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Metamorphosis of the monochromatic spectrum in a double-cavity laser as a function
of the feedback rate

Alejandro A. Duarte and Herna´n G. Solari
Departamento de Fı´sica, FCEN, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

~Received 23 January 1998!

We discuss the changes in the spectrum of monochromatic modes in a double-cavity laser showing how the
characteristic frequencies change from those proper of a short cavity into those proper of a long cavity using
as control parameter the reflectivity of an ‘‘external’’ mirror. The problem is cast into the language of bifur-
cations in a nonlinear eigenvalue problem. The results show that the transition is mostly dictated by the
boundary conditions and occurs regardless of the laser model. Hence, the study presented can be extended to
other optical cavities and boundary value problems. Limits of validity of simpler double-cavity laser models,
such as the Lang-Kobayashi, are drawn.@S1050-2947~98!10706-0#

PACS number~s!: 42.60.Mi, 42.60.Da, 42.65.Tg
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I. INTRODUCTION

The bifurcations through which complexity arises in e
tended systems are one of the central subjects of pre
studies in nonlinear dynamics. In this context, the dep
dence of the solutions with respect to the boundary con
tions deserves special attention. In this work we consider
changes affecting the solutions of a laser with optical re
jection as a function of the boundary conditions. The cho
of system has to do, in part, with its relevance in technolo
cal applications.

When a semiconductor laser forms part of a comp
communication device there is a reasonable possibility
the light emerging from the laser to be reflected in so
other element of the device thus reentering the laser.
known that even small amounts of reentering reflected li
can destabilize the laser, hence producing temporal osc
tions of various types such as ‘‘low frequency fluctuation
@2,3# and ‘‘coherent collapse’’@3–6#.

The academic version of this problem consists in
study of a laser~semiconductor if possible! with an external
@7# mirror, conforming in such a form a ‘‘double-cavity la
ser’’ @1–6,8#. The position of the external mirror and it
reflectivity are considered parameters of the problem.

Let us consider a laser of lengthl ( l;102300mm! with
an external mirror of reflectivityR located at a distanceL
(L@ l ). There are two clear limit cases, whenR50 the dis-
tance between the monochromatic modes isDv;v/ l , with v
the speed of the light in the semiconductor dielectric; wh
R51 the distance between laser modes isDv;c/L with c
the speed of light in the vacuum.

For reflectivity values close to the limit cases we can
tempt perturbative solutions@9#. For R;1 the laser losses
are expected to be very small and the solutions can be
tained as expansions in the empty cavity modes@8#. For R
50 the laser works at a single~stable! longitudinal mode,
hence, forR;0 it can be assumed to operate near~in terms
of frequencies! this mode and it is plausible to neglect a
other monochromatic modes of the semiconductor laser.

The R;0 case has been considered frequently in the
erature@1–6# in terms of time-delayed ordinary differentia
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equations. This is under the assumption that~1! the spatial
extension of the semiconductor can be neglected assumi
‘‘single’’ ~longitudinal! mode operation, and~2! that the re-
flection in the external mirror is represented by a term p
portional to the electric field delayed at timet52L/c. The
Lang-Kobayashi@1# equations are the paradigm of this pr
sentation.

We will avoid these simplifying hypotheses and we w
describe the semiconductor medium in its full spatial ext
sion, hence allowing for ‘‘longitudinal multimode’’ opera
tion. We will also consider the feedback a consequence
the boundary conditions in the external mirror and in t
semiconductor-vacuum transition~thus avoiding the second
simplifying hypothesis!. Without the second assumption th
restriction of the problem to the semiconductor media res
in a set of partial differential equations~PDE’s! with time-
delayed boundary conditions. Having lifted two hypothes
we are in conditions to check when they are satisfied
when they are no longer reasonable hypotheses. Hence
can draw a limit of validity for the Lang-Kobayashi equ
tions.

Some of our motivating questions for this study are t
following: How does the spectrum change~the metamorpho-
sis! when R is increased from 0 to 1? Do boundary cond
tions rule completely the bifurcations or, contrarily, is th
laser physics determinant?~We shall see that the laser play
a secondary role and the boundary conditions rule the m
morphosis.! What kind of bifurcations~if any! enter in the
process? All these questions, and others, will find answer
what follows.

The rest of the work is organized as follows. Section
formulates the problem as a nonlinear eigenvalue problem
laser physics. Section III discusses how the monochrom
modes are found. Although this section is basically techni
we introduce here the language of multivalued functions t
will be used in the discussion of the problem and discuss
solutions of the equations emerging from the boundary c
ditions. Section IV describes the sequence of bifurcations
monochromatic solutions that occur when the reflectivity
increased fromR50 up to R51. Section V presents the
concluding remarks.
614 © 1998 The American Physical Society
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II. LASER WITH OPTICAL FEEDBACK

Let us begin by presenting the laser equations in a dou
cavity. We consider a laser that extends in thex direction;
the active medium is located at 0<x< l while the external
mirror of reflectivityR is placed atx52L. The dependence
of the fields with the transversal coordinates, (y,z), is ne-
glected in what follows, hence, the laser is described by
electric fieldE(x,t), the polarizationP(x,t) @P(x,t)50 for
2L<x,0#, and the carrier densityN(x,t) @N(x,t)50 for
2L<x,0#. The electric field satisfies Maxwell’s equation

]2E~x,t !

]x2
2

1

c2

]2E~x,t !

]t2
5m0

]2P~x,t !

]t2
, ~1!

while the material field satisfies

]N~x,t !

]t
52g iN~x,t !1J1DDN~x,t !

1
2i

\
@E~x,t !P* ~x,t !2E* ~x,t !P~x,t !#. ~2!

The different variables and operators have the follow
meaning: J5current pumping the carriers,D5diffusion
coefficient for carriers, DN5Laplacian of N, g i

21

5nonradiative decay time for the carrier density (;109 Hz!.
The boundary conditions complete our set of equatio

they are~i! the electric field vanishes at the~perfect! mirror

E~ l ,t !50; ~3!

the carriers cannot leave the semiconductor

]N~x,t !/]xux5 l5]N~x,t !/]xux50 ; ~4!

the electric and the magnetic fields are continuous~assuming
that the semiconductor presents no magnetic polarizatio!

lim
e→0

E~2e,t !5 lim
e→0

E~e,t !, ~5!

lim
e→0

]E~x,t !/]xux52e5 lim
e→0

]E~x,t !/]xux5e . ~6!

The reflectivity of the external mirror isR. This condition
has to be written in terms of the general solution of Ma
well’s equation in the vacuum,E(x,t)5A1(ct2x)
1A2(ct1x), for x<0, whereA is an arbitraryC2 function
andc the speed of light. The condition reads

A1~ct1L !52RA2~ct2L ! ~7!

or E(x,t)52RA@c(t22L/c)2x#1A(ct1x). Note that
having written the general solution for the electric field
xP@2L,0# we need to seek solutions to Eq.~1! only for x
P@0,l #. In this setting the problem becomes a PDE w
boundary conditions involving time delays.

In what follows we will further restrict our study to th
case in which the diffusion of carriers is very fast, i.e.,D
large in Eq.~2!. Neglecting the spatial dependence of t
carrier densityN(x,t)5N(t) in Eq. ~2! we obtain
le

e

g

s;

-

dN~ t !

dt
52g iN~ t !1J

1
2i

\ l E0

l

dx„E~x,t !P* ~x,t !2E* ~x,t !P~x,t !….

~8!

This approximation is compatible with the boundary con
tions.

The relation betweenE, P, andN completes the equation
set defining the characteristics of the active material. Un
the assumption of a quadratic energy dependence~with re-
spect to the electron wave vector! the following relation has
been introduced in@10,11# for the dielectric susceptibility,
P(x,v)5e0x(v,N)E(x,v), as a function of the frequenc
v and the carrier densityN(v):

x~v!5
Gugu2

e0\ H 1

p2S 2m

\ D 3/2

3S i
p

2
Az~v!1A\km

2

2m
D 1

N~v!

z~v! J , ~9!

with z(v)5v2vg1 i /T, T the characteristic decay time o
the polarization, andvg the frequency associated with th
energy gap in the electronic bands of the semiconductor.
values adopted in numerical calculations areg/e50.20 Å,
vg52.35310215 Hz, G50.4, 1/T51013 Hz, km5p/5 Å21,
l 5300 mm, andL535l .

Monochromatic solutions for the laser in a double cav
can be found by proposing

Ej~x,t !5exp ~2 ivt !

3@Ajexp ~ ik jx!1Bjexp ~2 ik jx!#, ~10!

where the subscriptj indicates the region:j 50 for the
vacuum andj 51 for the active media.

Since the boundary conditions~3,5,6,7! are linear inE,
the nontrivial,EÞ0, monochromatic solutions satisfy

CB~k0 ,k1 ,R,L,l !

[k0$@exp~2ik1l !21#@R exp~2ik0L !11#%

1k1$@exp~2ik1l !11#@R exp~2ik0L !21#%50, ~11!

we will refer to Eq. ~11! as the ‘‘boundary equation’’ for
simplicity.

The Maxwell equations~1! are also linear inE, since we
have assumed a linear susceptibility; forEÞ0 they are sat-
isfied if and only if

k0
25v2/c2, ~12!

2k1
21

v2

c2
52

v2

c2
x~v,N!. ~13!
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III. BIFURCATIONS ASSOCIATED
WITH THE BOUNDARY CONDITIONS

The only equation whereE enters in a nonlinear way i
Eq. ~8! and it will determine the amplitude,Aj ,Bj in Eq.
~10!, of the electric field as a function of the pumping curre
J. The current associated with a zero amplitude defines
current at threshold for the mode considered. Equation~8!
does not convey information about the spectrum of mo
chromatic modes in the laser. We will not turn to this equ
tion for the rest of the discussion; the only reference to
material media left is encrypted in the dielectric constant

Hence, the remaining task is to solve a set of five r
equations@Eq. ~12! is real while Eqs.~13! and~11! are com-
plex equations# for five real variables (v,k0 ,N, which are
real, andk1, which is complex!, hence, the equation wil
have solutions, in general, only at isolated values: the va
corresponding to the monochromatic modes.

We like to think of Eqs.~11!–~13! in the following form:
Eq. ~12! defines the functionk0(v)5v/c, Eq. ~11! defines
the functionk1(k0)5k1(v/c) ~which is multivalued, i.e., has
different branches!, and Eq. ~13! defines the function
N(v,k0 ,k1)5N(v); N(v) evaluates to complex numbers
general. Since the carrier density is a real number the co
tion Im@N(v)#50 must be imposed. This latter conditio
cannot be satisfied for general values ofv and determines
the frequencies of the monochromatic solutions.

We look for solutions of Eq.~11! using a recursive algo
rithm,

k1
m11~q!5

1

2l i
lnS 2

2k0~W11!1k1
m~W21!

k0~W11!1k1
m~q!~W21!

D 1
qp

l
,

~14!

whereW5R exp(i2k0L) andq labels the branch of the solu
tion; i.e., for fixed values of the parameters and the f
quencyw5k0c there is a numerable set of solutions to t
boundary conditions~11! labeled byq.

The fixed points of the map~14! are the solutions of Eq
~11!. The iterative procedure converges for most values
the parameters and the frequency. Since Eq.~14! defines a
one-dimensional complex map, either Eq.~14! converges or
its inverse map

k1
m2152k0

@exp~ i2k1
ml !21#~W11!

@exp~ i2k1
ml !11#~W21!

~15!

converges or the derivative of the map at the fixed point
an absolute value of 1.

It is an interesting fact that only in the region of the me
morphosis of the spectrum is the inverse algorithm~15!
needed.

The different branches of solutions of Eq.~11! are clearly
separated whenever the conditions for the implicit funct
theorem are satisfied; in this case we need

]CB~k0 ,k1 ,R,L,l !

]k1
Þ0 ~16!

at the fixed point of Eq.~14!.
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When the hypotheseis of the implicit function theore
~16! are not satisfied, say atk15k1

c , k05k0
c , R5Rc, the

expression resulting from the boundary conditions~11! reads

CB~k0 ,k1 ,R,L,l !5a~k0 ,R,L,l !1b~k0 ,R,L,l !~k12kc!
2

1O~ uk12kcu3! ~17!

with a(k0
c ,Rc,L,l )50 andb(k0

c ,Rc,L,l )Þ0. Note that there
are two real conditions to be satisfied at the critical point a
this requires us to adjust two parameters. We have arbitra
chosenk0 and R @the bifurcation set is a one-dimension
object in the three-dimensional space (v,W)#. The change
produced in the solutions of Eq.~11! by the bifurcation at the
critical point (k1

c ,k0
c ,Rc) is schematically presented in Fig. 1

Equation~17! represents the local change of the solutio
of the boundary equation~11!. This description has to be
integrated in the global picture that displays several branc
of solutions.

Instead of discussing the changes as a function of
parameter it is useful to notice thatR andL appear only in
Eq. ~11! and always in the formW[R exp(2ivL); hence we
shall consider the dependency of solutions with respect to
complex parameterW ~this situation can also be thought a
the L→` limit !.

For every value of the frequencyv, Eq. ~11! defines an
implicit map in the complex plane that relates the imagek1
to its preimageW. SinceuWu5R defines a circle, for fixedR
and v the boundary equation defines the images of t
circle. The locus of this image is given by the level curve

R5uWu5Uk0~z21!2k1~z11!

k0~z21!1k1~z11!
U. ~18!

The levels curves are presented in Fig. 2 for different val
of R.

Note that forR50 the ‘‘circle’’ uWu50 is actually re-
duced to a point; correspondingly, its images are points.
RÞ0 the structure of the circle becomes visible and the
ages of the circle are closed curves.

Notice further that for different values ofR the images of
the circle revolve around one or more image points ofW
50 ~the number of points enclosed depends on the valu
R).

The change in the number of points enclosed by a gi
image of the circle occurs at some critical values ofR where
two different images of the circle touch each other and me
according to the local mechanism described by~17! @12#.

FIG. 1. Bifurcation of the solutions of the boundary equations
(k1

c ,k0
c ,Rc). The curves represent the trace ofk1 as a function ofv

for three different values of the reflectivityR.
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IV. METAMORPHOSIS OF THE SPECTRUM
OF MONOCHROMATIC SOLUTIONS

Having examined the bifurcations of solutions of t
equations associated with the boundary conditions we tur
the problem of how these bifurcations and others alter
spectrum of monochromatic solutions. The discussion is
ganized forR increasing from 0 to 1.

We recall that, after solving the equations associated w
the boundary conditions the frequencies of the monoch
matic modes are those determined by the implicit equa
Im@N(v)#50 ~see Sec. III for definitions! since the carrier
densityN is a real number.

For R50 the graph of Im@N(v)# consists of a set of lines
with negative slope. The lines correspond to different so
tions of the boundary conditions and can be labeled, for fi
v, by an integerq as in Eq.~14!. The intersections of thes
lines with thev axis determine the frequencies of the mon
chromatic modes; see Fig. 3. The mode with minimal va
of Re@N(v)# is the stable~lasing! solution of the laser with-
out optical reinjection~see@11# for a discussion!. Note also
that the Lang-Kobayashi equations@1# for R50 present only
this stable solution while all other modes have been
glected.

For R.0 the Im@N(v)# lines acquire a modulation tha
increases in depth with increasingR. The period of the
modulation is determined by the ratioL/ l . In Fig. 4 a few
more monochromatic solutions have emerged thro
saddle-node bifurcations. These new solutions are clust
around the modes of the laser without optical reinjection
the Re(N)(v) plot ~see Fig. 4! and we used to refer to them
as ‘‘islands.’’ They are the finiteL version of the circles
emerging from the points in our discussion of the bifurc
tions of solutions of the boundary equations~Sec. III!. The
island emerging from the stable solution of the laser with
optical feedback approximately correspond to the solution
the Lang-Kobayashi equation~see Fig. 6 of@2# and Fig. 1 of
@3#!.

Increasing the reflectivity toR50.010 48 the plotN(v)
changes significantly, see Fig. 5. We can see in Fig. 5
for low frequencies the islands have merged into one, w
for high frequencies the structure of the modes still

FIG. 2. Complex wave vectork1 allowed for different values of
R. Contour lines are labeled byR and increase fromR50 ~points!
to R51 ~real axis!.
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sembles a set of islands. This change is the direct co
quence of the bifurcations of solutions of the boundary eq
tions discussed in Sec. III. For smallR each island was
linked to a single branch of the solutions of Eq.~11!; the
bifurcations changing the multivalued solutions of Eq.~11!
reflect similar changes in the spectrum of monochroma
modes, i.e., they force the merging of islands.

The graph of Im@N(v)# is also telling; see Fig. 6. The
lines corresponding to different branches of solutions are
longer roughly parallel. There are some lines that inters
several branches of solutions; these lines are associated
solutions of the algorithm~15! while their change of slope
~from negative to positive or vice versa! is roughly related to
marginally stable solutions of the maps~14! and ~15!.

FIG. 3. Carrier density vs frequency for the laser without ext
nal mirror. Inset: the frequencies of the monochromatic modes
respond to the intersection of the lines Im@N(v)# with the v axis.
The frequencies are measured in units of 1/T.

FIG. 4. Islands of solutions in the carrier density vs modal f
quency plot forR50.008. Inset: the frequencies of the monochr
matic modes correspond to the intersection of the lines Im@N(v)#
with the v axis.
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The solutions obtained with the algorithm~15! are dis-
played in Fig. 7 for several values ofR. Since the appearanc
of new monochromatic modes~or their disappearance! cor-
responds to the appearance or disappearance of intersec
of Im@N(v)# with thev axis, we can see in Fig. 7 how thes
changes are operated through successive saddle-node
cations occurring in a very small region of parameter spa

It is important to realize that the description of the
changes in the spectrum of monochromatic modes is bey
the possibilities of the Lang-Kobayashi equations since
requires the interaction in bifurcations of solutions comi
from different islands, i.e., from different modes of the las
without feedback, and there is no room for them in the La
Kobayashi equations.

For values ofR beyond the transition region,R.0.011
the spectrum of monochromatic modes is represented b
single wavy line. Increasing the value ofR the waviness
disappears gradually and the spectrum takes a form
closely resembles the situation forR51; see Fig. 8.

FIG. 5. Carrier density as a function of the frequency for
transitional case (R50.010 48,l 5300 mm, L5353 l ).

FIG. 6. Function Im@N(v)# for R50.010 48. Different lines
correspond to different determinations ofk1(v). The points with
Im@N(v)#50 correspond to solutions of the problem.
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V. CONCLUDING REMARKS

We have discussed the changes~metamorphosis! of the
spectrum of monochromatic modes in a semiconductor la
with optical feedback as a function of the reflectivity of th
external mirror.

The changes observed belong to two classes, the first c
correspond to the formation of ‘‘islands’’ as a consequen
of coupling the laser to the external cavity. This change
curs for very low values of the reflectivity and is qualit
tively similar to those described by the Lang-Kobayas
equations@2,3#.

The second change involves the boundary conditi
more deeply and is related to bifurcations of the solutions
the boundary condition equations and to the fact that they
multivalued equations. This second change establishe
limit of validity of the Lang-Kobayashi equations asR

FIG. 7. Creation of new modes through saddle-node bifurcati
increasing the value ofR.

FIG. 8. Carrier density vs frequency for reflectivityR50.018.
In the inset the function Im@N(v)#. The modes coming from the
inverse algorithm~15! have a very large carrier density and are n
shown.
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;0.011@a value that is expected to depend on the mode
of the semiconductor susceptibilityx(v) but very weakly on
the position of the external mirror#. Beyond this value of
reflectivity, the description of the laser with optical feedba
requires a multilongitudinal model such as the one int
duced in@11#.

It is important to realize that the need of a multilongit
dinal model has been already suggested at least in one
perimental work@4# where multilongitudinal operation of a
n

n

.

g

-

x-

semiconductor laser with optical feedback has been repo
beyond the region known as coherence collapse.
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