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Abstract

Normal science is a characterization of science in our epoch and a demar-
cation of what “scientific” means. It divides science in disciplined/normed
paradigms. Mathematical epidemiology is the paradigm that regulates the
activity of mathematicians with respect to the study of epidemics. It also
represents the interest (multiple meanings implied) of the community that
guards it. In contrast, a real epidemic is a complex system, an undisci-
plined problem. To enable a connection between reality and the paradigm,
an important number of bold decisions are needed: the hidden lemmas,
i.e., simplifying assumptions that are not offered to examination and are
usually inscribed in the habits of the practitioners of the paradigm. The
right of mathematical epidemiology to speak about real epidemics rests
on the appropriateness of the reduction of the problem to a schematic set
of equations or algorithms. We offer an examination of the most evident
hidden lemmas in action.
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1 Introduction
What we call science has taken different forms in different epochs, evolving with
the transformations of society. Several periods can be distinguished. Let us start
with an early period in which the goal was to seek the harmony of the universe.
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Natural science was known as Natural Philosophy and the people involved in it,
more often than not, called themselves ”Philosopher and mathematician” as for
example did Galileo, Descartes, Leibniz and Newton. The period ended around
the middle XIX-century when ”in one generation”, as Ortega y Gasset (1930)
puts it, the wise men disappeared, their place being occupied by the specialists.
The sciences were separated from the body of philosophy and from the strict
controls of reasonability. Every discipline would set its own rules, its norms,
which the scientist should follow, for otherwise they would not be recognized
as members of the discipline. Mathematicians no longer had to account for the
reasonability of their hypotheses (that became axioms) as long as they were
consistent (this issue is not trivial as well (Wagon, 1985)).

Physics would be good as long as it were able to predict (see for example
(Einstein, 1940; Popper, 1959)). Biology, medicine and all the professions and
sciences followed their own rules and the unity of science and reason became
broken. Out of the second industrial revolution a new social role for science
emerged: science would nurture the development of technology and mankind,
instead of understanding nature, was set forth to dominate nature.

After the successful involvement of science in the so-called World War II
(1939-1945) the mandate for science to be the engine of the economy took force
(Solari et al. , 2016). Science was professionalized, thus taken the opposite
attitude of philosophy according to Kant (1798), and for such effect it was
further disciplined and subdivided in specialized (self-referencing) communities
or paradigmatic groups. Normal science (Kuhn, 1962) was born.

The integrity of science, and then science itself, was further damaged by
dividing disciplines into a ”pure” and an ”applied” part. While the ”pure”
discipline would dedicate its efforts to speculation, the applied part was to use
the results of speculative thinking in the solution of problems or the development
of opportunities (Feibleman, 1961). Not only a hierarchy between both groups
was established but the flow of questions and problems from the real (observable)
world to the speculative group was interrupted. The applied group was charged
with the duty of producing social value for the outcome of the pure group 1.
Nobody apparently remember that Gauss, the prince of mathematicians as
he was often named, constructed the first telegraph, it connected his office in
Göttingen with Weber’s office, his friend and collaborator. Gauss was involved
in developing Electromagnetism, which required some of the mathematics that
he developed. Do we remember that Kant is considered the first geographer or
that we have the Second Law of thermodynamics mostly thanks to the efforts of
a french military engineer, Sadi Carnot, seeking to reduce the expenditure of
scarce charcoal by steam engines?

Scientists became oriented by goals, ultimately set externally by the flows
of money (Lucier, 2012) directed to facilitate their work (including a salary).
In any system administered through goals, success (i.e., achieving the goal)
becomes the most important part of the activity. But goals, if they are going

1Feibleman distinguishes Technology as a subset of Applied Science, further away from
speculation and closer to practical problem solving. For the sake of this article there is no
need to make this distinction.
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to be measurable as it is needed for administrative purposes, need to be well-
defined and achievable. For example, understanding is not a finite, achievable
and verifiable goal; predicting as well as developing new products are possible
goals for normal science. In the same form, for administrative purposes (say,
for directing the flow of money) quality cannot be measured while quantity is a
measure in itself. Thus, normal science accounts science by production, counting
”least publishable units” (LPU (Broad, 1981) or MCPU for “minimal content”)
and socially related numbers such as the number of citations that illustrates
how a MCPU has been involved in the production of new MCPU’s. With these
changes, science became techno-science and is to be accounted for by the rules
of technology, since success, achieving the goal, is what decides the value of a
technology, being of no importance whether there is understanding involved or
mere ”trial and error”.

As a consequence of its new social role and accounting, normal science
proceeds by small increments extending the established paradigms; it seeks
opportunities of application of already accepted knowledge (Traweek, 1992).
Consequently, it is not well prepared to deal with new phenomena, such as for
example the COVID-19 pandemic. Instead of trying to understand the problem
”in itself” it will try to fit it in its predefined boxes. Ortega y Gasset (1930)
dictum must be recalled ’The specialist “knows” very well his own tiny corner
of the universe; he is radically ignorant of all the rest [...] We shall have to say
that he is a learned ignoramus, which is a very serious matter, as it implies that
he is a person who is ignorant, not in the fashion of the ignorant man, but with
the petulance of one who is learned in his own special line.’

For a phenomenon as the COVID-19 pandemics that involves biology at
different levels (population dynamics, population genetics, virology, immunology
and medical issues), sociology and social-psychology as well as politics, the task
of reducing it to ”mathematical epidemiology” appears to be possible, at this
early stage, only by a complete misrepresentation of the phenomena.

Before discussing the hidden lemmas of Mathematical Epidemiology, let us
discuss how the old science worked in front of phenomena (meaning not only the
fact but the extraordinary as well). Figure 1 illustrates the cycle. We begin by
the observable, be it directly or through experiments. The map Π, called the
phenomenological map, represents two steps: The first step is the philosophical
ideation (Husserl, 1983) which consists in the action of the intuition supervised
by reason to produce an idea out of the observed, it is this idea what we call
fact (Piaget & Garćıa, 1989). In our case, the process continues by writing
down the idea in mathematical terms. The map Π is a projection as it strips
the observed of several features that are judged to be irrelevant for the matters
under consideration. This is to say that the ideation is not independent of the
questions we want to address, or what is the same, the model is not a copy of
the phenomena in mathematical terms. The lift Γ represents the inverse process
in which the ideated is reconstructed as observable reincorporating the stripped
elements. The relations Π ◦ Γ = Id and Γ ◦ Π = Id′ are needed if we are not
to introduce distortions in interpreting results. There is no ”free interpretation
of results”. Finally φ is the mathematical and logical elaboration of the theory.
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The half cycle Γ ◦ φ ◦ Π produces expectations of new observations that allow
us to check the theory. In case the check fails, the same cycle run in inverse
mode (red arrow in Fig. 1) will indicate points where our original ideation was
incorrect and need to be changed. Learning is the event in which we change
our ideation, changing facts associated to the observed. The cycle of learning is
continuously running and we are continuously learning, i.e., replacing a theory
(useful belief) by a new one that we choose only because it is more appropriate
for the fundamental task of organizing the observed phenomena. The process is
called abduction (Peirce, 1955; Burks, 1946) and the present version is inspired
in Garćıa (2006).

Π

φ

Γ

Theory Theoretical
conclusions

Observations
New

observations

Truth harmony
understanding. . .

Figure 1: A cycle in the creation of understanding.

In contrast, normal science can be schematized as in Figure 2

2 Epidemics are complex systems
There are several, contending, definitions of complex systems and we will adhere
to none of them although we will be close to that of Garćıa (2006) and actually
develop it from the seminal discussion in Garćıa (1981).

The characteristics of a complex system are: the system exists in nature and
interpellates society as a whole (not just the practitioners of a discipline). As a
system, it is composed by several subsystems in reciprocal influence, and the
functioning of a subsystem within the system cannot be understood in isolation.
Its study cannot be performed within a discipline or by the additive contributions
of disciplines, it requires interdisciplinarity.

In summary: complex systems constitute complex problems that challenge
the organization of normal science where problems are instituted and delimited
by the paradigms (Bourdieu, 1999) and are solved within them, being their
relevance only visible to the scientist trained in the paradigm.
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φ

Γ predictor

Theory ≡
Equations

Theoretical
conclusions

New
observations

everything
goes (sp.
analogy)

Truth harmony
understanding. . .

Success!

Figure 2: Scheme for normal science. (The expression ”Everything goes” refers
to Feyerabend (1987)).

2.1 COVID-19 pandemic
Let us support our statement with the case of COVID-19 pandemic. The etio-
logical agent is a ”new” virus (this is, a quasi-species) whose precise origin is
currently being traced but almost certainly originates in wild animals (Shereen
et al. , 2020; Hassani & Khan, 2020; Cazzolla Gatti, 2020) (at least bats act as
reservoirs) and the pressure that human society is putting on wild species and
their environments. Once the virus has minimally adapted to the vast environ-
ment offered by humans, the evolution process of the quasi-species accelerates
thanks to the large number of replication opportunities that human population
offers. Viruses constitute diverse populations that are permanently adapting and
changing their identity, even more in the case of a RNA virus as SARS-Cov-2. To
conceive them as fixed forms with fixed phenotypes is to run into a mistake. The
genetic structure of the virus is continuously mutating, as well as the proportions
of different genotypes in the population, since the quasi-species is continuously
probing the environment and adapting, a process that implies the interplay
of genotypes and environment (human beings in this case) (Hamilton, 2011)
through an unknown function that determines the phenotype. Experience with
other viruses indicate this function need not be ”smooth” with respect to the
genotype, meaning that changes in a few genes may result in large changes in
the phenotype (Minor, 2009; Morales et al. , 2009; Klitting et al. , 2018).

The immediate environment of the virus are the human cells, next the humans
and through them society. Since we are mainly interested in the global view of
the pandemic we will consider the level of cells only in terms of effects (rather
than describing mechanisms). Hence, we will focus first at the human level. The
human body will evidence the invasion by symptoms of various intensities and
in the case of COVID-19 unspecific and often weak (China CDC, 2020; Chan &
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Brownstein, 2020). The reaction of the human body to the invasion of foreign
particles is effected by the immune system, which is complex in itself.

It has recently been found (Sekine et al. , 2020; Combes et al. , 2021;
Mick et al. , 2020) that two different immune responses may lay behind the
difference between mild and severe cases. Patients with mild COVID-19 exhibit
a coordinated pattern of expression of interferon-stimulated genes (ISG), whereas
these ISG-expressing cells are absent in patients with severe disease. The latter
patients display a strong humoral response, higher levels of antibodies and lower
viral load. Hence, mild cases could be more contagious than severe cases, not just
because of differences in mobility and social contacts. The different responses
may be related to age, sex and possibly other (unknown) factors.

Complexity triggers more complexity since different immune responses induce
different selective pressures on the virus. Also, different severity of the disease
influences contact networks and therefore the opportunities for virus spreading.
The quasi-species population modifies its structure following reproductive success.
Other social factors influence the evolution of the quasi-species as well. The
decisions of society (mainly mediated by health authorities), such as isolation of
high risk and infective cases, vaccination, etc., trigger different selective pressures
on the virus as well.

2.2 Complex response to complex problems
Such a complex interplay demands a tailored response. There exists a genuine
role for mathematics in handling complex problems, because of its ability to
handle general structures, regardless of the supporting background. However,
mathematics alone cannot get too far, since generalities and particularities are
intertwined in complex systems. We will discuss in the next Section the paradigm
of (normal) mathematical epidemiology, in order to identify its successes and
shortcomings.

3 Mathematical epidemiology (the paradigm)
The basic ingredient in the mathematical description of an epidemic is a set of
stages according to which the infection evolves in an individual, see Figure 3.
The individual will evolve from a Susceptible state, S, to an Exposed, E, state
after acquiring the illness, next to an Infective (or contagious) stage, I, finally
ceasing to participate in the epidemic process at the Recovered stage, R.

Compartmental models will account for the number of members in each
group (statistics a-priori) while individual based models will account for the
stage of each considered individual (statistics a-posteriori).

The basic dynamics of the epidemic is then expressed as

dS

dt
= −λ1S

dE

dt
= λ1S − λ2E
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S
λ1

E
λ2

I
λ3

R

Figure 3: Basic stages in the evolution of an infection in a human being.

dI

dt
= λ2E − λ3I

dR

dt
= −λ3I (1)

This approach goes back to (Verhulst, 1838).
To complete the picture, the rates λi are written in terms of the state variables

(S,E, I,R).
The exploration of the paradigm begins in Equation 1, possibly modifying it

through the inclusion of neglected elements (e.g., immigration effects, deaths,
etc.). The main task of normal science is to expand the reach of the paradigm
(Kuhn, 1962). Thus, normal science proceeds from a set of core beliefs (assump-
tions or “known” background) attempting to extend their frontiers of application.
In contrast, the complex systems approach begins by becoming familiar with the
problem, searching from there the mathematical forms that can better represent
it.

There is a fundamental hiatus that goes from the concepts represented by
Figure 3 and Eq. (1). It indicates the absence of a critical analysis of the
phenomenological map Π. In the next section, we will address what are the
demands of the phenomenological map, and hence what is assumed to be true
when we follow the standard presentation of mathematical epidemiology, in the
form of hidden lemmas, i.e., lemmas that are implicitly assumed as proved when
we write the equations.

4 Hidden Lemmas
We shall divide the hidden lemmas by groups: mathematical, biological and
epistemic.

4.1 Mathematical hidden lemmas
Populations are counted with integers, it can even be argued that integers were
invented to count populations. An integer-valued function of time cannot be
made continuous, and much less differentiable, except when it is constant. Hence
the variables in Eq. (1) do not refer to the populations directly and some form
of smoothing is needed.

There is a stochastic form of the process in which continuity corresponds to
probability distributions, P (S,E, I,R; t) that vary continuously in time following
Kolmogoroff (1931) forward (or backward) equations, for systems that evolve
with infrequent events of finite size (“jump” process). Feller (1940), showed
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that such process was associated with a generalized Poisson stochastic process
(Durrett, 2001). Several results were obtained along these lines in mathematical
epidemiology. Let us recall, because of its relevance, the concept of critical
community size (Bartlett, 1957, 1960), which separates qualitatively different
epidemic outbreaks. Additionally, below this critical community size the use of
ODE’s is completely meaningless, see Bartlett (1964) and others (such as N̊asell
(1996, 1999, 2001); Aparicio et al. (2012)).

A series of works by T.G. Kurtz (Kurtz, 1970, 1971, 1976, 1978, 1981)
discussed in (Ethier & Kurtz, 1986) unraveled the relation between the stochastic
description and Eq. 1 as a large population limit of stochastic processes.

While in stochastic jump processes there is room for ”trapping” states such as
those that result from the extinction of the disease, I = 0, the ODE replacement
makes of these states an invariant set, i.e., either the solution belongs to such set
for all times or it never reaches it. Extinction is therefore impossible. The limit
process requires that the described states are such that limN→∞

Xi(t)
N = xi(t)

for any population Xi, thus, any bounded population Xi(t) is mapped to 0. The
problem of extinctions cannot be fixed, it only indicates the limits of validity of
the approximation.

Thus, in support of Eq. (1) we need to prove:

Lemma 1. Statistical requirements

a Large population limit Eq. (1) represents the evolution of ensemble
average values and its limit of valid use is given by a subsidiary set of
equations (to be provided).

b Averages are representative of distributions The distributions P (S,E, I,R; t)
are sharply peaked around their average values.

c Exponential waiting time distribution The distribution of the times
spent in each stage is exponentially distributed.

Comment: Even when the process described in Figure 3 is implemented in
terms of stochastic processes, the scheme requires to be complemented with a
form of simulating the distribution of times spent in each stage and the variation
of contagiousness along time.

4.2 Biological and social hidden lemmas
There are several facts assumed without saying in the basic model of Equation 1.

Lemma 2. Unstated biological and social assumptions

a The virus does not change The phenotype of a virus does not change
during the epidemic

b Contagiousness is independent of the evolution of the disease
while the individual is infective Additionally, all individuals in class
I contribute equally to contagion.
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c Individual differences are irrelevant Human beings are immunologi-
cally identical and display a uniform response.

d Health policy interventions are represented by changes in pa-
rameters Control measures do not affect the core model. Instead, they are
represented by adjusting numerical constants involved in the parameters λi.

e Social structure is largely irrelevant The sub-populations S, I, etc.,
represent the aggregation of average individuals. As a consequence, each
individual in S, I, etc., is assumed to interact with any other individual
without restrictions. Specifically, any I may transmit the illness to any S.

Comment: Most remarkably, Lemmas 1a and 2e contradict each other
within the framework of Eq. (1). Indeed, the underlying population should be
sufficiently large so that the ensemble averages make sense, and at the same time
sufficiently small so that uniform mixing becomes a realistic assumption. There
exist no prescriptions for the scales of these processes but it is highly unlikely in
general that they share a common region. Homogeneous mixing of human beings
is impracticable above a few thousand individuals, while e.g., critical community
sizes require hundreds of thousands.

4.3 Epistemic lemmas
Lemma 3. Fitting lemma

After dividing a data set in two parts: training and testing, parameter values
can be optimized/obtained by fitting the output of the model to the training subset,
and the quality of the model can be ascertained by evaluating the deviation of the
model with respect to the testing subset.

Comment: The method is a method for compensating errors, it produces
”effective parameters” that adjust the output of a (possibly) improper model
to the observed values. It makes difficult, if not impossible, to falsify (Popper,
1959) the model. By misrepresenting the strength of the causative elements
identified while it continues to neglect other elements, the method drives us
towards misunderstanding which, in our context, leads to improper preparation
and consequently increased mortality. The idea appears to be supported by
the belief that ”success is all what matters”. Additionally, it assumes that the
context provided by the data is universal, i.e., that one sample of the stochastic
phenomena can convey the information needed to predict the outcome of all the
samples. In particular, it assumes that the future is a variant of the past.

Lemma 4. Incremental improvement
The effects can be disaggregated in terms of the causes, thus causative factors

can be investigated separately and eventually aggregated at the end.

Comment: The lemma means that we can investigate for example different
heterogeneities such as age, social structure and biological factors one by one
and we expect the conclusions of the individual studies to hold true when we
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incorporate all the factors at once. Mathematically it represents a sort of linearity
and additivity between causes and effects.

5 Conclusions
Kant (1798) considered just two types of faculties: the higher and the lower. He
wrote:

It is clear that this division is made and this nomenclature adopted
with reference to the government rather than the learned professions;
for a faculty is considered higher only if its teachings –both as to
their content and the way they are expounded to the public – interest
the government itself, while the faculty whose function is only to
look after the interests of science is called lower because it may use
its own judgment about what it teaches. Now the government is
interested primarily in means for securing the strongest and most
lasting influence on the people, and the subjects which the higher
faculties teach are just such means.

While the higher faculties were regulated in their teaching, the only regulation
for the lower faculty was reason. After Vannevar Bush’s vision of science as the
engine of economic progress (Bush, 1945) and the consequently harnessing of it
by the states, the faculty of science moved from the lower to the higher level.
Consequently, it lost its freedom since not only reason regulated it. Normal
science had been born, putting an end to modernity. A new cycle of specialization
took place and our ability to further understand phenomena was thwarted by the
increased compartmentalization and the restriction of reason to its instrumental
component (Horkheimer, 1947).

In more restricted terms, what is at discussion is whether the paradigmatic
model of Eq. 1 can reflect all types of epidemic outbreaks (possibly after
tuning parameters or introducing minimalist improvements) or, on the contrary,
different epidemics must be reflected in terms of different mathematical structures
resulting from their conceptualization.

The second element at discussion is the perception of the ”average” as
representative of the totality or, what is the same, to disregard the consequences
of variability. This usually implies a conception of ”mean plus noise” where the
information is in the average –that follows deterministic rules and as such is
useful for our predictive goals–, while the noise is a nuisance that we must ignore
and simply blurs our prediction.

Paradigms are not suitable to challenge themselves, therefore normal science
proceeds smoothly within the paradigm, with infrequent paradigm shifts (Kuhn,
1962). What are paradigms good for? Precisely to control those situations where
input and output are clearly demarcated, known and expected. It would be
a waste of time to reinvent concrete any time a new bridge or building needs
to be raised. Paradigms offer a safe, stable way to proceed. In any case, the
responsibility for correct application lies always on the side of the user.

10



As mentioned above, there is a genuine role for mathematics in epidemiology,
for several reasons. First, the ability of mathematics of dealing with general struc-
tures. Also for its fundamental and inflexible commitment to logical consistency.
In Figure 1, mathematics is the guarantor of the map φ. Moreover, mathematics
may be able to suggest a way out of conflicts in the phenomenological map.
However, the signification of mathematical procedures rests always in the under-
standing of the problem, i.e., in the phenomenological map. Mathematics alone
cannot replace it but it does help to detect its possible failures.
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