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Metamorphosis of the monochromatic spectrum in a double-cavity laser as a function
of the feedback rate
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We discuss the changes in the spectrum of monochromatic modes in a double-cavity laser showing how the
characteristic frequencies change from those proper of a short cavity into those proper of a long cavity using
as control parameter the reflectivity of an “external” mirror. The problem is cast into the language of bifur-
cations in a nonlinear eigenvalue problem. The results show that the transition is mostly dictated by the
boundary conditions and occurs regardless of the laser model. Hence, the study presented can be extended to
other optical cavities and boundary value problems. Limits of validity of simpler double-cavity laser models,
such as the Lang-Kobayashi, are draj1050-294®8)10706-7

PACS numbes): 42.60.Mi, 42.60.Da, 42.65.Tg

[. INTRODUCTION equations. This is under the assumption tfiatthe spatial
extension of the semiconductor can be neglected assuming a
The bifurcations through which complexity arises in ex- “single” (longitudina) mode operation, an¢?) that the re-
tended systems are one of the central subjects of presefiéction in the external mirror is represented by a term pro-
studies in nonlinear dynamics. In this context, the depenportional to the electric field delayed at time=2L/c. The
dence of the solutions with respect to the boundary conditang-Kobayash[1] equations are the paradigm of this pre-
tions deserves special attention. In this work we consider theentation.
changes affecting the solutions of a laser with optical rein- We will avoid these simplifying hypotheses and we will
jection as a function of the boundary conditions. The choiceadescribe the semiconductor medium in its full spatial exten-
of system has to do, in part, with its relevance in technologision, hence allowing for “longitudinal multimode” opera-
cal applications. tion. We will also consider the feedback a consequence of
When a semiconductor laser forms part of a complexhe boundary conditions in the external mirror and in the
communication device there is a reasonable possibility fosemiconductor-vacuum transitigthus avoiding the second
the light emerging from the laser to be reflected in somesimplifying hypothesis Without the second assumption the
other element of the device thus reentering the laser. It isestriction of the problem to the semiconductor media results
known that even small amounts of reentering reflected lighin a set of partial differential equatiof®DE'’s) with time-
can destabilize the laser, hence producing temporal oscilladelayed boundary conditions. Having lifted two hypotheses
tions of various types such as “low frequency fluctuations” we are in conditions to check when they are satisfied and
[2,3] and “coherent collapse[3—6]. when they are no longer reasonable hypotheses. Hence, we
The academic version of this problem consists in thecan draw a limit of validity for the Lang-Kobayashi equa-
study of a lasefsemiconductor if possibjavith an external tions.
[7] mirror, conforming in such a form a “double-cavity la-  Some of our motivating questions for this study are the
ser” [1-6,8. The position of the external mirror and its following: How does the spectrum chan@lae metamorpho-
reflectivity are considered parameters of the problem. si9 whenR is increased from 0 to 1? Do boundary condi-
Let us consider a laser of length(l~10—300um) with  tions rule completely the bifurcations or, contrarily, is the
an external mirror of reflectivityR located at a distanck laser physics determinant®e shall see that the laser plays
(L>1). There are two clear limit cases, whB*0 the dis- a secondary role and the boundary conditions rule the meta-
tance between the monochromatic modesds~uv/l, with v morphosis. What kind of bifurcationg(if any) enter in the
the speed of the light in the semiconductor dielectric; wherprocess? All these questions, and others, will find answers in
R=1 the distance between laser modedis~c/L with ¢ what follows.
the speed of light in the vacuum. The rest of the work is organized as follows. Section I
For reflectivity values close to the limit cases we can atformulates the problem as a nonlinear eigenvalue problem in
tempt perturbative solution®]. For R~1 the laser losses laser physics. Section Il discusses how the monochromatic
are expected to be very small and the solutions can be olodes are found. Although this section is basically technical,
tained as expansions in the empty cavity mofds For R we introduce here the language of multivalued functions that
=0 the laser works at a singlgtable longitudinal mode, will be used in the discussion of the problem and discuss the
hence, forR~0 it can be assumed to operate néarterms  solutions of the equations emerging from the boundary con-
of frequenciey this mode and it is plausible to neglect all ditions. Section IV describes the sequence of bifurcations of
other monochromatic modes of the semiconductor laser. monochromatic solutions that occur when the reflectivity is
The R~0 case has been considered frequently in the litincreased fromR=0 up to R=1. Section V presents the
erature[1-6] in terms of time-delayed ordinary differential concluding remarks.
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II. LASER WITH OPTICAL FEEDBACK dN(t)

———=—yN(t)+J
Let us begin by presenting the laser equations in a double ~ dt NN

cavity. We consider a laser that extends in thdirection; 2i (1
the active medium is located atk<| while the external + _f dx(E(x,t)P* (x,t)— E* (X, 1) P(x,1)).
mirror of reflectivityR is placed ak= —L. The dependence il Jo

of the fields with the transversal coordinateg,?), is ne- @®)
glected in what follows, hence, the laser is described by the

electric fieldE(x,t), the polarizatiorP(x,t) [P(x,t)=0 for
—L=x<0], and the carrier densitj(x,t) [N(x,t)=0 for
—L=<x<0]. The electric field satisfies Maxwell's equations

This approximation is compatible with the boundary condi-
tions.

The relation betweek, P, andN completes the equation
set defining the characteristics of the active material. Under

2 2 2
IE(XD) _ i IE(XD) - J P(X't), (1) the assumption of a quadratic energy dependéndth re-

ax? c?  at? Ho at? spect to the electron wave veckahe following relation has
been introduced 10,11 for the dielectric susceptibility,
while the material field satisfies P(X,w)=eox(w,N)E(X,w), as a function of the frequency
o and the carrier densitj(w):
IN(X,t)

It =—yN(x,t) + I+ DAN(x,t)
_Tlgl*| 1/2m)|%?
x(w)= eofi ; T

o ﬁ) N(w)
2 N | P 2w [ @

+ 2%[E(x,t)P*(x,t)—E*(x,t)P(x,t)]. (2

X

The different variables and operators have the following
meaning: J=current pumping the carriersD =diffusion

coefficient for carriers, AN=Laplacian of N, 7H—1 . . - .
_ L : . : with z(w) = w— wy+i/T, T the characteristic decay time of
nonradiative decay time for the carrier density X0° H2). the polarization, andvy the frequency associated with the

The boundary conditions complete our set of equationséner ap in the electronic bands of the semiconductor. The
they are(i) the electric field vanishes at tliperfec) mirror 9y gap ; . . '
values adopted in numerical calculations alfe=0.20 A,

E(1,1)=0: (3) @g=2.35¢10"°Hz,['=0.4, IM=10"Hz, ky,=n/5 A~%,
’ ’ =300 um, andL=35.
the carriers cannot leave the semiconductor Monochromatic solutions for the laser in a double cavity

can be found by proposing
IN(X, 1) x| == IN(X, 1)/ IX|x=0; (4)

: o . . Ej(x,t)=exp(—iwt)
the electric and the magnetic fields are continu@ssuming

that the semiconductor presents no magnetic polarization X[Ajexp (ik;x) +Bjexp (—ik;jx)], (10
“”:)E(_ﬁt):“”:)E(f't)’ () where the subscripj indicates the regionj=0 for the

vacuum and =1 for the active media.
Since the boundary condition8,5,6,% are linear inE,

lim JE(X, )/ 9X|x= - = lim JE(X, 1)/ X~ ®  the nontrivial,E # 0, monochromatic solutions satisfy

e—0 e—0

The reflectivity of the external mirror iR. This condition  Cg(Ko.K1,R,L,I)
has to be written in terms of the general solution of Max- _ . _ .

well's equation in the vacuum,E(x,t)=A_(ct—x) =kot[exp(2ikyl) — 1][R exp(2ikol )+ 1]}

+A_(ct+x), for x<0, whereA is an arbitraryC? function +ki{[exp2ik,l)+ 1][R exp2ikoL)—1]}=0, (11)
andc the speed of light. The condition reads

we will refer to Eqg.(11) as the “boundary equation” for
simplicity.

or E(x,t)=—RAc(t—2L/c)—x]+A(ct+x). Note that The Maxwell equation$l) are also linear irE, since we
having written the general solution for the electric field in _h?_v?j z_;:cssu(rjnedla_iclnear susceptibility; %0 they are sat-
xe[—L,0] we need to seek solutions to Ed,) only for x ISfied It and only 1

e[0Jl]. In this setting the problem becomes a PDE with

A,(ct+L)=—RA_(ct—L) 7

boundary conditions involving time delays. k§=w?/c?, (12)
In what follows we will further restrict our study to the

case in which the diffusion of carriers is very fast, iB., 2 2

large in Eq.(2). Neglecting the spatial dependence of the I T w—x(w,N). (13)

carrier densityN(x,t)=N(t) in Eq. (2) we obtain o2 c?
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lll. BIFURCATIONS ASSOCIATED R<Re¢ R=Rg¢ R>Re
WITH THE BOUNDARY CONDITIONS
The only equation wher& enters in a nonlinear way is \/ Q
Eqg. (8) and it will determine the amplituded; ,B; in Eq. i
(10), of the electric field as a function of the pumping current /\
J. The current associated with a zero amplitude defines the

current at threshold for the mode considered. Equat8)n
does not convey information about the spectrum of mono-
chromatic modes in the laser. We will not turn to this equa- FIG. 1. Bifurcation of the solutions of the boundary equations at
tion for the rest of the discussion; the only reference to thek$,k5,R®). The curves represent the tracekgfas a function ofw
material media left is encrypted in the dielectric constant. for three different values of the reflectivify.
Hence, the remaining task is to solve a set of five real

equationgEq. (12) is real while Eqs(13) and(11) are com- When the hypotheseis of the implicit function theorem
plex equationkfor five real variables ,kq,N, which are  (16) are not satisfied, say a,=kS, ko=kS, R=RS, the

real, andk;, which is complek hence, the equation will expression resulting from the boundary conditi¢h®) reads
have solutions, in general, only at isolated values: the values

Re(k,)

corresponding to the monochromatic modes. Ca(ko, Ky, R,L,1)=a(Kg,R,L,1)+b(Kg,R,L,1)(K; — k)2
We like to think of Eqs(11)—(13) in the following form:
Eq. (12) defines the functiorky(w) = w/c, Eq. (11) defines +0O(ky—ke[?) (17)

the functionk, (ko) =k, (w/c) (which is multivalued, i.e., has

different branches and Eq. (13) defines the function with a(k§,R%L,l)=0 andb(kg,R®L,I)#0. Note that there
N(w,kg,k1)=N(w); N(w) evaluates to complex numbers in are two real conditions to be satisfied at the critical point and
general. Since the carrier density is a real number the condthis requires us to adjust two parameters. We have arbitrarily
tion IM[N(w)]=0 must be imposed. This latter condition chosenk, and R [the bifurcation set is a one-dimensional
cannot be satisfied for general values@fand determines object in the three-dimensional space,(V)]. The change

the frequencies of the monochromatic solutions. produced in the solutions of E¢L1) by the bifurcation at the
We look for solutions of Eq(11) using a recursive algo- critical point (k$,k§,R®) is schematically presented in Fig. 1.
rithm, Equation(17) represents the local change of the solutions
of the boundary equatiofill). This description has to be
1 —Kko(W+1)+k'(W—-1) qm integrated in the global picture that displays several branches
KT 4(q)=5In| — +0, of solutions.
A0 ko(W+1)+kT()(W-1)) |

Instead of discussing the changes as a function of one
parameter it is useful to notice thRtandL appear only in
Eqg. (11) and always in the fornWW=R exp(dwL); hence we

shereW=F expx) anda s e branch of ok 530 BT LS SRR ITE o
que,nc.yv.\;zkoc there is a numerable set of solutions to theComplex p_argmetélv (this situation can also be thought as
boundary condition$11) labeled byqg. theL o limit).

: . . For every value of the frequenay, Eq. (11) defines an
The fixed points of the mafil4) are the solutions of Eg. implicit map in the complex plane that relates the im&ge

(112). The iterative procedure converges for most values ot . . ; ' . :
, ' o its preimageW. Since|W|=R defines a circle, for fixe®R
the parameters and the frequency. Since (@d) defines a and o the boundary equation defines the images of this

one-dimensional complex map, either Efi4) converges or . o L
c ’ circle. The locus of this image is given by the level curves
its inverse map 9 9 y

(14

ko(z—1)—kq(z+1)

R=W=l =Dk =D

(18)

m-1_
1 =

. Lexplizki) — 1)w+ 1)
% [exp(i2k™) +1](W—1)

o ] ) The levels curves are presented in Fig. 2 for different values
converges or the derivative of the map at the fixed point hags g.
an absolute value of 1. _ _ Note that forR=0 the “circle” |W|=0 is actually re-
Itis an interesting fact that only in the region of the meta-,ced to a point; correspondingly, its images are points. For
morphosis of the spectrum is the inverse algorithh®) R0 the structure of the circle becomes visible and the im-

needed. , ages of the circle are closed curves.
The different branches of solutions of H4.1) are clearly Notice further that for different values & the images of

separated whenever the conditions for the implicit functiony o circle revolve around one or more image pointsVof
theorem are satisfied; in this case we need =0 (the number of points enclosed depends on the value of
R).
dCg(ko Ky ,R,L,I) The change in the number of points enclosed by a given
#0 (16 . i .
k4 image of the circle occurs at some critical valuefRoihere
two different images of the circle touch each other and merge
at the fixed point of Eq(14). according to the local mechanism described(by) [12].
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FIG. 2. Complex wave vectds,; allowed for different values of 10 ' ' ' . :
R. Contour lines are labeled By and increase fronR=0 (pointsy 2343 234.5 2347 2349 235.1 2353
to R=1 (real axig. o,

FIG. 3. Carrier density vs frequency for the laser without exter-
nal mirror. Inset: the frequencies of the monochromatic modes cor-
respond to the intersection of the lines[N{w)] with the w axis.

Having examined the bifurcations of solutions of the The frequencies are measured in units df.1/
equations associated with the boundary conditions we turn to
the problem of how these bifurcations and others alter theembles a set of islands. This change is the direct conse-
spectrum of monochromatic solutions. The discussion is orguence of the bifurcations of solutions of the boundary equa-
ganized forR increasing from O to 1. tions discussed in Sec. Ill. For smdaR each island was

We recall that, after solving the equations associated withinked to a single branch of the solutions of E4l); the
the boundary conditions the frequencies of the monochrobifurcations changing the multivalued solutions of Efjl)
matic modes are those determined by the implicit equatiomeflect similar changes in the spectrum of monochromatic
Im[N(w)]=0 (see Sec. lll for definitionssince the carrier modes, i.e., they force the merging of islands.
densityN is a real number. The graph of IMN(w)] is also telling; see Fig. 6. The

For R=0 the graph of ITN(w)] consists of a set of lines lines corresponding to different branches of solutions are no
with negative slope. The lines correspond to different solufonger roughly parallel. There are some lines that intersect
tions of the boundary conditions and can be labeled, for fixedeveral branches of solutions; these lines are associated with
w, by an integeiq as in Eqg.(14). The intersections of these solutions of the algorithn{15) while their change of slope
lines with thew axis determine the frequencies of the mono-(from negative to positive or vice versis roughly related to
chromatic modes; see Fig. 3. The mode with minimal valuenarginally stable solutions of the mafis4) and(15).
of RgN(w)] is the stablglasing solution of the laser with-
out optical reinjection(see[11] for a discussion Note also 20 ‘ : :
that the Lang-Kobayashi equatiofild for R=0 present only
this stable solution while all other modes have been ne-
glected. 18 k

For R>0 the InfN(w)] lines acquire a modulation that
increases in depth with increasirig. The period of the
modulation is determined by the ratidl. In Fig. 4 a few 16 1 ® 1
more monochromatic solutions have emerged through< ;e oo
saddle-node bifurcations. These new solutions are clusterec? o
around the modes of the laser without optical reinjection in 14+  ° ° ® .
the Re\)(w) plot (see Fig. 4 and we used to refer to them o ° 0 o0
as “islands.” They are the finitd. version of the circles 2 ’ oo
emerging from the points in our discussion of the bifurca- 12 | hd o °°>° 7
tions of solutions of the boundary equatiof®ec. Il)). The
island emerging from the stable solution of the laser without
optical feedback approximately correspond to the solution of 10 ‘ ‘ ; '
thpe Lang—KobayasE]Pequatic(Bge Fig. 6po(2] and Fig. 1 of 2344 2346 2348 ° 250 2352 2354
[3D). ‘

Increasing the reflectivity t&k=0.010 48 the ploN(w) FIG. 4. Islands of solutions in the carrier density vs modal fre-
changes significantly, see Fig. 5. We can see in Fig. 5 thajuency plot forR=0.008. Inset: the frequencies of the monochro-
for low frequencies the islands have merged into one, whilénatic modes correspond to the intersection of the lingsNifw) |
for high frequencies the structure of the modes still re-with the » axis.

IV. METAMORPHOSIS OF THE SPECTRUM
OF MONOCHROMATIC SOLUTIONS

R=0.008

Im(N)
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FIG. 5. Carrier density as a function of the frequency for a  FIG. 7. Creation of new modes through saddle-node bifurcations

transitional caseR=0.010 48,/ =300 um, L =35%1). increasing the value dR.
The solutions obtained with the algorithtd5) are dis- V. CONCLUDING REMARKS
played in Fig. 7 for several values Bf Since the appearance
of new monochromatic modegsr their disappearangeor- We have discussed the changesetamorphosijsof the

responds to the appearance or disappearance of intersectiafifectrum of monochromatic modes in a semiconductor laser

of IM[N(w) ] with the w axis, we can see in Fig. 7 how these ith optical feedback as a function of the reflectivity of the

changes are operated through successive saddle-node bifiiarnal mirror.

cations occurring in a very small region of parameter space. The changes observed belong to two classes, the first class
It is important to realize that the descnpnon qf these . rrespond to the formation of “islands” as a consequence

changes n Fh'e spectrum of monochromgnc mOP'eS 1S .beyo' coupling the laser to the external cavity. This change oc-

the possibilities of the Lang-Kobayashi equations since i, . tor very low values of the reflectivity and is qualita-

requires the interaction in bifurcations of solutions Comingtively similar to those described by the Lang-Kobayashi
from different islands, i.e., from different modes of the Iaserequations[z 3.

without feedback, and there is no room for them in the Lang- The second change involves the boundary conditions

Kobayashi equations. . . more deeply and is related to bifurcations of the solutions of
h For values ofR beyo?]d the .tran5|(tj|on .reglorR>0.01dl b the boundary condition equations and to the fact that they are
the spectrum of monochromatic modes is represented by @, ivalued equations. This second change establishes a

single wavy line. Increasing the value & the waviness | it of validity of the Lang-Kobayashi equations &
disappears gradually and the spectrum takes a form that

closely resembles the situation fB=1; see Fig. 8.
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FIG. 8. Carrier density vs frequency for reflectiviR=0.018.
FIG. 6. Function IMiN(w)] for R=0.010 48. Different lines In the inset the function IfiN(w)]. The modes coming from the
correspond to different determinations lof(w). The points with  inverse algorithm(15) have a very large carrier density and are not

IM[N(w)]=0 correspond to solutions of the problem. shown.
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~0.011[a value that is expected to depend on the modelingemiconductor laser with optical feedback has been reported

of the semiconductor susceptibilig( w) but very weakly on  beyond the region known as coherence collapse.

the position of the external mirrprBeyond this value of
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of times the preimage circléyV| =R, is traveled changes when
the image is circulated once, i.e., there are alwaytirns
aroundW=0 needed to travel once the imaged vf| = R when

this image encloses images ofW=0 (the relation is a con-
sequence of the theorem of complex analysis known as the
argument principlg



