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Abstract

In Part I we constructed the Quantum Mechanics of a charged

unitary entity and prescribed the form in which such a particle

interacts with other charged particles and matter in general. In

this second part we extend the description to the hydrogen atom

testing the correctness and accuracy of the general description.

The relation between electron and proton in the atom is described

systematically in a construction that is free from analogies or ad-

hoc derivations and it supersedes conventional Quantum Mech-

anics (whose equations linked to measurements can be recovered).

We briefly discuss why the concept of isolation built in Schrödinger’s

time evolution is not acceptable and how it immediately results in
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1 Introduction
In the First Part of “The Construction of Quantum Mechanics (QM) from

Electromagnetism (EM)” (Solari & Natiello, 2024) we have presented a

version of Hamilton’s principle for a charged quantum particle that en-

codes (a) Newton’s first and second law of motion under the EM force

described by Lorentz; (b) Maxwell’s equations that propagate the EM

action from the locus of its maximum intensity (matter) to any other

material element in relational space (Lorenz-Lorentz perspective (Sol-

ari & Natiello, 2022b)) and (c) the relation between frequencies of sta-

tionary states of the quantum object and the energy (kinetic plus EM)

of the object.

The conservation of energy of a quantum particle is described in

the form in which Faraday conceived matter as the inferred part of the

matter-action pair and it leads directly to the transition rule: Ef
I +Ef

EM =
E i
I + E i

EM with i, f meaning initial and final states while I, EM mean in-

ternal and EM energies. In the early times of QM, Bohr showed that

the Balmer and Rydberg lines of the Hydrogen atom corresponded

to this rule. This is to say that the observed values summarised in Ry-

dberg’s formula agree in value with the equation, yet the equation was

not part of the theory because the “emission” of light was conceived

as the result of external influences since the isolated atom could not

decay and in such way it would not collapse with the electron falling

onto the proton.

The standard QM then has to find a meaning for its formulae and

such task has been called “interpretation of QM”. All the interpreta-

tions that we know about, rest on the idea of point particles. An idea

that allows for the immediate creation of classical images that suggest

new formulae such as those entering in the atomic spectra of the Hy-

drogen atom. Since the accelerated electron (and proton) cannot radi-

ate in QM by ukase1 the radiation rule has to be set as a separated rule.

The atom, according to the standard theory, can then be in an “mixed

energy” state until it is measured (meaning to put it in contact with the

Laboratory) which makes the state represented by the wave-function

to collapse (in the simplest versions). While there are more sophist-

1ukase: edict of the tsar
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icated2interpretations, none of them incorporates the measurement

process to QM. It remains outside QM.

The idea of isolating an atom deserves examination. One can re-

gard as possible to set up a region of space in which EM influences

from outside the region can be compensated to produce an effective

zero influence. In the simplest form we think of a Faraday cage and

perhaps similar cages shielding magnetic fields. In the limit, idealised

following Galileo, we have an atom isolated from external influences.

But this procedure is only one half of what is needed. We need the

atom to be unable to influence the laboratory, including the Faraday

cage. And we cannot do anything onto the atom because so doing

would imply it is not isolated. This is, we must rest upon the voluntary

cooperation of the atom to have it isolated. The notion of an isolated

atom is thus shown to be a fantasy. If the atom, as the EM system

that it is, is in the condition of producing radiation, it will produce it

whether the Faraday cage is in place or not. The condition imposed by

the ukase is metaphysical (i.e., not physical, nor the limit of physical

situations). Actually, if such condition is imposed to Hamilton’s prin-

ciple of Part I, the Schrödinger’s time-evolution equation is recovered

to the price that the consilience with Electromagnetism and Classical

Mechanics is lost.

It was Schrödinger who dug more deeply into the epistemological

problems of QM. His cat, now routinely killed in every QM course/book

was a form of ridiculing the, socially accepted, statistical interpretation

of QM:

One can even set up quite ridiculous cases. A cat is penned

up in a steel chamber, along with the following device (which

must be secured against direct interference by the cat): in a

Geiger counter there is a tiny bit of radioactive substance,

so small, that perhaps in the course of the hour one of the

atoms decays, but also, with equal probability, perhaps none;

if it happens, the counter tube discharges and through a

relay releases a hammer which shatters a small flask of hy-

drocyanic acid. If one has left this entire system to itself for

2We imply the double meaning as elaborated and false. The first as current use

and the second implied in the etymological root “sophism” in the ancient Greek:

σοϕιστικός (sophistikós), latin: sofisticus.
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an hour, one would say that the cat still lives if meanwhile

no atom has decayed. The psi-function of the entire sys-

tem would express this by having in it the living and dead

cat (pardon the expression) mixed or smeared out in equal

parts.(Schrödinger, 1980)

Schrödinger understood as well that the need for a statistical interpret-

ation was rooted in the assumption of point particles (Schrödinger,

1995).

The alternative QM set forth in Part I goes along Schrödinger thoughts

and begins by indicating the way in which an EM quantum object acts

upon other EM objects and it is acted on as well. This bold step puts

immediately the problem of measurement within the theory and pro-

tects the life of Schröndiger’s cat. We will show in this Part II how it

can be used to produce the Hamiltonian of the Hydrogen atom and its

stationary states without the need to resort to analogies. We will show

how the construction is performed and how it results in formulae that

are in agreement with standard QM (after the latter has been patched

with “relativistic corrections” as it is usually done). The construction

allows to understand better the so-called Spin-orbit interaction, which

in standard QM couples the spin and the “orbit” of the electron, being

then a “self-interaction” (an oxymoron) of the electron. We will show

that when properly and systematically considered it represents a coup-

ling between the proton and the electron as all other couplings con-

sidered.

2 Constructive ideas for Quantum Mechan-
ics from Electromagnetism

We borrow some basic ingredients from Maxwell’s electrodynamics

and from traditional Quantum Mechanics. These elements will be com-

bined in dynamical equations in the next Section.

1. The atom is the microscopic entity susceptible of measurements.

Proton and electron within the atom do not have a sharp separ-

able identity, they are inferences (or “shadows”). The identity of

the atom consists of charge, current, magnetisation(s) and masses.
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2. The experiments of Uhlenbeck & Goudsmidt and Zeeman as well

as that of Stern and Gerlach suggest the existence of intrinsic

magnetisations. We introduce it following the standard form re-

lying in Pauli’s seminal work (Pauli Jr, 1927).

3. The interactions within the atom and of the atom with detectors

are electromagnetic.

4. Elementary entities such as the proton and the electron have no

self-interactions. There is no evidence regarding the existence of

self-energies (constitutive energies) at this level of description,

correspondingly, they will not be included.

5. The experimental detection of properties belonging to the shad-

ows within the atom depends on the actual possibility of coup-

ling them with measurement devices (usually based upon elec-

tromagnetic properties). We will stay on the safe side and will

not assume as measurable things like the distance from proton

to electron or the probability distribution of the relative position

between proton and electron. Such “measurements” remain in

the domain of fantasy unless the actual procedure is offered for

examination. In this respect we severely depart from textbook

expositions of Quantum Mechanics.

6. The atom as an EM-entity is described with wave-functions. Any

quantity associated to an atom, such as its EM fields, are repres-

ented by operators on the wave-function’s space.

2.1 Expression of the electromagnetic potentials as in-
tegrated values on operators

2.1.1 Wave-functions

Two bodies that are spatially separated are idealised as represented

by a wave-function which is the product of independent wave-functions

on different coordinates. For the case of a proton and an electron we

write Ψ(xe, xp) = ψe(xe)ψp(xp) and call it the electromagnetic limit. In

contrast, a single body with an internal structure is represented by the

product of a wave-function associated to the body and another one
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representing the internal degrees of freedom. For the hydrogen atom

Φ(xr, xcm) = ϕr(xr)ϕcm(xcm) represents the atomic limit.
The election of the centre of mass, cm, to represent the position

of the body will be shown later to be consistent with the form of the

relational kinetic energy introduced. The variable xr (r for relative or

relational) stands for xe − xp. Our constructive postulate is that, when

proton and electron are conceived as (spatially) separated entities, the

laws of motion correspond to electromagnetism and when conceived

as a hydrogen atom, the usual QM is recovered as a limit case3. In fact,

the present approach is broader than the usual QM in at least two as-

pects: (a) The decomposition of the wave-function as a product is not

imposed, but rather regarded as a limit and (b) the proton is regarded

as something more than just the (point-charge) source of electrostatic

potential. Hence, starting from the laws of EM, the structure of a gen-

eral quantum theory for |Ψ⟩ can be postulated as surpassing EM. Spe-

cialising this theory to the atomic case, the QM of the hydrogen atom

is obtained.

2.1.2 Integrals on operators

We will call the value of the integral∫
d3xa d

3xb

(
Ψ∗(xa, xb)(ÔΨ(xa, xb))

)
≡
〈
Ψ∗(ÔΨ)

〉
≡
〈
Ψ∗|Ô|Ψ)

〉
(1)

the integrated value of the operator Ô, where Ô is an operator that

maps the wave-function Ψ as ÔΨ(xa, xb) = Ψ′(xa, xb)
4.

2.1.3 Physical Background

In this section our goal is to develop an electromagnetic theory of

microscopic systems encompassing both QM and Maxwell’s electro-

dynamics, starting with the principles stated in the previous Section

3Conventional QM also assumes whenever necessary that ψCM (xCM ) corres-

ponds to a point-like particle at rest.
4We will drop the time-argument of the wave-function whenever possible to

lighten the notation.
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and in Part I of this work (Solari & Natiello, 2024). Hence, we will com-

pute Maxwell’s EM interaction energy, either between the atom and

external EM-fields or between different fields arising within the atom.

We display first some classical results that are relevant for the coming

computations.

Maxwell’s electromagnetic interaction energy between entities 1 and

2 reads:

E =

∫
d3x

[
ϵ0E1 · E2 +

1

µ0

B1 ·B2

]
. (2)

As such, this result is independent of the choice of gauge for the elec-

tromagnetic potentials A, V . In the sequel, we will adopt the Coulomb

gauge whenever required.

The vector and scalar potentials associated to a charge-current dens-

ity (Cqρ, j) in a (electro- and magneto-) static situation are(
V

C
,A

)
(x, t) =

µ0

4π

∫
d3y

(Cqρ, j)(y, t)

|x− y|
.

The vector potential associated to a magnetisation M at the co-

ordinate y reads:

AM(x, t) =
µ0

4π
∇x ×

∫
d3y

M(y, t)

|x− y|
.

For potentials as defined in the Lorenz gauge there is a gauge trans-

formation that brings them to Coulomb form i.e., ρ electrostatic and

∇ · A = 0. Finally, electric and magnetic fields are obtained through

Maxwell’s equations E = −∇V − ∂A

∂t
and B = ∇× A.

2.1.4 Electromagnetic static potentials

We define the density within the atom as ρ(xa, xb) = |Ψ(xa, xb)|2. When

appropriate, protonic and electronic densities may be defined as∫
d3xb |Ψ(xa, xb)|2 ≡ ρa(xa) for each component, a = e, p. In the electro-

magnetic limit of full separation between electron and proton (|Ψ⟩ =
|ψa⟩|ψb⟩), with a wave-function for particle b normalised to unity, we
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recover ρa(xa) = |ψa(xa)|2. Protonic and electronic current-densities

within the atom are defined similarly for a = e, p by

ja(xp, xe) = − iℏqa
2ma

(Ψ∗(xp, xe) (∇aΨ(xp, xe))−Ψ(xp, xe) (∇aΨ
∗(xp, xe)))

with qe = −qp.
The electrostatic potential reads

Va(x, t) =
qa

4πϵ0

∫
d3xa d

3xb
1

|x− xa|
|Ψ(xa, xb)|2 =

qa
4πϵ0

⟨Ψ| 1

|x− xa|
|Ψ⟩.

Moreover,

Va(x, t) =
qa

4πϵ0

∫
d3xa

1

|x− xa|

(∫
d3xb |Ψ(xa, xb)|2

)
=

qa
4πϵ0

∫
d3xa

ρa(xa)

|x− xa|

showing that the electromagnetic structure is preserved in general,

not just in the limit of full separation.

Similarly, the vector potential (Coulomb gauge) associated to an in-

trinsic microscopic magnetisation Ma(xa, xb) =Ma(xa)ρ(xa, xb) reads:

AMa(x, t) =
µ0

4π
∇x ×

∫
d3xb d

3xa
Ma(xa, xb)

|x− xa|

=
µ0

4π
∇x ×

∫
d3xa

Ma(xa)

|x− xa|
ρ(xa)

=
µ0

4π
∇x × ⟨Ψ| Ma

|x− xa|
|Ψ⟩

(the index in ∇ indicates the derivation variable) where Ψ is the wave-

function. In the electromagnetic limit, the vector potential reads:

AMa(x, t) =
µ0

4π
∇x ×

∫
d3xa

Ma

|x− xa|
|ψa(xa)|2

=
µ0

4π
∇x × ⟨ψa|

Ma

|x− xa|
|ψa⟩,

which is the classical EM potential for a density |ψa(xa)|2.
For a static current we have

Aa(x, t) =
1

2

µ0qa
4πma

∫
d3xa d

3xb

(
Ψ∗(xa, xb)

1

|x− xa|
(−iℏ∇a)Ψ(xa, xb) + c.c.

)
.
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Here we may also define

j̃a(xa) =
qa
2ma

∫
d3xb (Ψ∗(xa, xb)(−iℏ∇a)Ψ(xa, xb)) + c.c.

and set

Aa(x, t) =
µ0

4π

∫
d3xa

(
j̃a(xa)

|x− xa|

)
.

2.1.5 On atomic magnetic moments

We associate an intrinsic magnetisation to proton and electron, follow-

ing Pauli’s original work (Pauli Jr, 1927). A general form for the intrinsic

magnetisation for a microscopic constituent a reads

Ma =
qa
ma

Sa

where Sa =
ℏ
2
σa

and σa are the Pauli matrices for constituent a.

2.2 Variational formulation
Both Newtonian mechanics (Arnold, 1989) and Maxwell’s electrodynam-

ics (Solari & Natiello, 2022b) can be reformulated as variational theor-

ies, satisfying the least action principle. The action (or action integral)

is the integral of the Lagrangian over time. From Part I,

L =

∫
d3y

1

2

(
Ψ∗

(
iℏΨ̇

)
+ (iℏΨ̇)∗Ψ

)
+

ℏ2

2m
Ψ∗TΨ+

1

2

∑
i ̸=j

(
1

µ0
Bi ·Bj − ϵ0Ei · Ej

) (3)

with i, j ∈ {e, p, L} which stand for electron, proton and Laboratory.

The symbol T stands for kinetic energy and its form will be presented

later. Actually “d3y” is a symbol indicating that the integral is performed

over all non-temporal arguments of the wave-function, which in the

case of the hydrogen atom will be at least six.

In this Part of the work we are interested in the internal energies

associated to stationary states of the microscopic entity (the Hydrogen

atom). In Part I we assumed that the microscopic entity did not have
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an internal structure and therefore there was no “self-energy”. In the

present situation the atomic energy will have an internal part and an

interaction part, as implied by eq.(3).

We propose therefore that the stationary states of the hydrogen

atom have an associated wave-function Ψω(xe, xp), where the indices e
and p correspond to the inferred electron and proton, whose unifying

entity is the atom. x represents appropriate arguments of the wave-

function, satisfying

(ℏωΨω)−
ℏ2

2m
TΨω − ĤΨω = 0 (4)

(we drop the index ω in the sequel) where

〈
δΨĤEMΨ

〉
= δΨ∗

〈
1

µ0
(BL · (Be +Bp) +Be ·Bp) + ϵ0 (EL · (Ee + Ep) + Ee · Ep)

〉

the variation of the wave-function is δΨ and ⟨· · · ⟩ indicates integration

over all coordinates as in eq.(1).

3 Contributions to the integrated value of H

3.1 Relational kinetic energy
In terms of classical mechanics, the kinetic energy associated to the

hydrogen atom can be organised as follows. To fix ideas let index b cor-

respond to the proton and a to the electron. The quantum-mechanical

wave-function is Ψ(xa, xb). The center-of-mass coordinate (relative to

some external reference such as “the laboratory”) and the relative co-

ordinate (which is an invariant of the description, independent of an

external reference) can be defined as usual, satisfying

xcm =
maxa +mbxb
ma +mb

xr = xa − xb

xa = xcm + xr
mb

ma +mb

xb = xcm − xr
ma

ma +mb

.
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The wave-function and the gradient (we also make use of px = −iℏ∇x)
read:

Ψ(xa, xb) = Ψ(xcm + xr
mb

ma +mb

, xcm − xr
ma

ma +mb

) = Φ(xcm, xr)

∇cm = ∇a +∇b

∇r =
mb

ma +mb

∇a −
ma

ma +mb

∇b

Φ(xcm, xr) = ϕ(
maxa +mbxb
ma +mb

, xa − xb) = Ψ(xa, xb)

∇a = ∇cm
ma

ma +mb

+∇r

∇b = ∇cm
mb

ma +mb

−∇r

Hence,

Ta + Tb =
p2a
2ma

+
p2b
2mb

= −ℏ2
(
∇2

cm

1

2(ma +mb)
+∇2

r

(ma +mb)

2mamb

)
=

−ℏ2

2(ma +mb)
∇2

cm +
−ℏ2

2mr

∇2
r = Tcm + Tr.

The associated integrated values read:

Ek = ⟨Ψ|Ta|Ψ⟩+ ⟨Ψ|Tb|Ψ⟩ = ⟨Φ|Tcm|Φ⟩+ ⟨Φ|Tr|Φ⟩

3.2 Relative electrostatic potential energy
The Coulomb electrostatic interaction energy for an atomic density

|Ψ(xa, xb)|2 reads:

Exa,xb

C = ϵ0

∫
d3xE1 · E2 |Ψ(xa, xb)|2 = −ϵ0

∫
d3xE1 · ∇V2 |Ψ(xa, xb)|2

=

∫
d3x ϵ0 [−∇ · (E1V2) + (∇ · E1)V2] |Ψ(xa, xb)|2 .

The full energy is given by averaging over the wave function Ψ. The

first contribution vanishes when integrated over all space by Gauss
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theorem, and the second term can be recast as −ϵ0(∇·∇V1)V2, namely

EC =

∫
d3xa d

3xb |Ψ(xa, xb)|2
∫
d3x ϵ0

(
qaqb

(4πϵ0)
2

)(
− 1

|x− xb|
∆

1

|x− xa|

)
= − e2

4πϵ0

∫
d3xe d

3xp |Ψ(xe, xp)|2
1

|xe − xp|
= −⟨Ψ| e

2

4πϵ0

1

|xe − xp|
|Ψ⟩

where qa = e = −qb and e is the electron charge (negative), i.e., a
is the electron, b the proton. In the electromagnetic limit it corres-

ponds to the potential energy between two separate charge densit-

ies ρk=|ψk(xk)|2 of opposite sign, corresponding to Maxwell’s equation

qkρk = ϵ0∇ · Ek.

3.3 Interaction of relative current with external mag-
netic field

For this interaction relative current means the currents (ja, jb) of both

electron and proton regarding their motion relative to the (source of)

external field. Recall that we associate j = qv =
q

m
p =

q

m
(−iℏ∇), i.e.,

current as a property of charge in (perceived) motion. The electromag-

netic energy in the external field B(x) is

EjB =
1

µ0

∫
d3xa d3xb Ψ(xa, xb)

∗
∫

d3xB(x) · ∇ × (Aa +Ab)Ψ(xa, xb)

=
1

2

1

µ0

µ0

4π

∫
d3xa d3xb Ψ(xa, xb)

∗
∫

d3xB(x) · ∇ ×
(

1

|x− xa|
qa

ma
pa

)
Ψ(xa, xb) + c.c.

+
1

2

1

µ0

µ0

4π

∫
d3xa d3xb Ψ(xa, xb)

∗
∫

d3xB(x) · ∇ ×
(

1

|x− xb|
qb

mb
pb

)
Ψ(xa, xb) + c.c.

Having in mind the (normal) Zeeman effect, we perform an explicit

calculation using that the vector potential for the approximately con-

stant external field B reads B ≡ ∇ × AL = ∇ ×
(
χ(x)1

2
x×B

)
, with χ

a smoothed version of the characteristic function for the experiment’s

region. We place the origin of coordinates inside the apparatus and as-

sume the characteristic function to be 1 inside a macroscopically large

ball K around the origin, so that∫
K×K

dxa dxb |Ψ(xa, xb)|2 ≃ 1
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(i.e., the atom is inside the measurement device). In such a case,

EjB ∼
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗
(
1

2
xa ×B ·

qa

ma
pa +

1

2
xb ×B ·

qb

mb
pb

)
Ψ(xa, xb) + c.c.

= −
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗ 1

2
B ·

(
xa ×

qa

ma
pa + xb ×

qb

mb
pb

)
Ψ(xa, xb) + c.c.

= −
e

2mr
⟨B ·

(
mr

me +mp
xr × pCM + xCM × pr +

mp −me

mp +me
Lr

)
⟩

∼ −
(

e

2me
+O(

me

mp
)

)
⟨Ψ|B · Le|Ψ⟩

where in the last line we have switched to CM, r coordinates and used

that ⟨pr⟩ = ⟨pCM⟩ = 0 and [xr,∇CM ] = [xCM ,∇r] = 0.

Further, the argument of the above integral reads,

∇× AL · ∇ × Aa = ∇ · (AL × (∇× Aa)) + AL · ∇ × (∇× Aa) .

The first term vanishes by Gauss theorem. The experimental condi-

tions assume that the atom lies well inside the region of magnetic field

and that the border effects ∇χ(x− xCM)×
(
1

2
x×B

)
can be disreg-

arded. Moreover, ∇ × (∇× Aa) = ∇ (∇ · Aa) −∆Aa. For the first term,

we integrate over xa, xb, using that

∇x
1

|x− xa|
= −∇xa

1

|x− xa|
, arriving to the integral of

1

|x− xa|
∇xa ·

(
Ψ(xa, xb)

∗ qa
ma

paΨ(xa, xb)

)
+ c.c., which is zero for an atom

in a stationary state, since by the continuity equation it corresponds to

the time-derivative of the atomic charge density. For the other term,

recall that

−∆
1

|x− xa|
= 4πδ(x− xa). Hence,

EjB =
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗
∫

d3xAL ·
(
δ(x− xa)

qa

ma
pa + δ(x− xb)

qb

mb
pb

)
Ψ(xa, xb) + c.c.

=
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗
(
AL(xa) ·

qa

ma
pa +AL(xb) ·

qb

mb
pb

)
Ψ(xa, xb) + c.c.

∼
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗
(
1

2
xa ×B ·

qa

ma
pa +

1

2
xb ×B ·

qb

mb
pb

)
Ψ(xa, xb) + c.c.

assuming that the atomic wave-function is negligibly small outside the

border of the experiment’s region. We now move to center-of-mass

and relative coordinates, assuming further that the atom as a whole
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is at rest (at the centre of mass location) during the experiment (i.e.,

⟨Ψ|pCM |Ψ⟩ = 0, pr ∼ pe, xr ∼ xe and
mp−me

mp+me
∼ 1). Hence,

EjB ∼
1

2

∫
d3xa d3xb Ψ(xa, xb)

∗
(
1

2
(xa − xCM )×B ·

qa

ma
pa +

1

2
(xb − xCM )×B ·

qb

mb
pb

)
Ψ(xa, xb)

+c.c.

=
1

2

(
−

e

2(mp +me)

)∫
d3xCM d3xr Ψ(xCM , xr)

∗ B ·
(
mp

me
−

me

mp

)
LrΨ(xCM , xr) + c.c.

= −
e

2mr

mp −me

mp +me
⟨Ψ|B · Lr|Ψ⟩ ∼ −

(
e

2me
+O(

me

mp
)

)
⟨Ψ|B · Le|Ψ⟩

3.4 Interaction of spin(s) with external magnetic field

We regard spin as an intrinsic magnetisation
qa
ma

Sa, leading to a vector

potential

As(x, t) =
µ0

4π
∇× ⟨Ψ|

(
qa
ma

Sa

|x− xa|
− qa
mb

Sb

|x− xb|

)
|Ψ⟩ (5)

whose interaction energy with an external magnetic field B(x, t) reads

ESB =
1

µ0

∫
d3x B(x, t) · ∇ × As(x, t)

=
e

4π
⟨Ψ|

∫
d3x B(x, t) ·

(
∇×∇×

(
1

me

Se

|x− xe|
− 1

mp

Sp

|x− xp|

))
|Ψ⟩

=
e

4π
⟨Ψ|

∫
d3x B(x, t) ·

[
∇
(
∇ ·
(

1

me

Se

|x− xe|
− 1

mp

Sp

|x− xp|

))]
|Ψ⟩

− e

4π
⟨Ψ|

∫
d3x B(x, t) ·

(
∆

(
1

me

Se

|x− xe|
− 1

mp

Sp

|x− xp|

))
|Ψ⟩

Since ∇ · B = 0, the first contribution integrates to zero by Gauss the-

orem since B · ∇ϕ = ∇ · (Bϕ)− ϕ∇ ·B. Hence,

ESB = e⟨Ψ|
(

1

me

B(xe, t) · Se −
1

mp

B(xp, t) · Sp

)
|Ψ⟩

thus completing the description of Zeeman effect. In the atomic limit

the usual expression is recovered.
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Stern-Gerlach effect. All forces, including the Lorentz force (Solari

& Natiello, 2022b), are obtained from actions as the response of the

action integral to a variation of the relative position of the interacting

bodies. Displacing by δx the position of the field B one gets

δESB = e⟨Ψ|
(

1

me

B(xe + δx, t) · Se −
1

mp

B(xp + δx, t) · Sp

)
|Ψ⟩ = δx · F

and then F ∼ ⟨Ψ|∇
(

e
me
B(x, t) · S

)
|Ψ⟩. The force is nonzero only for

spatially varying magnetic fields as observed in the experiment Bauer

(2023).

3.5 Spin-orbit interaction
If we follow the standard discourse of Quantum physics, spin-orbit rep-

resents mainly the interaction between the electron’s orbit and spin.

Such heuristic approach would break one of our fundamental propos-

itions: all the energies in the hydrogen atom are interaction energies

between proton and electron, no self energy is involved. A relational

view is actually forced to recognise that the orbit of the electron is a

motion relative to the proton. Hence, only their relative velocity can

matter. Such observation does not solve our problem, ... but let us

follow its lead.

The coupling of spin and relative current has two parts, namely the

interaction of proton spin
−e
mp

Sp with the relative current
epr
mr

as per-

ceived by the proton and the corresponding interaction of electron

spin
e

me

Se with relative current
−e(−pr)
mr

as perceived by the electron.

mr =
memp

me +mp

stands for the reduced mass and e

(
pe
me

− pp
mp

)
= e

pr
mr

.

The magnetic field operator associated to the relative current as seen

by the proton is hence the curl of the vector potential operator asso-

ciated to that current (recall that the energy contribution is the integ-

rated value of the operators over the wave-function), and correspond-
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ingly for the current perceived by the electron:

B̂jp(x)|Ψ⟩ =
µ0e

4π
∇x ×

(
1

|x− xp|

(
pe
me

− pp
mp

))
|Ψ⟩

=
µ0e

4π
∇x

1

|x− xp|
×
(
pe
me

− pp
mp

)
|Ψ⟩ (6)

B̂je(x)|Ψ⟩ =
µ0e

4π
∇x

1

|x− xe|
×
(
pe
me

− pp
mp

)
|Ψ⟩.

The magnetic field operators associated to the spin are:

B̂se(x) =
µ0e

4π
∇x ×

(
∇x ×

(
1

|x− xe|
Se

me

))
B̂sp(x) = −µ0e

4π
∇x ×

(
∇x ×

(
1

|x− xp|
Sp

mp

))
and the energy contribution is

ESO = κ
1

µ0

⟨Ψ|
∫
d3x B̂se(x) · B̂jp(x) + B̂sp(x) · B̂je(x)|Ψ⟩

where κ is a numerical constant that needs to be determined. We

transform the spin field operators as

B̂se(x) · B̂jp(x) =
µ0e

4πme
B̂jp(x) ·

(
∇

(
∇ ·

Se

|x− xe|

)
−∆

(
Se

|x− xe|

))
=

µ0e

4πme

(
∇ ·

(
B̂jp(x)

(
∇ ·

Se

|x− xe|

))
− B̂jp(x) ·∆

(
Se

|x− xe|

))
=

µ0e

4πme
B̂jp(x) · (4πSeδ(x− xe))

B̂sp(x) · B̂je(x) = −
µ0e

4πmp
B̂je(x) · (4πSpδ(x− xp)) (7)

using Gauss theorem and that ∇ · B = 0. Performing the x−integral

first, we obtain

ESO = −κµ0e
2

4π
⟨Ψ|

(
Se

me

+
Sp

mp

)
·
(
− (xp − xe)

|xe − xp|3
× pr
mr

)
|Ψ⟩

= −κµ0e
2

4π
⟨Ψ|

(
Se

me

+
Sp

mp

)
·
(

Lr

mr|xe − xp|3

)
|Ψ⟩, (8)

where Lr = xr × pr is the relative angular momentum operator.
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Let us complete the expression determining the value of κ before

we turn back to the question that opens this subsection. The expres-

sion for the electromagnetic energy (Equation 2) was introduced by

Maxwell considering the kind of interactions known at his time. It

is symmetric in the indexes of the two interacting systems, hence, if

P(12) is a permutation of indexes, the energy can be written as:

ESO =
1

2

{∫
d3x

[
ϵ0E1 · E2 +

1

µ0
B1 ·B2

]
+ P(12)

∫
d3x

[
ϵ0E1 · E2 +

1

µ0
B1 ·B2

]}
We may call the first integral the way in which system one acts upon

system two and the second integral is the reciprocal action. The en-

ergy can then be obtained by first establishing one action and next

“symmetrising”. The action of P(12) is merely changing the point of

view in a somewhat arbitrary form, while the imposition of symmetry

removes the arbitrariness since the acting group is a group of arbit-

rariness (see (Solari & Natiello, 2018)). The operation of taking two

different view points corresponds to operating with P(ep) as it can be

easily verified in all the previous expressions. Hence, unless κ =
1

2
we

would not be counting the interaction properly.

It remains to show that we are dealing with an interaction between

two different entities and not an internal interaction. Consider our fi-

nal expression, Eq. (8) and write it as:

ESO = −1

2

µ0e
2

4π
⟨Ψ|

(
Se

me

+
Sp

mp

)
·
(
(xe − xp)× (ve − vp)

|xe − xp|3

)
|Ψ⟩

=
1

2

∫
d3xed

3xp

{
Ψ†
(
(xe − xp)

|xe − xp|3

)
· e2

4πϵ0C2

(
Se × ve
me

− Sp × vp
mp

)
Ψ

}
−1

2

∫
d3xed

3xp

{
Ψ†
(
(xe − xp)

|xe − xp|3

)
· µ0e

2

4π

(
Se × vp
me

− Sp × ve
mp

)
Ψ

}
(Ψ† stands for the row matrix that is the transpose and complex con-

jugate of Ψ). Consider further the case Ψ = ψeψp, i.e., the case when

Ψ = ψeψp and in addition the distance |xe − xp| is macroscopic. In such

a case we can consider that the variation of the relative position with

respect to ⟨xe − xp⟩ is negligible in front of the macroscopic distance.

The main contribution of the first term reads

∼ 1

2

1

4πϵ0C2

(xp − xe)

|xe − xp|3
·
∫
d3xe

(
eψ†

e

Se × ve
me

ψe

)∫
d3xp

(
−e|ψp|2

)
,
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which represents the interaction between an electric dipole∫
d3xe

(
eψ†

e
Se×ve
me

ψe

)
, located in the electron (now approximated as a

point) and the proton (approximated as a point in front of the mac-

roscopic distance). This view is compatible with the idea that mag-

netic dipoles in motion produce electric dipole fields. Up to a certain

point,

(
eψ†

e
Se×ve
me

ψe

)
represents a density of electric dipoles and −e|ψp|2

a density of charge. The difference with such densities is that it is not

possible to limit the interaction to “part of the electron” or “part of a

proton”, hence a integration over full space is always mandatory., thus

the view of

(
eψ†

e
Se×ve
me

ψe

)
as density of classical dipoles is only an ana-

logy, it leaves aside the unity of the electron.

Actually, the dominant term in Spin-orbit interactions corresponds

to the electric dipole of the electron acting upon the proton. Thus,

what was described as an interaction between the electron and its

own orbit is now identified as the action of the electric dipole asso-

ciated with the moving electron with the proton charge. An equivalent

contribution appears with the action of P(ep). The last two terms are

magnetic field interactions between proton and electron.

The expression 8 corresponds well with the final expression in text-

book derivations. However, we have not resorted to analogy, nor have

we patched this or any other expression with gyromagnetic numbers

and have not further patched the expression with “relativistic correc-

tions” (such as Thomas’ correction) in the need to agree with exper-

iments. The derivation of the spin-orbit contribution highlights the

differences between the utilitarian/instrumentalist and the old style

approach.

Related experiments One of the best known results of the atomic

limit was the prediction of the hydrogen spectroscopic lines with

Schrödinger’s wave equation, providing a full theoretical expression

of the Rydberg constant. The transition n = 2 to n = 1 (Kramida et al.,
2023) is reported as the spectroscopic line at λ = 1215.6699Å. The line-

width allows for a calculated resolution into λ1 = 1215.668237310Å and

λ2 = 1215.673644608Å The state n = 2 is an octuplet, partially resolved

by the Spin-orbit Hamiltonian of Section 3.5 into a quadruplet and a

doublet for l = 1 and two unresolved states with l = 0. The difference
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between the two energy levels is calculated as

∆ESO =
3

2
ℏ2

1

24a30

(
1

2

µ0e
2

4πm2
e

)
me

mr

=
3

96

me

mr

α4meC
2

= 7.259023470408092 · 10−24J

while the calculated experimental energy difference amounts to

∆Eexp = hC(
1

λ1
− 1

λ2
) = 7.26816814178113 · 10−24J. The contribution con-

sists of:
3

2
ℏ2 coming from the level difference in ⟨L ·S⟩ between j = 3/2

and j = 1/2 (for l = 1 and s = 1/2),
1

24a30
= ⟨R21(r)|

1

r3
|R21(r)⟩ for the as-

sociated Hydrogen (n, l)-radial wave-function, a0 =
ℏ

αmeC
is the Bohr

radius,me is the electron mass and α =
µ0e

2C

4πℏ
is the fine-structure con-

stant. We have disregarded the nuclear spin contribution.

3.6 Spin-spin interaction (part of hyperfine structure)
The interaction between spins within the atom uses an expression for

the vector potential corresponding to that in Section 3.4 and reads

ESS =
1

µ0

⟨Ψ|
∫
d3x Be(x, t) ·Bp(x, t)|Ψ⟩

Be = ∇×
(
∇×

(
e

me

µ0

4π

Se(xe)

|x− xe|

))
Bp = ∇×

(
∇×

(
−e
mp

µ0

4π

Sp(xp)

|x− xp|

))
To proceed with the calculation we need to break the e− p symmetry,

namely ESS = 1
2
(Ee→p

SS + Ep→e
SS ). We pick the electron to proceed with the
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calculation, applying Gauss theorem again as in Section 3.4:

Ee→p
SS =

1

µ0

e

me

µ0

4π
⟨Ψ|

∫
d3x Bp(x) ·

(
−∆

Se(xe)

|x− xe|

)
|Ψ⟩

= − e

mp

e

me

µ0

4π
⟨Ψ|

∫
d3x

(
∇x ×

(
∇x ×

Sp

|x− xp|

))
· Seδ(x− xe)|Ψ⟩

= − e

mp

e

me

µ0

4π
⟨Ψ|

[(
∇x ×

(
∇x ×

Sp

|x− xp|

))
· Se

]
x=xe

|Ψ⟩

Through the vector calculus identities

− (∇x × (∇x × φ(x)Sp)) · Se = (Se ×∇x) · (Sp ×∇x)φ(x)

(Se ×∇x) · (Sp ×∇x)
1

|x− xp|
= [(Se · Sp)∆x − (Se · ∇x) (Sp · ∇x)]

1

|x− xp|

we obtain

Ee→p
SS =

e

mp

e

me

µ0

4π
⟨Ψ|

[
[(Se · Sp)∆x − (Se · ∇x) (Sp · ∇x)]

1

|x− xp|

]
x=xe

|Ψ⟩

ESS =
e

mp

e

me

µ0

4π
⟨Ψ|

[
[(Se · Sp)∆x − (Se · ∇x) (Sp · ∇x)]

1

|x− xe|

]
x=xp

|Ψ⟩

since both contributions are identical. The spin-spin interaction is sym-

metric in front of the interchange of electron and proton and then car-

ries a factor one in front.

3.7 Interaction with an external electric field
Suppose the atom is in interaction with an external electric field, EZ .
The electromagnetic interaction is then:

EAZ = ϵ0

∫
dx ((EA + Eam

A ) · EZ)

where EA = −∇V and Eam
A = −∂A

∂t
being (V,A) the electromagnetic

potentials associated to the atom:

A =
µ0

4π
∇× ⟨Ψ|

(
e

me

Me

|x− xe|
− e

mp

Mp

|x− xp|

)
|Ψ⟩

V =
e

4πϵ0
⟨Ψ|

(
1

|x− xe|
− 1

|x− xp|

)
|Ψ⟩
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4 Concluding remarks
The quantum mechanics that emerges from electromagnetism has

been tested in the construction of the internal energies for the Hydro-

gen atom producing outstanding results, superior to those of standard

quantum mechanics. Equal in precision but definitely superior in con-

sistence and consilience. Another insight gained is that the moving

spin reveals its role as the carrier of electric polarisation in the spin-

orbit interaction.

The path followed in this construction is blocked for the standard

presentation of QM as extension from mechanics by the early assump-

tion of point-particles. The usual form used to incorporate the Lorentz

force in the case of point particles was the constructive basis for sev-

eral authors such as Pauli (Pauli Jr, 1927) and Dirac (Dirac, 1928). This

led to the identification of the momentum p with the operator −iℏ∇
(in all situations), a compensating error sustained in Bohr’s principle

of correspondence. In turn, this chain of decisions made impossible

to associate the operator with the current and prevented the produc-

tion of EM interactions in QM except by resource to analogy.

In contrast, in the present work the unity of concepts is sought in

the fundamentals. The Lorentz force was integrated to Maxwell equa-

tions in (Solari & Natiello, 2022b) (see Part I as well), without restric-

tions to point-particles, using Lorentz’ Lagrangian formulation. The

integration with mechanics was then performed by incorporating the

kinetic part of the action integral in the form suggested by the QM of

the isolated particle, thus reuniting the material and action sides of the

entity. After this synthetic effort was completed, Hamilton’s principle

showed the extraordinary power of consilience which was its initial jus-

tification (Hamilton, 1834). It is worth mentioning that so far there has

been no need to request the quantification of the EM field. All results

are consistent with Planck’s view (Brush, 2002) who recognised that the

exchange of energy in absorption and emission processes was quan-

tified yet, this fact does not imply that the field itself needs to be quan-

tified a priori, being the latter an idea usually attributed to Einstein

(Einstein, 1905).

The view of inferred matter as having identity by itself with forces

that abut around was the standard view used in the construction of
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physics in the late XIX century ([529] Maxwell, 1873) and propagates

there on, without being given reconsideration. For Einstein Einstein

(1936) the concept of material point is fundamental for Newton’s mech-

anics (not just an idealisation). In his work Einstein criticises Lorentz’

proposal of electrons extending in the space (with soft borders in (Lorentz,

1892, §33) and spherical in (Lorentz, 1904, §8)) in the form:

The weakness of this theory lies in the fact that it tried to de-

termine the phenomena by a combination of partial differ-

ential equations (Maxwell’s field equations for empty space)

and total differential equations (equations of motion of points),

which procedure was obviously unnatural. The unsatisfact-

ory part of the theory showed up externally by the necessity

of assuming finite dimensions for the particles in order to

prevent the electromagnetic field existing at their surfaces

from becoming infinitely great. The theory failed moreover

to give any explanation concerning the tremendous forces

which hold the electric charges on the individual particles.

(Einstein, 1936)

The criticism is faulty in several accounts. As we have shown in Part I,

a single mathematical entity, Hamilton’s principle, is able to produce

the equations of Electromagnetism and mechanics. Einstein gives no

argument to justify the character of “unnatural” for Lorentz’ proced-

ure, actually, “unnatural” appears to stand for “alien to my scientific

habit”. In contrast, mathematical statements require proofs as we of-

fer in Part I. The argument concerning a need for a force to held to-

gether the electron is equally faulty, it assumes that there are parts

that need to be held together, that the quantum entity is a composite

in which one part can act on another part. Actually, acquaintance with

Maxwell’s arguments, make us to realise that the electrostatic energy

computed in electromagnetism requires the possibility of dividing the

charge in infinitesimal amounts. Something that can be considered

a reasonable limit in macroscopic physics (Maxwell’s situation) but is

ridiculous when it comes to the electron.

Maxwell’s concept of science and our own concept differ radically

from Einstein’s. For Maxwell and the present work, the construction is

a relevant part of the theory, for Einstein:
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There is no inductive method which could lead to the fun-

damental concepts of physics. Failure to understand this

fact constituted the basic philosophical error of so many in-

vestigators of the nineteenth century. It was probably the

reason why the molecular theory, and Maxwell’s theory were

able to establish themselves only at a relatively late date.

Logical thinking is necessarily deductive; it is based upon

hypothetical concepts and axioms. How can we hope to

choose the latter in such a manner as to justify us in expect-

ing success as a consequence? (Einstein, 1936).

Einstein’s utterly instrumentalist statements contrast with the legend

of his early reading of Kant’s “Critic of pure reason” which elaborates

in the opposite direction through the concept of synthetic judgement.
The final question posed was answered by Peirce’s abduction (retro-

duction)(Peirce, 1994) and the whole issue was considered in Whewell’s

philosophy of science(Whewell, 2016), also here in contrasting terms.

In contrast, Einstein accepted without criticism that “Everywhere

(including the interior of ponderable bodies) the seat of the field is the

empty space. (Einstein, 1936)” (referring to the EM fields) despite being

conscious that the idea perpetuated the essence of the ether (Einstein,

1924).

The reason we emphasise Einstein’s positions is that he has been

socially instituted as the “most perfect scientist”, something “known”

even by the illiterate. Actually, acceptance of his statement requires

the previous acceptance of the utilitarian view of science.

We believe we have shown by example that when we adopt a dif-

ferent epistemic praxis such as we have done in this work and in our

reconstruction of EM (Solari & Natiello, 2022b), we reach a different

theoretical understanding, actually a deeper understanding when the

epistemic praxis is more demanding, as it is the relation between our

dualist phenomenology (Solari & Natiello, 2022a) and instrumental-

ism. Thus, physics depends not only on the observable natural phe-

nomena but it depends as well on our philosophical disposition. Yet,

if the concept of theory is weakened so as to be reduced to the equa-

tions (cf. Hertz(p.21 Hertz, 1893)), the distinctions between theories

mostly fade out, the phenomenological link disappears and interpret-

ation crops up to guide the use of the formulae after sacrificing the
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unity of thought, critical and phenomenological actions.

In summary, there is no compelling reason to believe scientific res-

ults that have been achieved by weakening the old scientific demand

for Truth into the current demand of usefulness. Newtonian physics is

not incompatible with EM, as it is usually preached; and both of them

can live in harmony with quantum mechanics. There is no reason for

abandoning (relational) Cartesian geometry or to consider time as an

“odd” spatial coordinate. There is no license to use formulae outside

their range of validity as it is too often done.

Too often in the course of this investigation we have encountered

misrepresentations of the thoughts and writings of the natural philo-

sophers that developed physics until the middle of the XIX century,

when the scientist was born. Abridged representations of their ideas

and writings creep in as soon as the creators fade out. Absolute space

is attributed to Newton’s mechanics and “true motion” disappears (Sol-

ari & Natiello, 2021), Faraday becomes a supporter of the ether rather

than the careful philosopher he was, absolutely inclined to entertain

doubts as much as possible avoiding to precipitate into simplifying in-

ventions. Faraday writes in a letter to R Taylor:

But it is always safe and philosophic to distinguish, as much

as is in our power, fact from theory; the experience of past

ages is sufficient to show us the wisdom of such a course;

and considering the constant tendency of the mind to rest

on an assumption, and, when it answers every present pur-

pose, to forget that it is an assumption, we ought to remem-

ber that it, in such cases, becomes a prejudice, and inevit-

ably interferes, more or less, with a clear-sighted judgment

[...]

Maxwell’s plead to consider the hypothesis of the ether as worth of

research (p. 493 Maxwell, 1873) was transformed as well into a belief

when the story was told. Yielding to the needs of the new social pos-

ition of science (and its emerging epistemic praxis), Maxwell’s theory

was deprived of its mathematical construction lowering the accept-

ance standard from correct into plausible.

In our own experience, we have spent more time undoing promis-

sory hunches than constructing correct reasoning. It is worth noticing
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that such hunches trigger exploratory actions and as such are import-

ant. It is believing, instead of doubting them, what makes them preju-

dice. What appears to us as correct is made of the debris of our errors.

The great minds that constructed Special Relativity and Quantum

Theory were passengers of their epoch, a time when “conquering

nature” (the old imperialist dream of Francis Bacon) had finally taken

prevalence over the “understanding nature,” sought by his contempor-

ary Galileo Galilei. Our own work cannot escape the rule, even though

we are not “great minds”. We live in a time where Nature reminds us

that we must understand ki 5 and, consequently, love ki. Science must

then rescue the teaching of the old masters, the natural philosophers,

and their practice of critical thinking.
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