW~11gR2!, ~5!

c85h1uW2
b

R
sinc.

Without perturbations (b5h5x50) the laser equations
present reflection and rotation symmetries in theW50
plane,20 which account for anO(2) symmetry in~5!. This is
reflected in the circle of fixed points having (R,W,c)
5(A,0,c), for arbitraryc. When the reflection symmetry i
broken (hÞ0), a periodic orbit appears, and exists for
range ofb roughly up to the region where locking solution
appear.5 Physically this solution corresponds to thecw (con-
tinuous wave) solutionof the unperturbed laser, and has be
studied with perturbation theory.9

Due to the competition of the various frequencies, t
system presents locking behavior. For a given injection a
plitude b, there is a detuningh such that the phase of th
electric field locks to the injected source. This correspon
in the rotating frame we are considering~2!, to an equilib-
rium point. Actually, we find from the fixed point equation

b cosc1RW50,

A22R22xW~11gR2!50, ~6!

2b sinc1~h1uW!R50,

a third order polynomial inR2 ~after having eliminatedc and
W) whose roots correspond to three possible fixed poi
For the parameter values of interest~smallb! it is found that
two of them~corresponding to the locked solutions! arise in
a saddle-node bifurcation, while the third, approximately
(R,W).(0,A2/x), corresponds to the ‘‘zero-intensity’’ equi
librium. Physically, this solution represents a laser radiat
no electric field while the population inversion is saturated
must be an unstable solution when the laser is on.

A. Consistent approximations

We start by considering solutions far away fromuEu/A
'0, and perform the change of variablesv5 ln(R/A) on ~5!
to obtain

v85W1
b

A
e2v cosc,

W85A2~12e2v!2xW~11gA2e2v!, ~7!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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c85h1uW2
b

A
e2v sinc.

For b5x50 the variables (v,W) respond to a Hamiltonian
dynamics21 with Hamiltonian H5W2/21A2(e2v/22v),
while the equation forc is decoupled.

We review the approximation scheme of Ref. 2, whi
consists of two parts:~i! the normal form theory to eliminate
nonresonant terms for the unperturbed system, i.e., a ch
of variables to render the equations more manageable an~ii !
averaging of the fast motion. The normal form calculati
eliminates quadratic termsO(v,W)2 which appear in a Tay-
lor expansion of~7! in terms ofv. The change of coordinate
reads as

v5V2
V2

3
2

2

3
U2,

W5 f ~U1 2
3UV!, ~8!

c5f1uv1a,

with f 5&A anda5arctan(1/u) ~we will hence useu anda
alternatively in order to display the simplest equations!. The
transformed system~7! becomes then, for smallU, V, k
5b/A andx:

V85 f U1k cos~f1a!2kV„u sin~f1a!

1cos~f1a!/3…1gv1xU21gv2kU2

1gv3kV21O~k,x,U,V!4,

U852 f V2x~11A2g!U2 2
3 kU cos~f1a!

1 4
3 f U2V1gu1xUV1gu2kUV1O~k,x,U,V!4,

~9!

f85h2k
cos~f!

sina
1k~11u2!V sin~f1a!

1gf1kU21gf2kV21O~k,x,U,V!4,

where the explicit coefficients for the cubic terms are

gv152 4
3~11A2g!, gv252 2

9 cos~f1a!,

gv35S 11

18
2

u2

2 D cos~f1a!1
2

3
u sin~f1a!,

gu1522A2g, gu25
2 sin~f12a!

3 sina
,

gf152
cosf

3
1

cos~f12a!

3 sin3 a
,

gf252
cosf

6
14

cos~f12a!

sin3 a
.

Notice that for no perturbations (k5x50), andtruncat-
ing at order O(U,V)3, the system~9! decouples in a har
monic oscillatorV91 f 2V50 and a trivial phasef(t)5ht.
The change of coordinates~8! effectively eliminates all qua-
dratic terms of the formUiV22 i , i 50,1,2 leaving a simple
analytic solution from which to perturb. The lowest resona
terms are cubic,UiV32 i , i 50,...,3 even when k5x50
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
ge
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~termU2V in U8) and do not vanish for general values of th
parameters. Indeed, in the variables (U,V), we have the
Hopf normal form structure.14 The oscillation~labeled RO!
which arises in the (U,V) plane is physically interpreted as
relaxation oscillation.

The next step in the procedure involves recasting~9! in
the standard ‘‘slow’’ vector field form required fo
averaging:14 x85eF(x,t;e), where 0,e!1 and F is
T-periodic in t. We therefore make a new change of coor
nates which rotates with the unperturbed (k5x50)
harmonic solution: V(t)5r (t)cos„f t2j(t)…,U(t)52r (t)
3sin„f t2j(t)…, where (r ,j) are the new variables. In th
frame of reference of the RO, the resulting dynamics is
fectively ‘‘slow’’ and we can average those time depende
terms in the equation over one period of the RO. We arrive
the averaged equations:

r 852
r

2 S ~11A2g!x1k
sin~f12a!

sin~a! D ,

~10!

f85h2k
cos~f!

sina
2k

r 2

4 sin3a
„cosf22 cos~f12a!…,

with j850, with errors of order O(r 3,k2,x2).
Another set of averaged equations has been derive

Ref. 3. Their resulting system departs from~10! in the qua-
dratic terms, thus being insufficient to describe the origi
equations beyond first order. For an analysis of the valid
limits of the results in Ref. 3 see Appendix A, where w
recover the averaged system analyzed in Ref. 4. Since
second-order terms are crucial to describe the bifurca
scenario of LIS~see below!, the model in Ref. 3 will not
display the features of the system in a proper way. Inde
the ~otherwise thorough! analysis in Ref. 4 does not prese
the Type I behavior and expects a transition from Type II
Type III of HSN atu51. We will establish below~see Sec.
III B ! using normal form theory that the classification~1! is
the correct description of the HSN bifurcation.

B. Adler’s model and beyond

Let us perform an order-by-order analysis of Eqs.~9!
and ~10!. Retaining only first order terms in the expansio
parametersk, x, U andV and performing then the averagin
we obtain a decoupled system consisting of an oscillator p
a phase equation, i.e., an Adler equation:

f85h2k
cosf

sina
. ~11!

The system displays a saddle-node bifurcation at the fi
point (r 5const,f5p) for

kSN56h sina. ~12!

This equation signals locking behavior for a sufficiently lar
injection ratek>kSN.

The next step in the perturbation approach could be
include second-order terms proportional tox ~assuming
hencek!x), which represents a situation where the dis
pation of the laser overwins the injection rate of energy.
approximate then the equation forr 8 in ~10! as r 8'2 @(1
1A2g)/2# xr and notice that in this regime, the dynamics
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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r asymptotically goes tor 50 after a short transient, and th
Adler equation describes the motion in this submanifold.

Also, due to the invariant subspacer 50 of ~10! a global
bifurcation occurs at the critical parameter value. This bif
cation scenario is known as Andronov or saddle-no
infinite-period bifurcation,8 and involves the disappearanc
at k5kSN of the periodic orbit existing atr 50 for k
,kSN.

For injection rates of the order ofk5O(x) we must
consider the full equation forr 8 in ~10!. Finally, the next step
in the approximation procedure is to include the terms up
second order inU and V and first order ink and x in ~9!,
thus recovering the full equations~10!. Normal form
analysis14 reveals that these terms are necessary to unfold
most important bifurcations. We will stop the perturbati
expansion at this point, noting in passing that a more deta
analysis beyond the results in this and the coming sect
demands the inclusion of terms of order three inU andV.

We may now refine the validation boundary of the Ad
equation considering where the coupling betweenf and r
becomes important in~10!. Indeed, a fixed point withr .0 in
~10!, corresponding to atransversalperiodic orbit of the
whole system, exists forf5fH such thatr 850, i.e., fH

522a2arcsin„(11A2g)x sin(a)/k…. Solving for the radius
of the periodic orbitr H

2 from f8 we arrive at

r H
2 ~h,k!5S 4 sin2 a

k D S h sina2k cosfH

cosfH22 cos~fH12a! D , ~13!

which shows the existence of a periodic orbit wheneverr H

.0. The condition for a Hopf bifurcation becomesr H50
and is realized whenever

kH5
sina

cos 2a
„h212hx sin 2a1~11A2g!2x2

…

1/2. ~14!

The Adler equation can be regarded to hold whenevek
, infhkH(h,x)5x(11g)22(sin 2a)2.

The Hopf and saddle-node local bifurcations conside
above are not independent. The bifurcation sets become
gent at

kHSN5
sina

sin 2a
~11A2g!x,

~15!

hHSN52
~11A2g!

sin 2a
x,

which defines the location of the Hopf-saddle-node singu
ity in Eqs. ~10!.

C. Averaging and reinjection

Solari and Oppo2 gave a comprehensive view of the b
furcations of Eqs.~10! organized around the HSN bifurcatio
for a large range of parameters. They extended the beha
observed in the simpler Adler’s phase equation, still perm
ting analytical tractability of local bifurcations.

Nevertheless, some features of the averaged mode
volving global connections are nongeneric ind.1 dimen-
sions, and deserve close attention. As noted in Ref. 14,
average procedure may obscure some things when it
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
-
e

o

he

d
ns

d
n-

r-

ior
t-

in-

he
n-

cerns global bifurcations. For example, the saddle-n
infinite-period global bifurcation appearing atr 50 for k
5kSN is a feature not expected to occur in the fu
3-dimensional LIS equations.22 This fact may be traced bac
to Eqs.~9!, where the only term breaking ther 50 invariance
is k cos(f1a) in the equation forV8, which vanishes in the
averaging procedure~after changing coordinates to th
‘‘slow’’ variables (r ,j), it is multiplied by a trigonometric
function of f t with zero average!. Therefore, we may expec
that higher order corrections to the averaging model w
break this particular invariant submanifold.

In this direction, we have conjectured5 that a geometric
model of the full LIS equations with the following thre
ingredients should display the homoclinic and heterocli
features numerically observed on the full LIS equations:

~1! A Hopf-saddle-node local dynamics.
~2! A global reinjection resembling the periodic orbit

r 50.
~3! A reinjection parameter destroying ther 50 invariance

in the local normal form.

We will address the existence of a Hopf-saddle-no
point in the full LIS equations~advanced in Ref. 6! in the
next section. The existence of the periodic orbit has b
sufficiently discussed above, and its effect on the reinject
will be clear from the equations below. We address now
remaining feature, which can be understood by perturba
analysis in~9! already at first order.

Let us reconsider Eqs.~9! truncated to first order at the
parameter values for one of the saddle-node singular
h52k/sina52kA11u2:

V85 f U1
h

11u2 „u cos~f!2sin~f!…,

U852 f V, ~16!

f852h„11cos~f!….

With this parameter choice the fixed point located atV50,
U5hu/„f (11u2)…, f5p destroys the periodic orbit signa
ing the occurrence of the saddle-node bifurcation. The L
reinjection is here represented by the decoupled equatio
f: Initial conditions for t→2` near the fixed point atf
5p return to it~in the formf52p) for t→1`. The equa-
tion integrates tof(t)52 arctan(ht). We can now solve for
V andU with suitable initial conditions near the fixed poin
We let z5V1 iU and obtain ż1 i f z5 @h/(11u2)#
3„u cos(f)2sin(f)… which integrates to z(t)5Be2 i f t

1p(t) whereB is determined by the initial condition, which
we take such that for very large positiveX, z(2X)
5 ihu/„f (11u2)…. Hence,

p~ t !5
h

11u2 E
2X

t

e2 i f (t2s)
~12h2s2!u12hs

11h2s2 ds

5
ihu

f ~11u2!
~12e2 i f (t1X)!

1
2he2 i f t

f ~11u2!
E

2X

t

ei f s
u1hs

11h2s2 ds,
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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andB5 ihue2 i f X/„f (11u2)…. Approximating the remaining
integral inp(t) by an infinite integral via lettingt,X→` we
obtain

z~ t !5
ihu

f ~11u2!
1

2p~ i 1u!

11u2 e2 f /he2 i f t , ~17!

which represents a circle centered on the fixed point w
radius

x̄5
2pe2 f /h

A11u2
.

Hence, initial conditions close tor 50 are reinjected near th
fixed point with a value aroundr 5 x̄, as conjectured in Ref
5. As expected, the averaging wipes out this effect, whic
important when global bifurcations associated to the H
fixed point/periodic orbit occurs.

III. DERIVATION OF THE CODIMENSION-2
SINGULARITY

We now turn to a detailed normal form analysis of t
Hopf-saddle-node ~HSN! bifurcation in the full
3-dimensional LIS equations. First we obtain the locus
this singularity in parameter space, and next we turn into
computation of the normal form coefficients, from which w
may establish the critical cavity detuningsu where the type
of HSN changes.

A. Hopf-saddle-node bifurcation

The Hopf-saddle-node bifurcation arises generally
vector fields whose Jacobian at the fixed pointx0

5(R̄,W̄,c̄) has a pair of purely imaginary eigenvalues t
gether with a zero eigenvalue:$0,6 iv% with v.0.14,15

The Jacobian of~5! at x0 is

J5S W̄ R̄ 2b sinc̄

22R̄~11gxW̄! 2x~11gR̄2! 0

b sinc̄/R̄2 u 2b cosc̄/R̄
D ,

~18!

and from the fixed point equations~6! we find

R̄~W̄!5AA22xW̄

11gxW̄
,

~19!

c̄~W̄!52arctanS h1uW̄

W̄
D ,

in terms ofW̄, leaving the characteristic polynomial ofJ in
terms of (W̄,h,u),

c01c1l1S 11gA2

11gxW̄
22W̄D l21l350. ~20!

As the roots of the characteristic polynomial at the HS
bifurcation are $0,6 iv%, the polynomial should read a
l(l21v2)50. Equating the same order coefficients we
rive at
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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W̄5
x~11gA2!

2
1O~x3!,

v25c1~W̄,h,u!.0, ~21!

05c0~W̄,h,u!,

having expanded the solution ofW̄ in terms of smallx. Note
that for fixedg, x, A andu the system~21! can be exactly
solved for the location of the fixed point and the parame
values (hHSN,bHSN), as illustrated in Ref. 6. Using the
above expression forW̄ we can solve the last equation i
~21! for h(u). Using the fixed point equations~6!, we have
b52R̄W̄/cosc̄ and together with~19! and the first equation
in ~21! we obtain the locus of the HSN at

hHSN~u!52
~11u2!

2u
~11gA2!x1O~x3!, ~22!

bHSN~u!5
AA11u2

2u
~11gA2!x1O~x3!, ~23!

with

vHSN~u!5&A1
x2

8&A
S 7110gA213g2A42

~11gA2!2

u2 D
1O~x3!, ~24!

in agreement with~15!.
Performing the exact computations without the expa

sion in x, we obtain foru52.0,g50.0,x50.3,A51.0, the
numeric result:

~hHSN,bHSN!5~20.372816,...,0.162945,...!, ~25!

which compare very well with the approximate values us
~23!.

We conclude that the HSN singularity is intrinsic to th
full LIS equations and not just a property of the averag
model. Also note that forx→0, the codimension-2 poin
approaches (h,b)HSN5(0,0).

B. Derivation of the normal form coefficients

The normal form of HSN up to second order in cylindr
cal coordinates is14

r 85~m1az!r 1O~3!,

z85n1br21cz21O~3!, ~26!

z85v1dz1O~2!,

wherea,b,cÞ0 andm andn are the bifurcation parameters
Moreover, we can letc521 by rescaling~this is the tradi-
tional form!.

The signs ofa andb classify the different types of flows
Type I for (a.0,b.0), Type II for (a,0,b.0), Type III
for (a.0,b,0), Type IV for (a,0,b,0). Fornsn50 one
has a saddle-node bifurcation, while fornHopf5m2/a2, the
Hopf bifurcation occurs. The radius of the periodic orbit
given by r Hopf

2 5(m2/a22n)/b. Hence, the difference be
tween the phase portraits in Type III and Type I is that in t
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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former, the periodic orbit always co-exists with the fixe
points (n.m2/a2.0), while in the latter it may exist even
before the creation of the fixed points~for n,0, r Hopf.0);
see Fig. 1. The stability of the periodic orbit for Type I ca
be shown to be saddle, while for Type III may be an unsta
or stable node. The above properties will be reflected in
global bifurcations found for either Type~see the next sec
tion!.

Numerical experiments in Ref. 5 suggested that L
equations have a Type III singularity foru52.0. The ques-
tion we address now is what happens for other choicesu
and particularly if the classification found in Ref. 18 hol
for the three-dimensional LIS equations~1!. We will now
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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derive approximate equations fora(u), b(u), c(u), d(u)
assuming, once again, smallx.

We start by linearizing LIS equations~5! around the

fixed point x05(R̄,W̄,c̄) at the HSN bifurcation paramete
(hHSN,bHSN,u). This may be accomplished by choosing
linear change of coordinatesj5UÀ1(xÀx0), whereU is the
matrix having as first and second columns the real a
imaginary part of the eigenvector ofJ associated to the ei
genvalueiv while the third column is the eigenvector ass
ciated to the zero eigenvalue. We find the matrixU reads@up
to normalization constants, and showing up toO(x) terms
for the sake of clarity# as
U.S Au
&x

4u
~11u2!~11gA2! 0

x

2u
~12u2!~11gA2! 2&Au 2

x

2u
~11gA2!

u2 0 1

D , ~27!
IS
nd

ear
ri-

u-

c
on

In

tra-
and the new systemj5(x,y,v) reads as

x852vy1F~x,y,v !,

y85vx1G~x,y,v !, ~28!

v85H~x,y,v !,

whereF(x,y,v), G(x,y,v) andH(x,y,v) carry only nonlin-
ear terms.

The nonlinear coefficients of~26! can now be obtained
in terms of derivatives ofF, G andH ~see Appendix B for
the derivation!. Up to first order inx, we obtain

a~u!5~Fxv1Gyv!/25
~u221!

4u
~11gA2!x1O~x2!,

FIG. 2. Normal form coefficientsa(u) andb(u) as a function ofu (g50,
x50.3, A51).
b~u!5~Hxx1Hyy!/4

52
~11u2!~u223!

8u
~11gA2!x1O~x2!,

c~u!5Hvv/252
~11u2!

4u
~11gA2!x1O~x2!, ~29!

d~u!5~Gxv2Fyv!/25O~x2!.

We observe from~29! that a(u) changes sign atu II-I

511O(x2) while b(u) at u I-III 5)1O(x2). In conclusion,
the Hopf-saddle-node singularity in the 3-dimensional L
equations change their type according to the Solari a
Oppo results~1!, up to orderO(x2).

The whole procedure to obtain the linear and nonlin
coefficients of the normal form may be evaluated nume
cally without using the expansions inx. In Fig. 2 we com-
pared the numerical evaluation with the approximate form
las given in~29!. We find for x50.3,g50 that the critical
cavity detunings become

u I-III 51.71372..., u II-I 50.977794... . ~30!

Note that for small enoughu, the exact and the numeri
approximation depart, due to the failure of the conditi
vHSN.0 in ~24! for evaluating the HSN coordinates.

IV. GLOBAL BIFURCATIONS

Simple numerical experiments on LIS equations@Eqs.
~5!# starting from thecw solution in b50, R5A, c5ht,
give us a qualitative picture of the dynamics in this laser.
Fig. 3 we display for two parameter cuts inh, phase portraits
of this longitudinal orbit~on theW50 plane! as the injection
level b is increased. It can be observed that part of the
jectory develops small oscillations in the transversal~to the
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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W50 plane! direction, and approximately on the phase p
sition where the fixed points will be born (R'A, f5p) in
a saddle-node bifurcation atb5bSN. One also observes tha
for higheru ~stronger phase coupling!, the size of these os
cillations is also larger. Below we will see that this orbit
fact leads to a family of similar orbits, in the neighborho
of b'bSN, with more and more transversal oscillations
that same region of phase space.

We callg the transversal periodic orbit born at the Ho
bifurcation of fixed points. The properties of this orbit are
accordance with the results of the unfolding of HSN~Sec.
III B ! which depends strongly on the type of HSN.14 For
Type III the periodic orbitg exists forb>bHopf.bSN and
may be stable or unstable, both situations connected b
secondary Hopf bifurcation~labeled tr in Fig. 5!. On the
other hand, for Type Ig is a saddle orbit and exists forb
<bHopf , and may even exist before the locking solutio
appear (b,bSN) as illustrated in Fig. 4. With the aid o
AUTO9423 the periodic orbitg was found to belong to a fam
ily of transversal periodic orbits bounded in the relevant
rameter space by a set of saddle-node bifurcations lab
sn-t in Fig. 5 and Fig. 6. The saddle-node companion ofg is
shown with a full curve in Fig. 4. Associated to this family

FIG. 3. Phase portraits of longitudinal attractors in LIS for increasingb. ~a!
Type I:u51.25,h520.3175,~b! Type III: u52.0, h520.38. The bottom
right corresponds past the saddle-node bifurcation and is a strange att
orbit.
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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transversal periodic orbits a Takens–Bogdanov singulari14

was found, which guides another secondary Hopf bifurcat
to the transversal orbit~labeled hp-t! and another homoclinic
bifurcation ~not shown in the bifurcation set!.24

A. Extremely large detunings

In a previous study,5 we studied global bifurcations for a
fixed u52.0, which correspond to the Type III regime o
HSN. The main bifurcations were two S˘ il’nikov homoclinic
orbits to either saddle-focus fixed pointsS or S’ of the
saddle-node bifurcation. The interesting phenomenon
that the branch of homoclinic orbit toS approached on one
side asymptotically to the saddle-node bifurcation~the SSN
point in Fig. 5!. At the limit point there was adegenerate
homoclinic orbit25 to a saddle-node fixed point. The orbit le
the vicinity of the degenerate equilibrium through th
1-dimensional center manifold and returned through
2-dimensional stable manifold. This interaction has be
called a S̆il’nikov-saddle-node and requires 2-paramete
~codimension-2! to unfold it.

We extend these results now and study the behavio
this degenerate bifurcation, asu is decreased, in particular, a
it approaches the criticalu5u I-III parameter value. To per
form the numeric continuation of the S˘ il’nikov-saddle-node

tor

FIG. 5. Ab vs h partial bifurcation set close to HSN foru52.0 ~Type III!.
The saddle-node~sn-fp! and the Hopf~hp-pf! bifurcation become tangent a
the Hopf-saddle-node~HSN! bifurcation. In Type III a secondary Hopf bi-
furcation ~tr! leading to a transversal torus and a global heteroclinic bif
cation between the two fixed points~not shown! originates from HSN. SSN
denotes the S˘ il’nikov-saddle-node degenerate bifurcation point. TB deno
a Takens–Bogdanov degenerate point, where a Hopf~hp-t!, a saddle-node
~sn-t! and a homoclinic bifurcation~not shown!, all collide at the same
point.
i-

.

e
e
e

FIG. 4. PeriodT vs b of periodic orbit
g born at the Hopf bifurcation.~a! For
Type I (u51.25, h520.3184) the
Hopf bifurcation creates a saddle per
odic orbit g which may exist before
the creation of fixed points (b
,bSN). Dashed strokes forg and full
stroke for its saddle-node companion
~b! For Type III (u52.0, h
520.385) g is either a stable or an
unstable node, coexisting with th
fixed points. The vertical dashed lin
corresponds to the occurrence of th
saddle-node bifurcation of the fixed
pointsbSN.
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~SSN! point, we implemented a simple shooting algorith
Choosing the parameters at the saddle-node bifurca
bSN(h) we took an initial condition on the center manifold
a small distance of the singularity and integrated forward
time to a Poincare´ section away from the saddle-node eq
librium. We then shot from a pointz on the local
2-dimensional stable manifold backwards in time to th
same Poincare´ section, and chose the pointz such that it
minimized the distance of both intersections on the sect
Next we changedh in order to assure thatz50. At this point
in parameter space we have an approximate orbit which
lows the degenerate Shinikov-saddle-node orbit.

In Table I we show the results of the continuation of t
SSN point as a function ofu, together with the correspondin
b(u) coefficient of the normal form~26!. It is observed that
the SSN degeneracy approaches the HSN singularity a
detuningu corresponding to the transition from Type III t
Type I: u I-III 51.71372~last row!. This is the reason for per
forming an accurate determination of the location of the cr
cal u values in order to understand this limit behavior.

These results suggest that aglobal codimension-3bifur-
cation occurs for this laser model atu I-III . We are not aware
of any theoretical result on the unfolding of such a degen
ate bifurcation, so our numerical findings can serve a
‘‘suggested’’ unfolding. Figure 7 displays the SSN h
moclinic orbit very close to the transition point. We note th
as we approach the critical detuningu, the total integration
time of the shooting implementation diverges, because
stable 2-dimensional manifold becomes a very slow ma
fold.

FIG. 6. Ab vs h partial bifurcation set close to HSN foru51.25. See Fig.
9 for a schematic bifurcation diagram. (t1) corresponds to the homoclini
tangency to the periodic orbitg, and similarly for (t2). Also a Takens–
Bogdanov point is found as in Fig. 5.

TABLE I. Continuation of the S˘ il’nikov-saddle-node point asu→u I-III .

u hSSN bSSN b(u)

2.00 20.355212 0.155423 20.0601082
1.90 20.349017 0.158996 20.0391471
1.80 20.343095 0.162927 20.0181445
1.75 20.340707 0.165260 20.0076315
1.74 20.340420 0.165827 20.0055281
1.72 20.340582 0.167325 20.0013205
1.71372 20.341865... 0.168392... 0.0
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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B. Large detunings

We now describe the global bifurcations foru II-I ,u
,u I-III corresponding to the Type I regime. Note that fro
the local phase portraits for the HSN~see Ref. 14! we can
see that for parameter regions where fixed points exist,
orientation of their manifolds is not suitable for homoclin
orbits of the type found in the previous section. Howev
observing the local phase portraits in the parameter reg
where there are no fixed points, the manifolds of the tra
versal periodic orbitg are in a suitable position in order t
produce homoclinic tangenciesvia the global reinjection
mechanism.

To test this observation we used a multiple-shooting
gorithm to locate the periodic orbitg, together with its stable
and unstable eigenvectors. We then shot a number of o
forward in time starting a small distance ofg and on the
unstable eigenvectors towards a Poincare´ section, and simi-
larly backwards in time on the stable eigenvector. By fixi
h and adjustingb we were able to detect two homoclini
tangencies tog ~Fig. 8!, labeledt1 andt2.

Figure 6 shows the numerical continuation of both h
moclinic tangencies approaching the HSN singularity~see
also the related Fig. 9!. This result indicates that the limi

FIG. 7. A S̆il’nikov orbit close to Hopf-saddle-node bifurcation atu
51.72, hSSN520.3405825055,bSSN50.1673253154. The change of typ
occurs atu I-III 51.71372...,h520.341866...,b50.168393... .

FIG. 8. The phase portrait of a homoclinic to the periodic orbitg. g lies
within the densely oscillating region,u51.25, h520.32, b50.1944960.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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point of these global bifurcations seems to be the HSN
gularity. This can be understood by studying in more de
the boundary of the existence ofg together with its manifold
orientation. On the one hand the locus of existence
bounded for small enoughb by a saddle-node bifurcatio
@shown in Fig. 4~a!#, and by the Hopf bifurcation to the righ
We can even sharpen the boundary of existence by no
that at the saddle-node bifurcation of equilibriums, the sta
manifold ofg ‘‘merges’’ with the 2-dimensional manifold o
the saddle-node fixed point.26 Also as the radius ofg de-
creases as one approaches the HSN point, one may e
that the homoclinic tangencies also approach the HSN po

To illustrate in more detail how the tangencies behave
we approach the HSN point, we display in Fig. 10 thr
parameter cuts for fixed values ofh, displaying the relative
position of the invariant manifolds on a suitable Poinca´
section asb is changed. We note that the chosen~local!
Poincare´ sectionP:$xPRe(E)50% is not a ‘‘standard’’ sec-
tion ~i.e., the section does not intersect the periodic orbit! for
studying homoclinics to periodic orbits. Nevertheless it is
section transversal to the flow in the region of interest wh
has the advantage of showing the closed topology th
manifold have in our case. Notice that the intersection po
of a stable and an unstable manifold correspond to inter
tion points in the typical Poincare´ sectionW5 l , for a suit-
able l where the periodic orbit and the stable and unsta
manifold crossesP. Whenever there is nol such that a mani-
folds crossing occurs, then the manifolds inP8 do not inter-
sect.

The first row displays how the unstable manifold~inside!
grows, becomes tangent and creates a pair of homoc
orbits. This case corresponds to the tangencyt1, and it be-

FIG. 9. Schematic bifurcation diagramh vs b. The two-dimensional mani-
folds of the periodic orbitg are emphasized by the dotted curves. The H
point, together with the saddle-node~sn! and Hopf bifurcation are shown
~tsn! corresponds to the creation of a heteroclinic cycle between the per
orbit g and the saddle-node fixed point.
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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haves similarly for other constanth parameter cuts. The fol
lowing rows illustrate how thet2 tangency may develop
Two cases are observed:~a! the stable manifold ofg shrinks
to a point at the saddle-node bifurcation of equilibriumout-
sideof the unstable manifold~second row!, ~b! it shrinks to a
point inside the unstable manifold~last row!. The third row
shows approximately the transition point where the unsta
manifold of g just merges into the center manifold of th
saddle-node equilibrium, producing a heteroclinic cyc
Gg-SN betweeng and the saddle-node fixed point. In Fig.
we display a schematic bifurcation diagram, displaying
position of the global invariant manifolds of the most re
evant objects.

This new transition point corresponds to another co
mension 2 global bifurcation. The relevance of it may
understood by studying a return map for both cases. For c
~a! it is clear that any orbit leaving the unstable manifold
g after one global excursion will never return to the neig
borhood of the periodic orbit, for all the interval of paramet
b t2,b,bSN. On the other hand for case~b! we expect that
further iterations of the return map may produce subsidi
homoclinic tangencies tog ~with n.1 global excursions!.

To complete the picture we investigated the organizat
of the periodic orbits approaching the homoclinic tangenc
Figure 11 shows the period versusb continuation for a con-
stant h520.32, starting from the orbit atb50 and
(R,W)5(A2,0), the unperturbed laser. It is observed that
contrast to the traditional S˘ il’nikov periodic orbit organiza-
tion found for Type III ~Fig. 5, Ref. 5!, the periodic orbits
became asymptotic to the values corresponding to the
gencies. Physically, as we increaseb, these solutions corre
sponds to pulses which develop small oscillations in the a
plitude of the electric field, and its phase is unbound
asymptotically these small oscillations approach closer
closer the undamped relaxation oscillationg ~see Fig. 12!.

The bifurcation scenario for homoclinic tangencies h
been studied theoretically by Gaspard and Wang27 where
they report that two sequences of saddle-node bifurcat
accumulate to the parameter values where each tangenc
curs. More recently Hirshberg and Laing28 developed a re-
turn map model close to a Takens–Bogdanov degene
point where they observe that for high enough periods,both
periodic orbits created at a saddle-node bifurcations die
another saddle-node bifurcation associated to the other
gency, forming ‘‘bubbles’’ or ‘‘isola’’ of periodic orbits in
parameter space.

The family of periodic orbits in Fig. 11 seems to b
bounded by thet2 tangency. However by the previous di
cussion on a return map, it allows the possibility of the e
istence of unstable orbits in the region betweent2 tangency
and the creation of the saddle-node bifurcation. For this
performed numerical integrations starting at the Poinc´
section and inside the stable manifold. For negative ti
steps, in Fig. 13 we display the crossings with the Poinc´
section, together with a phase-portrait. This shows the e
tence of a repeller inside the stable manifold ofg which turns
into a periodic orbit of very high period as the stable ma
fold shrinks. Atb50.1969,bSN we find the period of this
unstable orbitP'2500.

ic
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FIG. 10. Manifolds of periodic orbit
g on the Poincare´ section Re(E)50.
~From the top to the bottom! First
row: crossing of tangencyt1 at h
520.315. Second row: crossing o
tangency t2 at h520.315. Third
row: crossing of tangencyt2 at h
520.3175. Fourth row: crossing o
tangency t2 at h520.323, (u
51.25). Crosses corresponds to th
unstable manifold and diamonds to th
stable manifold ofg. The coordinates
of each panel correspond to
@ Im(E),W#.
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Finally, we note on passing that the analysis in Ref
completes the study of the effects of the HSN bifurcation
LIS by describing the case of very low detuning~Type II of
HSN!.

V. DISCUSSION

We have shown that in the rate equations for a laser w
injected signal, the detuningu plays an important double rol
in determining the type oflocal bifurcations close to the
locking regime, and changing the kind ofglobal bifurcations.

We presented a systematic order-by-order analysis of
LIS equations starting with the Adler equation at lowest
der, all the way up to the averaged model, accurate up
second order in the involved variables. Moreover, pertur
Downloaded 03 Sep 2001 to 157.92.4.103. Redistribution subject to AIP
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tion corrections beyond the averaged model give a so
basis to the geometrical model of LIS proposed in Ref. 5

We analyzed with normal form theory how the Type
the Hopf-saddle-node bifurcation changes with the para
eters, verifying that the classification~1! found by Solari and
Oppo2 in an averaged system is accurate.

This change of type asu is varied should affect the glo
bal bifurcations involving the invariant sets of the HSN b
furcation. We therefore extended our previous numeri
findings5 showing that foru.u I-III ')1O(•) the main sce-
nario for the development of ‘‘chaos’’ comes from th
S̆il’nikov phenomenon14,15 ~homoclinic bifurcation to a
saddle-focus fixed point! interacting with a saddle-node b
furcation. A new scenario was found in the regionu,u I-III
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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')1O(•), where homoclinic tangencies to a periodic o
bit were found to originate from the HSN bifurcation. Bo
the saddle-fixed points and the periodic orbit belong to
unfolding of the Hopf-saddle-node local bifurcation.

The above results point to the conjecture that there
codimension-3 global bifurcation involving the Hopf-sadd
node local singularity and the global reinjection present
this laser in a wide range of parameters~at leastu II-I ,u
,u I-III ,2.0). We hope these numerical findings will op
the way to new theoretical models to understand m
closely the unfolding of this degenerate bifurcation.

Most important for the physicists is that the region
existence of the S˘ il’nikov phenomenon is bounded for low
enough injection amplitudeb by the disappearance of th
locking states, while for the homoclinic tangencies the c
otic regime occurs for injection amplitudesb just ‘‘before’’
the locking states appear.

As it is well known, estimation ofu in real experiments
is difficult. We thus hope that with a close study of the ex
tence of locking states and chaotic regimes it might be p

FIG. 11. Period~P! vs b bifurcation diagram for periodic orbits (u51.25,
h520.32). The homoclinic tangencies occur atb t150.1940533 andb t2

50.1947231. The vertical dashed lines mark the occurrence of the
moclinic tangenciest1 (b t150.1940533),t2 (b t250.1947231), and the
saddle-node bifurcation of fixed points~sn!.

FIG. 12. Phase portraits for two saddle orbits close to tangencyt1 ~left! and
t2 ~right!. T corresponds to the period of the orbit (h520.32,u51.25).
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sible to determine in which type the laser is working, a
contrast our numerical predictions.
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APPENDIX A: THE AVERAGING PROCEDURE
IN REF. 3

We will now apply the averaging procedure to the rela
ation oscillations motion of the laser with injected sign
model as written in Eq.~1! of Ref. 4,

Ė5
j

2
~11 ia!nE1k injEinje

iv injt,

~A1!
ṅ522lRn2~G01jn!~ uEu22P0!,

with the electric fieldE, inversion populationn, linewidth
enhancement factora, injection ratek inj , detuningv inj .

We first re-write the system in a more convenient wa
following as close as possible the transformations u
in Ref. 3: E(t)→ E(t)/AP0 e2 iv injt, and rescaled n
→ (j/vR) n, t5 (t/vR), with vR5AjG0P0, we arrive at
the system

E85
11 ia

2
nE2 ihE1k,

~A2!
n8512xn~11guEu2!2uEu2

where85 d/dt and

o-

FIG. 13. The left panel shows the Poincare´ sections as in Fig. 10, while the
right panel shows the corresponding phase-portrait of unstable orbits. N
that asb increases the periodic orbit diverges in period (h520.323,u
51.25).
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h5
v inj

vR
, x5

2lR2jP0

vR
, gx5

jP0

vR
, k5

k injEinj

vRAP0

.

~A3!

Next we write the complex variableE in polar coordinates
(v,c) by E5ev/22 i (c2av/21a1), wherea1 is a constant to be
determined at the end. Expanding in powers ofv we obtain

v85n2kF~v,n,c!,

n852v2
v2

2
1O~v3!1xG~v,n,c!, ~A4!

c85h1kH~v,n,c!.

To apply the averaging theorem we must change~A4! to a
‘‘slow’’ system, which would require to find an analytic so
lution to the nonharmonic oscillatorv91v1v2/250.

The procedure in Ref. 3 considers instead only the or
O(v) in the equation and therefore studies the resulting s
tem as a perturbation of the harmonic oscillatorv91v50.
This will of course imply that the correct solution is validup
to first orderyielding accordingly inaccurate results for se
ond order and higher. For the sake of comparison of the fi
averaged equations we apply the averaging operator
over theO(v2,v3) terms. Following the variables defined
Ref. 3,

v5
2r

A11a2
sin~2t1z!, n5

2r

A11a2
cos~2t1z!,

~A5!

and averaging over one RO period,29 we obtain Eq.~3! in
Ref. 4,

ṙ52S G2
K

2
sin~f1a! D

3r2S B

2~11a2!
2

K

16
sin~f12a! D r3,

~A6!

ḟ5v2K cosf2
K

4
cos~f1a!r2,

choosinga15Aa/21p/2, Aa52 arctan(a) and

G5
x

2
~11g!5

lR

vR
,

~A7!

K5
k

cos~a/2!
5

kinjEinj

vRAP0

A11a2, B5
vR

2G0
.

This corresponds with the parameter identification publis
in Ref. 4 @except that we did not include for simplicity tha
~A5! depends on the rescaled relaxation oscillation freque
V(n̄)#.

We have thus recovered the averaged equation studie
Ref. 4 by the standard averaging method, which indirec
shows the procedure used in Ref. 3 is correctonly up to first
order in r. The second order terms are important for det
mining the change of signs in the coefficients of the HS
normal form, and consequently inaccuracies in the sec
order terms will be reflected when studying the normal for
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This explains why the~otherwise thorough! normal form
analysis carried out in Ref. 4 only reveals Type II for 0,u
,1 and Type III for 1,u. This was recognized as a
anomalous transition since it requires at a single critical
rameter (u51) two normal form coefficients to disappea
simultaneously. The order-consistent results of Ref. 2 re
ited in this manuscript include the intermediate Type I
gime and provides a smooth transition between types,
volving for each critical parameter only a single ze
nonlinear term. Also, a more careful analysis of the th
order terms inr in the normal form is required to study th
stability of the tori as intended in Ref. 4.

APPENDIX B: DERIVATION OF NORMAL FORM
COEFFICIENTS

We will now give the derivation of the nonlinear coeffi
cients of the Hopf-saddle-node normal form in terms of d
rivatives of the linearized vector field. This derivation fo
lows closely the analogous derivation for the Ho
bifurcation in Ref. 14~p. 163!. First we write in complex
variables the HSN normal form at the singularity~26! (m
5n50) usingw5rei z,

w85 iv1~a1 id !wz1O~3!, z85bww̄1cz21O~3!,
~B1!

with a, b, c, d real coefficients, and the linearized equatio
~28! around the origin usingj5x1 iy ,

j85 iv1 f ~j,j̄,v !,

v85h~j,j̄,v !, ~B2!

with f (j,j̄,v)5(F1 iG)@(j1 j̄)/2 ,(j2 j̄)/2i , v# a complex
function, while h(j,j̄,v)5H@(j1 j̄)/2 ,(j2 j̄)/2i , v# is a
real function. The overbar denotes a complex conjugatio

As we are interested in eliminating from~B2! as many
second-order terms as possible, we expandf ,h in power se-
ries as f (w1c,w̄1c̄,z1f)5 f jjw

2/21 f jj̄ww̄1 f j̄ j̄w̄
2/2

1 f jzwz1 f j̄zw̄z1 f zzz
2/21O(3), where the subscript in-

dexes stand for partial derivative, and propose a near-iden
change of coordinates,

j5w1c~w,w̄,z!, v5z1f~w,w̄,z! ~B3!

wherec andf have only second-order monomials:

c~w,w̄,z!5A1w21A2ww̄1A3w̄21A4wz1A5w̄z

1A6z21O~3!,

f~w,w̄,z!5B1w21B2ww̄1B3w̄21B4wz1B5w̄z

1B6z21O~3!.

Performing the change of coordinates, one arrives at a
vector field in terms of (w,z) where the second-order term
depend on the unknown constants (Ai ,Bi). Comparing term
by term to~B1! we are able to solve for all unknown coe
ficients in terms of derivatives off andh ~usingvÞ0) ex-
cept for

wz:a1 id5 f jz , ww̄:b5hj̄j , z2:c5hzz/2. ~B4!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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Note that these are exactly the resonant terms of the no
form of HSN, thus a~normal form! change of coordinate
will never be able to eliminate them. Now returning tox

5(j1 j̄)/2 and y5(j2 j̄)/(2i ) we have that f u52( f x

2 i f y)/2, so we arrive to

a5Ref jz5~Fxv1Gyv!/2, b5hj̄j5~Hxx1Hyy!/4,
~B5!

d5Im f jz5~Gxv2Fyv!/2, c5hzz/25Hvv/2.

For the interested reader who might want to comp
the third-order terms of the HSN normal form, we refer
Ref. 30.
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