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� Food in environment determines body size & time-statistics of adult emergence.
� Delay in pupation and dispersion of the cohort are captured by a single model.
� Larvae development sometimes waits to produce energy reserves before continuing.
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a b s t r a c t

We discuss the preimaginal development of the mosquito Aedes aegypti from the point of view of the
statistics of developmental times and the final body-size of the pupae and adults. We begin the
discussion studying existing models in relation to published data for the mosquito. The data suggest a
developmental process that is described by exponentially distributed random times. The existing data
show as well that the idea of cohorts emerging synchronously is verified only in optimal situations
created at the laboratory but it is not verified in field experiments. We propose a model in which
immature individuals progress in successive stages, all of them with exponentially distributed times,
according to two different rates (one food-dependent and the other food-independent). This phenom-
enological model, coupled with a general model for growing, can explain the existing observations and
new results produced in this work. The emerging picture is that the development of the larvae proceeds
through a sequence of steps. Some of the steps depend on the available food. While food is in abundance,
all steps can be thought as having equal duration, but when food is scarce, those steps that depend on
food take considerably longer times. For insufficient levels of food, increase in larval mortality sets in.
As a consequence of the smaller rates, the average pupation time increases and the cohort disperses in
time. Dispersion, as measured by standard deviation, becomes a quadratic function of the average time
indicating that cohort dispersion responds to the same causes than delays in pupation and adult
emergence. During the whole developmental process the larva grows monotonically, initially at an
exponential rate but later at decreasing rates, approaching a final body-size. Growth is stopped by
maturation when it is already slow. As a consequence of this process, there is a slight bias favoring small
individuals: Small individuals are born before larger individuals, although the tendency is very weak.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Aedes (Stegomyia) aegypti (Ae. ae.) is a mosquito of epidemio-
logical relevance, responsible for the transmission of several
diseases such as yellow fever and dengue (Dégallier et al., 1988).
Current attempts to produce methods for controlling the popula-
tions of Ae. ae. require the use of theoretical understanding,
sometimes referred to as models, that extrapolate the present
knowledge of the life-cycle of the mosquito to the new conditions
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that the control method would create. See for example (Focks
et al., 1993; Huang et al., 2007; Magori et al., 2009; Legros et al.,
2009; Walker et al., 2011; Ellis et al., 2011). The correct theoretical
evaluation of the response of the mosquito to control methods
depends on the ability of the models to simulate the adaptation of
the species to different (and changing) environmental conditions.

As we have previously observed (Romeo et al., 2013), much of the
literature extrapolates understandings produced under optimal
environments to the natural environment. Such an approach was
put forward in the earlier times of physiological research on the
mosquito (Christophers, 1960) and was later found inappropriate
(Dye, 1982; Subra and Mouchet, 1984; Arrivillaga and Barrera, 2004;
Barrera et al., 2006). In what follows, we will critically consider the
existing theories of developmental time in relation to the data and
we shall propose an improved description that is consistent with
existing data and with new data produced for this work. In particular,
we will show that the time-dispersion of the immature cohorts
increases going from optimal feeding to food-deficit conditions.
Dispersal in time represents an important adaptive response not
yet incorporated to the theories, nor discussed in experimental
terms, yet clearly shown by (old and new) available data. We will
discuss these observations introducing a simple theory of develop-
ment potentially usable for other insects.

The focus of this work is the preimaginal part of the life-cycle
and, in particular, the appropriate statistical description of pre-
imaginal times and adult body-size. Mosquitoes are born out of
eggs in an aquatic environment, where they develop as larvae,
undergoing three moults until pupation and later emerging as
adults. During this preimaginal life, the size of the adult is
determined. Considering that in general (Honěk, 1993) and in
particular for Ae. ae. (Heuvel, 1963), adult female body-size
correlates linearly with fecundity, we come to understand that
two key elements in the description of development and fitness
are the time spent in the preimaginal stages and the individual
weight of adults (which is determined during the preimaginal
development).

The development of Ae. ae. depends on the environmental
conditions. Temperature (Bar-Zeev, 1958; Heuvel, 1963; Rueda
et al., 1990) and food abundance (Subra and Mouchet, 1984;
Arrivillaga and Barrera, 2004; Padmanabha et al., 2011) are two
factors that have been identified so far. In this work we will focus
on the effects of food and will keep temperature constant.

In terms of models, two main classes of models have been
proposed. The first class is associated with the concept of cohort
(defined by hatching-time and environment), assigning one time
for all members of the cohort such as in Focks et al. (1993), or
presenting some narrow fluctuations in terms of temperature-
corrected time, the (so called) physiological time (Stinner et al.,
1975; Rueda et al., 1990). These models originate in Gilpin and
McClelland (1979) who introduced a developmental model where
pupation is reached when two conditions are met: a minimal
developmental time and a minimal weight. The model is known
by the name of “window model” (WM). The relation between
average weight and average pupation (or adult emergence) time
has been put to test (Carpenter, 1984; Gimnig et al., 2002).
Whether the same relation exists at the individual level or not,
has not been investigated according to our knowledge. It is also
important to notice that if experimental results are to be matched,
the minimal weight must depend on the available food as it is
clear from the data reported in Jirakanjanakit et al. (2008); Maciá
(2009). A multiple WM for Ae. ae. has been implemented (Magori
et al., 2009). The model describes longer developmental times and
smaller final weight as a function of decreasing amounts of food
and incorporates some stochasticity.

In his work, Gilpin indicates that a second class of models,
compartmental models, would have been more desirable but the

search for such a model failed. However, a deterministic compart-
mental model was proposed as a general insect development
model in Manetsch (1976). In this case, no biological data were
offered in support of it.

The model in Manetsch (1976) can be thought as a develop-
mental sequence where the steps are completed in sequential
order. Each step (corresponding to moving from one compartment
to the next in the sequence) takes a time tj with j¼ 1;…; E, where E
is the number of steps needed to complete the development.
Hence, the time to complete development is Td¼∑E

j ¼ 1tj . If all the
times tj are identical independently distributed random variables
with exponential distribution (mean τ), the time Td is associated
with a Gamma distribution ΓðE; rtÞ ¼ 1=ðE�1Þ! R rt0 e� ssE�1 ds with
mean Eτ and variance Eτ2 (E is called the shape parameter and r
the rate, while τ¼ 1=r is the scale factor; for more details see
Section 3). Manetsch's equations are recovered in the large
population limit by standard methods (Ethier and Kurtz, 1986).

In the present work, we will first re-examine the develop-
mental times reported by Southwood et al. (1972) for a field-
experiment performed in Thailand (Section 2). We will show that
the observed dispersions in pupation and emergence times are
substantially larger than those observed by Rueda et al. (1990) in
laboratory experiments and, in particular, that the coefficients of
variation (standard deviation divided by mean) in both experi-
ments are substantially different, meaning that synchronous
emergence of cohort members depends on environmental condi-
tions. We also discuss in this Section how the multiple WM can be
put to test. In Section 3 we will fully reformulate Manetsch's
model, including its biological content, in stochastic terms along
with a description of weight-gain and then, of adult weight.
A minimal model for the dependency of developmental rates with
food is proposed. In Section 4 we describe experiments performed
with Ae. ae. developing at the same temperature but different
feeding conditions. In Section 5 we show that the experimental
data are compatible with the proposed model. The data in
conjunction with the model suggest that only a few developmen-
tal steps present a strong dependency with the available food,
in situations when food-scarcity is not life-threatening. This
insight allows us to explain the observed delay in pupation under
food-restriction conditions and the dispersion in time of the
cohorts as two aspects of the same phenomena, thus bridging
from observations performed in the laboratory (Rueda et al., 1990)
to observations performed in the field (Southwood et al., 1972).
In the discussion section (Section 6), we show that the predictions
of the multiple WM are not verified. We discuss as well the
problems experienced developing the present model. Further, in
Appendix A.2 the proposed theoretical probability distribution is
developed from basic principles, Appendix B is devoted to the
computation of confidence intervals via the bootstrap technique,
while Appendix C displays a table of symbols.

Epistemological note: This manuscript presents and tests a set of
ideas that can be freely used to understand elements of the
developmental process of Ae. ae. For this reason, we recall the
distinction between theory –meaning an idea or set of ideas that is
intended to explain facts or events – and description – meaning
statements that tell how something looks, sounds, etc. While
theories usually produce descriptions as well, descriptions do
not produce theories; their content being exhausted in them-
selves. A proper understanding of the philosophical underpinnings
of theories indicates that theories belong to the world of forms
(ideas) in Plato, 360 BC (2014) while descriptions of the observed
are themselves copies and not forms.

Elaborating beyond (Kuhn, 1962) there are a few basic proper-
ties related to theories. Consistency is a mandatory property for
scientific theories, which are further characterized by their scope,
simplicity, and fruitfulness. In addition, accuracy is an ingredient
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related to the particular description in use emanating from the
theory rather than to the theory proper. Appraisal of theories
-which is our main goal- is therefore a complex task that entails to
produce statements (predictions) that can be directly confronted
with observations: if the theory fails to give a fair (idealized)
prediction of the observations it can be disposed of. Theories are to
be appraised by how they shed light to the observations rather
than by their ability to reproduce minor detail relevant to
accuracy. An excess of focus on accuracy often conflicts with the
basic properties (Salmon, 1990). The role of statistical tests in the
appraisal of theories enters only on the accuracy side of the
predictions and it is an auxiliary one, complementary to qualita-
tive assessments such as those produced with graphs: cf. the
discussion around Fig. 7, where a theory is dismissed without
resorting to statistical tests. As another example, compare Fig. 4
with the statistical estimation of Appendix B regarding how much
the thesis put forward of a quadratic relation between mean and
variance can be trusted.

2. Previously proposed models

Window model: The intuition behind the WM of Gilpin and
McClelland (1979) is simple. There are two requirements to be met
for the emergence of an adult completing the developmental
process: a physiological development and minimal body-size. Both
requirements are considered independent. The duration of the
preimaginal life results then from

max Tph; TB
� � ð1Þ

where Tph is the physiological time required and TB is the time
required to reach the target body-mass. If one or the other in
Tph; TB
� �

can be the largest one, the expectation is that Tph4TB

under optimal feeding conditions, while in sub-optimal feeding
conditions TB4Tph. We notice that the formulation of criterion (1)
has to be complemented with a law for the evolution in time of
body-mass.

Pictorially, the model defines a pupation window, shaped as a
letter “L” in a weight vs time-to-pupation diagram. For optimal
feeding conditions, weight gain has a larger slope and the weight
curve hits the window on the vertical side. Under suboptimal
conditions and slower weight gain, the pupation window is hit on
the horizontal side. The hitting point determines pupation.

A second stage consists in accounting for the different values of
the physiological time obtained at different temperatures by
setting

Tph ¼
Z t

0
rðTeðsÞÞ ds ð2Þ

which weights the time to pupation with a temperature depen-
dent rate, r (Te), usually modeled following Sharpe and DeMichele
(1977), see (Rueda et al., 1990; Focks et al., 1993; Magori et al.,
2009). The expression (2) is named coefficient of development in
other works.

Under optimal feeding conditions (Rueda et al., 1990) showed
that the members of cohorts of Ae. ae. emerge within a narrow
time-window of a few hours with a dispersion in time that can be
reproduced by a cumulative distribution function for the time of
emergence, PðxotÞ, of the form

PðxotÞ ¼
0 Tpho0:89

ð1�zÞ2:0126z2 0:89rTphr1:17
1 Tph41:17

8>><
>>: ð3Þ

where z¼ ð1:17�TphÞ=ð1:17�0:89Þ . The condition PðxotÞ ¼ 1=2
for Tph ¼ 1 has been imposed to the distribution. We indicate at

this point the value of rð26:1 1CÞ ¼ 7:68 days obtained using Eq. (1)
in Rueda et al. (1990), taken from Sharpe and DeMichele (1977).
This value will be relevant in relation to the experiments reported
in the present work. The WM needs one more equation, one that
produces body-size as a function of two variables at least, food and
time. This element of the model is usually taken from von
Bertalanffy (1960) (we present the model in Section 3).

Under optimal feeding conditions all members of a cohort
emerge within a few hours and as such can be though as
synchronously emerging when the time-resolution is one day, as
it is frequently the case when modeling.

In contrast, in field experiments in Thailand performed by
Southwood et al. (1972), the dispersion of the cohort involves a
good number of days, implying that a deterministic use of the WM
will suppress this biological element. We show Southwood et al.
(1972) results for water jars along with Rueda et al. (1990) results
in Fig. 1.

From Southwood's results we can conclude that under sub-
optimal feeding conditions two new facts are observed: (i) Lower
adult weight and (ii) larger dispersion of cohorts. These observa-
tions moved researchers to produce a stochastic WM, named by
the authors “multiple window model” (Magori et al., 2009). In the
multiple WM the physiological time is a stochastic variable
distributed according to Eq. (3). The lower frame of the window
(that gives the adult weight when the development is achieved
before the body-size condition is met) is modeled by

Bqt ¼ ð0:1�Bqt
minÞnðTph�0:95Þ=ð8�0:95ÞþBqt

min; 0:95rTphr8 ð4Þ

(in mg) where the index qt stands for “quartile”. Thus, a rough
cumulative function can be produced by considering that qtn0:25ð Þ
of cohort members have emerged when the body-size has reached
the window-frame Bqt, qt ¼ 1;⋯;4. Values for Bmin

qt have been
proposed by (Additional material of Magori et al., 2009).

We observe that when coupled with the body-size model (see
Eq. (5) below) at constant temperature, Tph is proportional to time.
Also, in an environment at constant temperature and offering a
constant amount of food (such as the experimental design in
Section 4), B(t) is a monotonically increasing function of time.
Hence, the multiple WM predicts that in optimal conditions adult
emergence will occur with little dispersion in time (rather syn-
chronously) and comparatively larger dispersion in pupation
weights, while under suboptimal feeding conditions we will
obtain lower pupation weights, less dispersion in weight and
larger dispersion in time.
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Fig. 1. Southwood et al. (1972) and Rueda et al. (1990) results for the cumulative
pupation probability as a function of (time/median). Full lines correspond to data
fitting via a Gamma distribution with shape parameter E¼ 216 (circles) and E¼ 11
(squares), see below.
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The epistemological status of the WM is uncertain to us: is it a
conceptualization of the biological process (a theory) or is it only a
description of the times and weights of emerging adults?
In particular, if considered as a theory, is it correct that physiolo-
gical development is not delayed by insufficient amount of food? Is
it correct that under optimal feeding conditions the optimal
weight is reached before the physiological time? In this later
respect, Padmanabha et al. (2012) indicates, based on experiments
under optimal feeding conditions, that commitment to pupation is
achieved before reaching the pupation body-weight. Such observa-
tion by itself severely undermines the WM as a theory and forces
us to consider it as a descriptive model.

Compartmental model: Manetsch (1976) model has received
considerably less attention than the WM. While it is a model where
stochasticity can be naturally incorporated, its biological foundations
are obscure. The compartments in Manetsch (1976) do not corre-
spond to observable stages of development (as for example instars).
Rather, there are six compartments for every instar-stage (there is no
rationale offered for the number six). These compartments are
instruments for introducing time-varying delays, this is, a mean to
simulate populations where the time required for maturation from
one level of growth (instar) to the next is directly related to the
ambient temperature (for example). The biological input of the
transitions rates comes through a notion of “accumulated degree
days” which is a rudimentary version of physiological time. More
often than not, exponentially distributed times, which are within the
basic assumptions of the compartmental model, are introduced as a
matter of modeling convenience and quite often as a consequence of
having predetermined that the model should result in ordinary
differential equations.

Therefore, we should first ask whether there are observa-
tions of times pertaining to the developmental process that are

distributed as sums of exponential times or not; and second, are
the rates of all those processes equal among stages? A positive
answer to both questions would indicate that stochastic versions
of Manetsch's model are suitable candidates as models of the
preimaginal developmental process.

We examine the data reported by Southwood et al. (1972) for
water jars in search for answers to our questions. The data were
fitted to Gamma distributions via a Marquardt-Levenberg algo-
rithm incorporated in the GNU-licensed software gnuplot. The
hatching-time shown in Fig. 2 adjusts to the shape parameter E¼ 1
and it is recognized as exponentially distributed (Focks et al., 1993;
Magori et al., 2009). We further observe that the cumulative
distributions of time of pupation and time for adult emergence
can both be adjusted using Gamma distributions with shape
parameters E¼ 9 and E¼ 11 respectively (for details about Gamma
distributions, see next Section, Eq. (8)). The shape parameter in the
Gamma distribution corresponds to the inverse of the square of
the coefficient of variation, which for adults here takes then the
value 1=

ffiffiffiffiffiffi
11

p
� 0:302. The results found by Rueda et al. (1990) can

also be adjusted to a Gamma distribution – with shape parameter
E¼216 – but they present substantially less individual variation
(coefficient of variation � 0:068, see Fig. 1).

It is worth indicating that Southwood et al. considered that the
larvae in the natural environment showed signs of food scarcity
while, in contrast, Rueda et al. (1990) were persuaded that food
was in excess in their experiment. Contrary to early speculations
(Christophers, 1960) food appears not to be in excess in natural
environments (Dye, 1982; Arrivillaga and Barrera, 2004; Barrera
et al., 2006) except when altered by particular human actions
(Subra and Mouchet, 1984).

The hypothesis of a distribution of times as sum of independent
random times exponentially distributed cannot be ruled out by the
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Fig. 2. Cumulative distributions fitted for the hatching, pupation and adult emergence as a function of time in Ae. ae. field data.
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available data. Therefore, there is a possibility of modeling the
distribution of times in the form of integro-differential equations
using a fixed and predetermined Gamma distribution such as it is
normally done in epidemiology (Keeling and Grenfell, 1997;
Wolkowicz et al., 1997; Mittler et al., 1998; Conlan and Rohani,
2010) and has been proposed for more general biological circum-
stances (Bocharov and Rihan, 2000). However, such possibility
should be disregarded since the distribution is not fixed but rather,
it depends on the continuously changing environmental condi-
tions, so that for different feeding conditions, different (apparent
or effective) shape parameters are needed. The problem requires
more flexible modeling. Gamma-distributed times can also be
modeled using a sequence of compartments, a method sometimes
presented as “the Gamma trick” (Lloyd, 2001; Chowell et al., 2007,
2013). The method actually allows us to model any member of the
family of sums of exponentially distributed times, including those
with rates that change over time. The need of incorporating the
changes in the environment produced during the developmental
process makes advisable to use the flexible modeling based in
compartments and not the integro-differential formulations.

In the next section we will develop a stochastic compartmental
model that describes both previous and new experiments, being
also compatible with previously known facts about pupation such
as e.g., Padmanabha et al. (2012) observations.

3. Mathematical model for developmental times and adult
weight

In order to describe the maturation process and compute
developmental times we use the following assumptions.

1. Each larva has an individual fate independent of the fate of
other larvae. They only influence each other indirectly by
modifying the environment.

2. As a consequence, if ψðz1;…; zEÞ is the generating function for
the stochastic maturation process of one larva and if N is the
number of eggs, then Ψ ðz1;…; zE;NÞ ¼ ψðz1;…; zEÞN is the gen-
erating function for the whole system.

3. Each larva can be in one of E mutually exclusive maturation
stages with probability pj(t), where ∑E

j ¼ 1pj ¼ 1.
4. The larva progresses from one stage to the next with a

transition rate WjðTe; FÞ and may die in the stage j with
transition rate DjðTe; F;BÞ, where Te stands for temperature, F
for density of available food and B stands for body-size
(weight). Mortality and progress run an exponential race
(Durrett, 2001). Hence, the probability of death in stagej is
then Pdj ¼DjðTe; F;BÞ=DjðTe; F;BÞþWjðTe; FÞ (Durrett, 2001).

5. Body-size is gained following the general form proposed in von
Bertalanffy (1960). Body-size is lost at a rate proportional to the
body-size as a result of catabolic processes and it is gained at a
rate aBα where 0oαr1 as a result of anabolic processes.
Hence, weight follows a Bernoulli equation of the form

dB
dt

¼ aBα�bB: ð5Þ

Additionally, we expect a¼ aðTe; FÞ and b¼ bðTe; FÞ (larvae slow
down their metabolism under starvation conditions (Barrera,
1996)). During a time interval ½ti; tf � where conditions are held
constant, the body-size changes as

Bðtf Þ ¼
a
b
þ BðtiÞ1�α�a

b

� �
expð�ðtf �tiÞð1�αÞbÞ

� �1=ð1�αÞ
ð6Þ

which is the solution of (5). We have that Bð1Þ ¼ ða=bÞ1=ð1�αÞ is
the asymptotic body-size. Body-size loss is described in the

proposed form by considering that “the rate of catabolism
can be assumed to be directly proportional to body weight”
(von Bertalanffy, 1960). This form, or a slightly more general
form bBβ proposed as well in von Bertalanffy (1960), has been
generally adopted so far. The qualitative behaviour of mono-
tonic growth up to a finite asymptotic value shown in Eq. (6)
still holds as long as αoβ.

At the individual level, the development of a larva is repre-
sented by a sequence of transitions between stages that may
end in death or reach the final stage (pupae or adult depend-
ing on the development under consideration). The transition
from stage j occurs at a time tj which is an exponentially
distributed random number with cumulative probability for
the next event

Pð0rtjoΔtÞ ¼ 1�exp �
Z Δt

0
ðWjþDjÞ ds

� �
: ð7Þ

The probability of this transition being death, given that an
event occurred, is Pdj as calculated above (see item 4), while the
probability of reaching the jþ1 stage is, correspondingly,
Pmj ¼ 1�Pdj ¼Wj=ðWjþDjÞ.

3.1. Simple models

A model such as the one described above has a large number of
free parameters, which sharply contrasts with the availability of
data and the precision of the measurements. If any understanding
is going to come from the model, a simpler, more qualitative,
proposal is needed.

The simplest proposal is to consider all the transition rates
equal, i.e., independent of the stage. It is shown in the Appendix
that in the case of equal rates Wj ¼ r and no mortality, the
probability of having achieved pupation by the time t is

AðtÞ ¼ ΓðE; rtÞ ¼ rE

ðE�1Þ!
Z t

0
e� rxxE�1 dx¼ 1

ðE�1Þ!
Z rt

0
e� ssE�1 ds

while taking larval mortality into account, with corresponding rate
Dj ¼ q, it becomes

AðtÞ ¼ rE

ðE�1Þ!
Z t

0
e�ðqþ rÞxxE�1 dx¼ r

qþr

� �E

ΓðE; ðqþrÞtÞ: ð8Þ

Eq. (8) expresses the probability ðr=ðqþrÞÞE of surviving E stages
times a Gamma-distributed time.

For a Gamma distribution as above, the number of stages E is
called the shape parameter, while the rate (the inverse of the scale
factor) qþr has units of 1=time. Hence, the mean developmental time
satisfies T ¼ E=ðqþrÞ while the variance of this time is
σ2 ¼ E=ðqþrÞ2: This model predicts that the relation between the
variance of the developmental time, σ2, and the mean value, T, is of
the form σ2 ¼ T2=E, a relation that does not depend on the environ-
mental condition. Such a model would require to change the number
of developmental stages as a function of environmental conditions, a
requirement both difficult to implement in a continuously changing
environment and difficult to associate with biology. The number of
stages, this is the shape parameter of the Gamma-distribution, would
be simply an adjustable parameter a posteriori (i.e., only known after
the shape of the empirical distribution is observed).

We consider then the possibility that the developmental rates,
WjðTe; FÞ, belong to two classes: those that do not depend on the
available food and those that are sensitive to the food density. We
assign to the first class an environment-independent rate,
r0 ¼ 1=τ0 and to the other a rate that depends on the available
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food but is the same in all the stages in the class, rF ¼ 1=τF . The
developmental stages are now divided into n40 stages at a rate r0
and mZ0 stages at a rate rF, with E¼ nþm, yielding the relations

T ¼ nτ0þmτF

σ2 ¼ nτ20þmτ2F ð9Þ
Solving the variance as a function of the mean for the different

food regimes, we get

σ2 ¼ nτ20þðT�nτ0Þ2=m ð10Þ
Minimum variance is obtained when τF ¼ τ0.

Hence, this model in principle has the possibility of accounting
for the observed features of the statistics of pupation times or
emergence times, this is to say that the longer pupation and adult
emergence times observed for decreasing levels of food and the
corresponding dispersion of the cohorts could be accounted for in
an unified way by the model.

The theoretical cumulative probability (say for pupation, p) by
the time t is

PThðsotÞ ¼
Z t

0
Γ0ðnp; ðs r0ÞÞΓðmp; ðt�sÞrF Þ ds ð11Þ

Here, Γðk; rtÞ ¼ 1=ΓðkÞ R rt0 sk�1expð�sÞ ds and
Γ0ðk; rtÞ ¼ ðd=dtÞΓðk; rtÞ.

3.2. Model predictions

We list here quantitative and qualitative results that are
implied by the model. In experiments performed at constant
temperature and maintaining a constant food density:

1. A quadratic relation such as (10) will be observed between the
variance and the mean value of the developmental time, be it
pupation time or adult emergence time.

2. The total number of stages, of any particular class, from
hatching to pupation is smaller or equal than the total
number of steps, of the same class, from hatching to adult
emergence. We define class as the set of compartments
(stages) having the same developmental rate. Our model has
two classes: food-dependent compartments and food-
independent compartments.

3. The null hypothesis “the data are distributed according to the
probability distributions resulting from the simple model (11)
using the estimated parameters” cannot be rejected using
standard statistical tests.

4. The body-size, B, follows a growth-law with αo1 contrary to
what is conjectured in von Bertalanffy (1960), namely α¼ 1 for
insects.

5. Body-size differences at adult emergence for larvae reared
under the same environmental conditions correspond mostly
to random (individual) variability. In particular, we mean that
body-size depends weakly on the relative time of emergence
(early or late in the cohort).

We will put these predictions to test in the coming sections
using new data obtained for Ae. ae. We intend to show that, at
the present level of knowledge, there is no reason compelling
us to drop the model or even suggesting that the model
is wrong.

4. Experimental exploration of the development of Aedes
aegypti at constant temperature and food levels

A laboratory experiment was designed to test the model and
the insight produced by it. Larvae were bred at different

densities of food (yeast) in water. The density was kept nearly
constant by replacing the media with a new preparation daily,
while the temperature as well as the photo-period were kept
constant. In such conditions, we expect to decouple the envir-
onmental dynamics from the development of the larvae. This
method contrasts with previous experiments where food was
offered only at the onset of the experiment (Gilpin and
McClelland, 1979; Maciá, 2009) or was added daily (Rueda et
al., 1990) at a constant rate. In the present experiment, the
aquatic environment containing food available to the larvae is
substantially large (more than 25 ml per larva) and it is
renewed daily. Hence, the food media is kept almost constant,
i.e., with only little variations, during the full process. When, in
contrast, food (or properly said, food precursors) is adminis-
tered as in previous protocols, the reproduction of micro-
organisms cannot be controlled. Also, in experiments in which
initial food per larvae is controlled by changing the number of
larvae, the feeding of the larvae changes the food density as a
function of time. The consequence in all cases is that food is not
constant over time. Such variability has to be accounted for
without available experimental information, i.e., it is accounted
by a hidden guess such as “food dynamics is not relevant” or by
adding more fitting parameters through a dynamical model for
food (hence degrading the quality of the model by making it
less simple; see Popper (1959) for a discussion of the concept of
simple in science). An alternative to our protocol would be
monitoring daily the density of yeast cells available for larval
feeding. Notice that yeast cells and other micro-organisms are
notorious for reproducing at different rates for different tem-
peratures (Richards, 1928; Zwietering et al., 1991, 1994), hence
when no control is kept in micro-organism reproduction, the
contributions of food dynamics to the developmental dyna-
mics of mosquito larvae may be wrongly attributed to other
variables.

4.1. Experimental design

Larvae of Ae. ae. were raised in the laboratory from just hatched
up to emergence as adult, under constant conditions of food-
density, day-light and temperature.

Ae. ae. eggs were collected with ovitraps in Buenos Aires city
during November 2012, and stored at room temperature and
saturated humidity conditions until the beginning of the experi-
ment in December of the same year, when they were induced to
hatch by immersion in water. The experiment was performed
under controlled photo-period (12:12 light-dark) and tempera-
ture conditions (mean 26.1 1C, standard deviation 0.73 1C, mea-
sured in water with a HOBO (TM) data logger, recording
temperature every 30 min). Recently hatched larvae (less than
12 h old) were separated in six cohorts of 30 larvae. Each cohort
was transferred to a plastic recipient (cylindrical 1000 ml model
made by Tecnilin, diameter 105 mm, height 125.5 mm), filled
with 800 ml of dechlorinated water, and randomly assigned to a
treatment. The breeding environment consisted in 150�
41� j mg (j¼ 1⋯6) of dried yeast diluted in 800 ml of water,
and prepared 24 h earlier to stabilize temperature variations
(recipients for each treatment will be referred from here on as
Recipient j). The environment was renewed every day restoring
the food density conditions. After the beginning of the experi-
ment, each recipient was inspected daily, larvae were counted
and their larval instar recorded. In each opportunity, larvae
were transferred to a new recipient containing the previously
prepared daily ration of food. Pupae were transferred individu-
ally to containers conditioned for adult emergence. These
consisted of a small plastic cap containing 1 ml of water and
one pupa, placed in a larger container (a cylindrical acrylic tube,
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diameter 39 mm, height 55 mm), covered by a nylon mesh
to prevent escape of the adult mosquito. For each individual,
time of pupation and emergence of the adult, and sex were
recorded.

Both wings were removed from each individual, and mea-
sured (from the alular notch to the distal margin excluding the
fringe scales) to the nearest 0.001 mm using a dissecting
microscope equipped with a digital camera. Measurements
were performed on digital photographs with the Leica Applica-
tion Suite V 4.0.0. Only the length of the left wings was used in
Section 5.

4.2. Mortality results

The covered experimental range of 150� ð1 : 4�5Þmg=800 ml
food-density values gave two qualitatively different responses. We
will therefore distinguish these responses in the subsequent
analysis. We call food-deficit range, (although food may be near
optimal for the highest concentration) the one corresponding to
food-densities 150� ð1 : 4�3Þmg=800 ml, (j¼ 1;…;4Þ. In this
range, the effect of reduced food density is a delay in pupation,
and an increase in the variability of emergence times among
individuals, whereas mortality was not observed to depend on
food. The treatments with density 150� ð4�4 : 4�5Þmg=800 ml,
(j¼5,6), are called food-deprivation range. Here, a substantial
increase of mortality relative to the cohorts reared in the food-
deficit range is observed.

This qualitative difference in response to the experiment has
been recognized previously. Indeed, in Drosophila melanogaster it
has been observed (Sang, 1956) that when the number of larvae
sharing the same resources is increased, two different situations
arise. The first reaction of the organisms when incrementing the
number of larvae from an optimal feeding situation is to delay
pupation. However, after a critical value is reached, mortality
begins to increase as well. The same qualitative responses to
increments in crowding have been observed in Ae. ae. (Maciá,
2009).

The estimations of mortality under the different treatments are
shown in Table 1.

In Fig. 3 we show the cumulative probability of death as a
function of time for the two treatments in the food-deprivation
range. It can be observed that the onset of mortality presents a
delay in time. A time-interval of several days separates the first
surge of mortality and the second one. Most mortality cases
correspond to larvae 3 (moulting) stage.

5. Relation of the model to the experimental results

5.1. The statistics of developmental times

Our first task is to show under which conditions the
simple model can account for the changes in developmental
times as a function of food-density. The relation 9 is shown in
Fig. 4.

The relation (9) is acceptable in the food-deficit region but it
breaks down when extended to the food-deprivation region. In
what follows, we will center our attention in the food-deficit
region. There are several reasons for this decision: first, the food-
deprivation regime is more complex as it requires to find the
relative position of the stages with increased mortality; second,
the increment in mortality and concurrently the pupation and
emergence data are substantially scarcer for each food condition in
the food-deprivation regime than in the food-deficit region; and
third, less food conditions are available (there are only two
treatments in the food-deprivation regime).

The relation (9) allows for an estimation of the total number of
stages, the number of stages with rates that depend on the food
density, and the value of the food independent rates.

Table 1

Estimation of larval mortality under the different treatments. j corresponds to the food in 150� 41� j mg=800 ml The interval represents the 95% confidence interval for the
probability of death before reaching pupation. Confidence bands for binomial deviates were computed as described in the appendix of Otero et al. (2008).

j 1 2 3 4 5 6

Food (mg/ml) 0.1875 0.0468 0.0117 0.0029 0.00073 0.00018
Mortality 0.0–0.11 0.0–0.11 0.01–0.17 0.01–0.17 0.27–0.61 0.62–0.90
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We first fix the integers nP40, nA4nP , m40 and from the
relation for the mean, T ¼ nτ0þmτF (cf. Eq. (9)), we derive the
estimates

τj ¼ ðT Exp
Pj þT

Exp
Aj �ðnPþnAÞτ0Þ=ð2 mÞ ð12Þ

τ0 ¼ 0:25∑
j
ðT Exp

Aj �T
Exp
Pj Þ=ðnA�nPÞ ð13Þ

where nP (nA) denote the number of food-independent stages until
pupation (adult emergence) and T Xj indicates the average of the
time of pupation (X¼P) or adult emergence (X¼A) over all
samples in the food treatment j¼ 1;…;4. τj is then a direct
estimate of the time-span τF of the food-dependent steps, while
τ0 is obtained from the average time spent as pupae (which the
model considers constant). We note that these estimates from
Eqs. (12) and (13) minimize

ErrorT ¼∑
j
ðT Exp

P �ðnPτ0þmτjÞÞ2þðT Exp
A �ðnAτ0þmτjÞÞ2: ð14Þ

Substituting Eqs. (12) and (13) into Eq. (14), we obtain

ErrorT ¼ 2f0:25∑jðT
Exp
Aj �T

Exp
Pj Þ2�ð0:25∑jðT

Exp
Aj �T

Exp
Pj ÞÞ2g¼2f〈ðT Exp

Aj �
T
Exp
Pj Þ2〉� 〈ðT Exp

Aj �T
Exp
Pj Þ〉2g; independent of ðnA;nP ;mÞ, which is twice

the variance of ðT Exp
Aj �T

Exp
Pj Þ over the four treatments.

Next, the square of the difference between experimental and
theoretical variance weighted with the reciprocal of the average
time

ErrorV ¼∑
j
ðVarExpP �ðnPτ

2
0þmτ2j ÞÞ2=T PjþðVarExpA �ðnAτ

2
0þmτ2j ÞÞ2=TAj

ð15Þ

is minimized over the integers nP40, nA4nP , m40 to obtain the
parameter estimates of Table 2. The rationale for the weights in
the computation of ErrorV is to weight possible biases in the
measurement of times on an equal footing in all treatments. The

values of ðnP ; nAÞ depend on the election of weights but m is
robust. We refer to Appendix B for confidence intervals of the
estimated parameters. Under the hypothesis that the theory is
correct, the p-value associated to the fulfillment of the relation
(10) is of p¼0.666 (see Appendix B).

5.2. Goodness of fit

Having obtained (rough) estimates for the parameters involved
in the proposed theoretical distributions of pupation and emer-
gence times, Eq. (11), we will try to asses the quality of the fit and
the contributions of the theory (see results in Table 3). We leave
the comparison with previous theories for the discussion section.

From the experimental data we consider the estimate of the
cumulative distribution function

PExðsot; jÞ ¼Nj
pðsotÞ=Nj

pðso1Þ ð16Þ

where Nj
pðsotÞ is the number of larvae that have pupated at time t

in the experimental conditions j. PEx is a step function since our
measuring protocol is not continuous.

We use the following tests:

1. The Kolmogorov–Smirnov estimator (von Mises, 1964; Conover,
1965) (D¼ supd jPThðsodÞ�PExðsodÞj) for discontinuous dis-
tribution functions (Conover, 1972; Gleser, 1985) (p-value pKS).

2. The same Kolmogorov–Smirnov estimator with samples
restricted (conditioned) to those deviates that satisfy the

conditions: ðVar�VarThÞ2r ðVarExp�VarThÞ2 and ðT�TThÞr
ðTExp�TThÞ2, where T ;Varf g stand for the media and variance
of the random-deviate, i.e., samples of the proposed distribu-
tion function that satisfy a condition stronger than the condi-
tion used for fitting the parameters, Eq. (14), (15)
(p-value: pn

KS).
3. The estimator χ ¼∑iðni�NpiÞ2=ðNpiÞÞ under the above con-

straint, where the summation runs over the days of observa-
tions and ni are the number of new pupae or new adults
counted the i-day, N¼∑ini. This test is a χ2 test in the large
N-limit, pn

χ .
4. The R2 estimator: R2¼ 1�∑L

i ¼ 1ðni�NpiÞ2=∑L
i ¼ 1ðni�N=LÞ2Þ

where L is the day of the last event observation.

In all cases, due to the smallness of N� 30, we used Monte-Carlo
simulations to assign the p-value.

To assign an overall goodness of fit to the theory we compute
the geometrical average of the p-values which result in
pKS ¼ 0:597; pn

KS ¼ 0:199; pn
χ ¼ 0:273; R2¼ 0:837.

Table 2
Parameter values for the simple developmental model. P indicates pupation times
and A emergence times of the adults.

n m τ0 ¼ 1=r0 τ1 ¼ 1=r1 τ2 ¼ 1=r2 τ3 ¼ 1=r3 τ4 ¼ 1=r4

P 50 7 0.0724 0.0556 0.108 0.506 2.165
A 74 7
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A visual presentation for all the data is achieved plotting the
pairs PThðsodÞ; PExðsodÞð Þ for all the days, d, of the experiment.
Departure from the diagonal indicates discrepancies (statistical or
other), see Fig. 5.

We close this subsection showing that, visually, PThðsotÞ
(Eq. (11)) does not differ substantially from a Gamma distribution
with an effective number of stages given by

Eeff � T2=var¼ T2

nτ20þðT�nτ0Þ2=m
; ð17Þ

which monotonically decreases from Eeff ¼ ðnþmÞ to Eeff ¼m
when T goes from T ¼ ðnþmÞτ0 to T ¼1. This observation illus-
trates why it was possible to fit the published data of Section 2
(Figs. 1 and 2) with Gamma distributions. In Fig. 6 we show more
examples of this property.

5.3. The statistics of adult body-size

We use the cube of wing length as an indicator of the adult size
of emerging adults. When adult weight and wing length are
considered within a group of larvae reared under the same
conditions, the body weight is roughly proportional to the cube
of the wing-length (Christophers, 1960; Heuvel, 1963).

The final (average) body-size of Ae. ae. depends on the food
available being larger for the treatments with larger density of
available food (see Table 4).

Additionally, we compare the fraction of the cumulative bio-
mass BC produced by the day d, BCðdÞ=BCð1Þ, with the correspond-
ing fraction of the total number of individuals produced,
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distribution (11).

Table 4
Average body-size for the different experimental conditions. We indicate the average length of the left wing and the SD for females (Fe) and males (Ma). Not all wings could
be successfully measured.

Treatment j 1 2 3 4 5 6

Food (mg/ml) 0.1875 0.0468 0.0117 0.0029 0.00073 0.00018
Fe wing length (mm) 2.96 2.83 2.56 2.22 1.99 1.84
SD 0.04 0.11 0.13 0.26 0.17 NA
Number of Fe 10 10 10 12 8 1
Ma wing length (mm) 2.24 2.15 1.95 1.74 1.62 1.58
SD 0.04 0.07 0.076 0.11 0.06 0.09
Number of Ma 16 17 17 11 8 2
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Fig. 7. Fraction of total biomass (wing-length)3 plotted against the fraction of the
total number of individuals (18). The crosses and plus signs indicate the values
expected for the WM according to the tables in Magori et al. (2009) for optimal
feeding. The solid line corresponds to a least-squares fit, the root mean square error
is 0.11 while maxxjyðxÞ�xjC0:1182=4. According to an exponential model for
growth all the points should lie in the region demarcated by the dashed lines.

Table 3
Goodness of fit. N is the total number of surviving pupae or adults in the experimental arrangement, D is the Kolmogorov–Smirnov (KS) discriminant. Index j indicates food
treatments, with food levels given in mg/ml. We show results for the KS tests, pKS; KS with the universe of samples restricted (see text), pn

KS; restricted χ-test, pn
χ (see text) and

R-square statistic, R2, as a function of the food treatment for pupae (left) and adults (right). The overall quality of the theory is gauged by the geometrically averaged values

ðΠkpkÞ1=8 with k running through all the eight sets.

j Pupae Adult Average

1 2 3 4 1 2 3 4

Food 0.1875 0.0468 0.0117 0.0029 0.1875 0.0468 0.0117 0.0029
N 30 30 29 29 27 30 29 25 –

D 0.06 0.07 0.05 0.11 0.12 0.04 0.08 0.08 –

pKS 0.64 0.67 0.77 0.54 0.21 0.89 0.56 0.87 0.597
pn

KS 0.35 0.17 0.38 0.13 0.03 0.55 0.09 0.56 0.199
pn
χ 0.27 0.3 0.22 0.73 0.09 0.29 0.10 0.91 0.273

R2 0.98 0.94 0.95 0.56 0.93 0.96 0.92 0.60 0.837
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NðdÞ=Nð1Þ. With

NðdÞ ¼ ∑
0r ird

nðiÞ

BCðdÞ ¼ ∑
0r ird

∑
0r jrnðiÞ

Bij ð18Þ

where n(i) is the number of adults emerged in day i and Bij is the
weight of the j-adult emerged in day i. In Fig. 7 we show the
experimental relation between N(d) and BC(d) where a small
deviation from the identity is observed, indicating that early
emerged individuals present an almost negligible smaller weight
than those emerging later. Regarding the fit in the Figure, note that
the points ð0;0Þ and ð1;1Þ belong in the graph exactly and there-
fore any proposed fit has to comply this constraint. We tested the
nonlinear polynomial of lowest degree satisfying the constraint.

According to Eq. (6) the average weight will grow with a
characteristic time of 1=ða�bÞ for α¼ 1 (exponential growth),
while in the case of αo1 an asymptotic body-size is reached.
In the first case, we expect the body-size of late emerged adults
to be significantly larger than the body-size of those early
emerged. We remind the reader that the body size at pupation is
the adult size as well since pupae do not eat. Indeed, according to
the growth model (von Bertalanffy, 1960) presented in Section 3
and adopting α¼ 1 in Eq. (5), the weight variation TWV along
the period of pupation estimated as the ratio of the biomass
accumulated in the second half of the period of pupation relative
to the biomass accumulated in the first half of the period is
TWV � expðða�bÞσÞ � expðða�bÞT= ffiffiffiffiffiffiffiffi

Eeff
p Þ ¼U1=

ffiffiffiffiffiffi
Eeff

p
, where U is

the growth factor from egg to pupa, BðTÞ ¼U Bð0Þ. In the present
situation we have mrEeff rmþn, or 0:3841=

ffiffiffiffiffiffiffiffi
Eeff

p
40:13. The

factor U reported in Christophers (1960) for optimal food condi-
tions is 234 (males) and 358 (females). Hence, we may estimate
ð234ð1:74=2:24Þ3Þ0:38 ¼ 5:964TWVF42:15¼ ð358Þ0:13 for expo-
nential growth (in the left side of the inequality, Christopher's
data is corrected for food scarcity, as reported in Table 4), while we
obtain TWV≲y0ðx¼ 1Þ=y0ðx¼ 0Þ ¼ 1:27 from Fig. 7. The data points
are therefore incompatible both with exponential growth and with
the expectations of the WM (shown in the graph). When the
cumulative probability of pupation is approximated by a gamma
distribution of shape parameter Eeff � T2=var¼ ðnτ0þmτF Þ2=
nτ20þmτ2F and scale factor τeff ¼ ðnτ0þnτF Þ=Eeff the cumulative
distribution function corresponds to a gamma distribution as well,
with shape parameter Eeff and scale factor τB ¼ ðτeff =ð1þτeff ða�bÞÞ,
being the average growth factor UC ð1�ðða�bÞ=τeff ÞEeff Þ�1. These

relations allow to produce the exponential growth estimations of
Fig. 7 using ða�bÞ ¼ ð1�U�1=Eeff Þ=τeff .

This result indicates that there is little relation between body-
size and relative time of emergence. Hence, αo1 must be
concluded. Direct examination of the data presented in
Christophers (1960) indicate as well a value of αo1 since satura-
tion effects are visible. Christophers data are plotted in Fig. 8 to
facilitate the discussion.

6. Discussion

The Coefficient of variation, CV, for developmental time of
adults in the experiment progresses as 0.08, 0.12, 0.17 and 0.28
when we go from high food (recipient 1) to low food (recipient 4).
Compared to the coefficient of variation in Rueda et al. (1990) and
Southwood et al. (1972), we see that Rueda's 0.07 ranks in the
well-fed lot while Southwood's 0.33 pertains to the other extreme.

Performance of the window model: The performance of the WM is
uneven. The mean time at the experiment temperature was of
rð26:1 1CÞ�1 ¼ 7:68 days while all the well-fed cohorts pupated
completely before 7.5 days, indicating a systematic difference that
could represent differences between the local strain of the mosquito
and the strain used by Rueda et al. (1990). When the observed
statistical mean was used as the inverse of the rate r(Te), a good
agreement (R2¼ 0:99) was found with the proposed distribution in
Eq. (3), meaning that the window in physiological time for the
emergence of adults was correctly estimated. In sharp contrast, the
dispersion in body weight for females increases when going from
optimal feeding towards less favourable conditions, contrary to the
predictions of the multiple WM; the dispersion of the body-size for
males stays approximately constant, again in contrast with the
prediction of the WM (see Table 4), despite the fact that the
physiological time in the experiment corresponds to the range
0.95:4.98. In the same direction, the data corresponding to the relation
between biomass and number of individuals (Fig. 7) show that there is
very little deviation towards smaller body-sizes at the beginning of the
emergence process relative to body-sizes at the end of the process.
This is to say that the lower frame of the WM is not providing a
qualitatively satisfactory description of the dispersion in weight.
In conclusion, the WM has to be considered only as a statistical
relation qualitatively derived from the facts that the average time
spent in the preimaginal stages is monotonically decreasing with the
food density and that the body-size is monotonically increasing with
food density, both of them on average. It follows that average body-
size monotonically decreases with the average time spent in the
preimaginal stages. But the relation does not hold at the individual
level within the same food-treatment group.

In contrast with the WM, the model outlined in this work shows
weights that are rather insensitive to the fluctuations of adult
emergence time within the cohort, in agreement with the experi-
mental results. It should be noted however, that body-size should also
be considered a random variable and Eq. (5) should be replaced by a
stochastic process if fluctuations in body-size are considered relevant.

Difficulties: We will comment next some difficulties encoun-
tered along the work.

The sensitivity of the fit of Eq. (15) is far from being equal for
each parameter. While m accounts for the effects that the
dependence with food of the time to pupation has on the variance,
nP and nA account for the minimal variance which is substantially
affected by the decision of measuring once a day. This uncertainty
in the measurement protocol strongly influences the minimal
variance since all within-day effects are wiped away. In Table 2
we reported that the stages not depending on food, τ0, are longer
that the food-dependent stages in treatment 1, τ1 (presumed to be
close to optimal feeding). However, when the fit is repeated
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Fig. 8. Larval average weight as a function of time and the model (5) with Bð0Þ ¼
0:0137 and the fitted values Bð1Þ ¼ 6:629 mg, b¼ 3:430 hr�1 and α¼ 0:994. For
comparison a fitted exponential (α¼ 1) is also plotted. The data was taken from
Christophers (1960) for larvae fed under optimal conditions.
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enforcing τ1 ¼ τ0, the errors (14), (15) do not deteriorate signifi-
cantly, yielding τ0 ¼ τ1 ¼ 0:060; nP ¼ 60; nA ¼ 89, while the rest of
the parameters display no significant changes. Hence, the thesis
that τ0 ¼ τ1 cannot be rejected and lies within the confidence
intervals for the parameters (see Appendix B).

Male and female larvae apparently develop at different rates
and differences in pupation times and body-size have been
reported (Padmanabha et al., 2011). Our analysis makes no
distinction between them because of two reasons: (a) previously
presented data and models do not make such a distinction and
(b) separating by sexes substantially weakens our statistics.

7. Conclusions

The main qualitative and quantitative aspects of the develop-
ment of Aedes (Stegomyia) aegypti in different environments
characterized by different availability of food are an increase in
the average pupation time, an increase in the time-dispersion of
pupation (emergence) events and a decrease of body-size for
decreasing levels of available food. Only when food is extremely
scarce, an important increase in mortality is observed.

We have shown that individuals hatched as a result of the same
wetting stimulus and reared under the same conditions do not
pupate or emerge synchronously, but rather present relatively
large coefficients of variation. Synchronous pupation/emergence
can be observed in the laboratory under optimal feeding condi-
tions but it is unlikely to be observed in the wild.

We have shown that the available data correspond well with
development thought of as a sequence of compartments (stages) with
exponentially distributed times and that Gamma distributions can be
fitted to the data. In particular, the egg-hatching time in Ae. ae. is
exponentially distributed. The effective number of developmental
stages (17) depends on the available food and decreases as food-
deficit increases. We conjecture that what the data are evidencing is
that the transition rates for only a few developmental stages are
affected by food availability while most stages are not affected. As the
total developmental time becomes dominated by the slow transitions
(smaller rates) the apparent number of stages decreases. When only
two different values of rates are allowed (food independent and food
dependent), we have shown that the expected relation between
variance and mean is quadratic; the precise shape of this relationship
is the only property of the theory that was optimized to obtain a
description. This functional relation between time for adult emergence
and cohort dispersion in time means that both phenomena are not
independent, but rather different aspects of the same process. This
idea supports the view of intrinsic stochasticity, as opposed to the
paradigm of “determinism plus noise” for emergence and dispersion
(meaning that the biological information is contained exclusively in
one value, usually represented by the average, while deviations from
average correspond to uncontrollable nuisance factors that should be
averaged out without further analysis). Rewritten in terms of body-
size and physiological development, the results can be read as: at a
few places in the process of physiological development, the process
has to wait until body-size/reserves have been accumulated, before
proceeding.

We carried out an experiment to test the insight produced by the
theory, rearing Ae. ae. larvae at different constant food levels and
constant temperature. A region of food-deficit with a dynamic range of
food-density of 150� ð1 : 4�3Þmg=800 ml was identified, as well as a
food-deprivation regime with range 150� ð4�4 : 4�5Þ mg=800 ml.
The food-deprivation regime is characterized by high mortality and
the food-deficit regime corresponds to low mortality. The existence of
these two regimes has been previously proposed on the basis of
modeling consistency (Romeo et al., 2013). The simple development
theory proposed here corresponds to the food-deficit region.

The experimental data obtained are consistent with the theo-
retical predictions (Section 3.2). Let us repeat them:

1. A quadratic relation such as (10) will be observed between the
variance and the mean value of the developmental time, be it
pupation time or adult emergence time.

2. The total number of stages, of any particular class, from
hatching to pupation is smaller or equal than the total number
of steps, of the same class, from hatching to adult emergence.
We define class as the set of compartments (stages) having
the same developmental rate. Our model has two classes:
food-dependent compartments and food-independent com-
partments.

3. The null hypothesis “the data are distributed according to the
probability distributions resulting from the simple model (11)
using the estimated parameters” cannot be rejected using
standard statistical tests.

4. The body-size, B, follows a growth-lawwith αo1 contrary to what
is conjectured in von Bertalanffy (1960), namely α¼ 1 for insects.

5. Body-size differences at adult emergence for larvae reared
under the same environmental conditions correspond mostly
to random (individual) variability.

In addition, once parameters are adjusted to the data, the
phenomenological model indicates that the rates of the stages
between pupation and adult emergence do not depend on the
available food.

Body-size was described in the standard form proposed by von
Bertalanffy (1960). The exponent for gain, consistent with existing
data, appears to be close to α¼ 1, as suggested in general for insects
in von Bertalanffy (1960)); yet, saturation effects (meaning αo1) can
be readily seen both in pre-existing data and in the relation between
biomass produced and number of individual emerged after d-days.
The emerging picture is that larvae continue to grow until pupation
but pupation takes place when the growing has slowed down
substantially, a conclusion agreeing with those reached in
Padmanabha et al. (2012). The data present no evidence for body-
size being a requirement for pupation as proposed earlier (Gilpin and
McClelland, 1979). The WM appears to be limited to the statistical
level (regression) but not linked to individual variability. In contrast,
early-emerged individuals are slightly smaller than late-emerged
ones as explained by the present model.

The model introduced in this work makes no separation
between maturation and weight gain. Both processes are treated
in a unified way, being both consequences of the interplay of
genetic (manifested in basic physiological parameters) and envir-
onmental conditions (such as temperature and available food).
Both dispersion in body weight and dispersion in adult emergence
time increase for suboptimal feeding conditions and are part of an
unified picture.
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Appendix A. Derivation of A(t) from the assumptions
in Section 3

A general derivation of A(t) in a population context was given
elsewhere (Solari and Natiello, 2014). In this Appendix we re-
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derive that expression in the simpler context of considering the
fate of one larva, since the derivation contributes to gain some
insight into the process. We comment below on the corresponding
procedure for the case with mortality, referring again to Solari and
Natiello (2014) for the complete calculation.

A.1. Case without mortality

The individual process in this case consists of a larva in stage
0 at t¼0 as initial condition, subject to a Markov process with the
following properties:

� The probability of a transition j-jþ1 during a short time-
interval Δt is rΔtþoðΔtÞ. Here, oðΔtÞ is a quantity that goes to
zero with Δt faster than linearly (i.e., even oðΔtÞ=Δt goes to zero
with Δt).

� The probability of no transition during Δt is 1�rΔtþoðΔtÞ.
� The probability of more than one transition occurring during

time-interval Δt is oðΔtÞ.
� The larva evolves through stages 0 to E�1, exiting the system

at stage E as a pupa (or adult). The final stage is an absorbing
state (no further transitions occur).

� There are no transitions k-ðk�1Þ. This is a biological con-
straint, maturation processes are irreversible.

Hence, the probability of reaching an intermediate stage k at time
tþΔt is

Pðk; tþΔtÞ ¼ Pðk�1; tÞrΔtþPðk; tÞð1�rΔtÞþoðΔtÞ
rearranging the terms we have,

Pðk; tþΔtÞ�Pðk; tÞ
Δt

¼ ðPðk�1; tÞ�Pðk; tÞÞrþoðΔtÞ
Δt

taking the limit for Δt-0þ we obtain,

_P ðk; tÞ ¼ ðPðk�1; tÞ�Pðk; tÞÞr:

For the case k¼0, one has _P ð0; tÞ ¼ �rPð0; tÞ while the final
maturation stage responds to the equation _P ðE; tÞ ¼ rPðE�1; tÞ.
We will first solve the equations for the intermediate stages
0rkrE�1, and subsequently compute PðE; tÞ by direct integra-
tion. Rearranging the intermediate stage probabilities in a column
vector PðtÞ ¼ ðPð0; tÞ; Pð1; tÞ;…; PðE�1; tÞÞT , the problem can be
recasted as the matrix equation

_P ¼ GP;

where the E� E matrix G satisfies G¼ �rIþrJ1, and matrix J1 has
ones in the first lower sub-diagonal and zeroes elsewhere (in

general, Jk ¼ Jk1 has ones in the lower k-th sub-diagonal and zeroes
elsewhere, for 0rkoE, while JE is the zero matrix). The solution is
computed straightforwardly as PðtÞ ¼ etGPð0Þ, where

etG ¼ e� rt I � Iþ ∑
E�1

k ¼ 1

rktk

k!
Jk

 !
:

Inserting the natural initial condition for this problem, i.e.,
Pð0Þ ¼ ð1;0;…;0ÞT , the probability of the larva being at stage
E�1 at time t is,

PðE�1; tÞ ¼ rE�1tE�1

ðE�1Þ! e� rt :

Finally, the probability of having reached pupation stage E can now
be obtained by direct integration of the final equation
_P ðE; tÞ ¼ rPðE�1; tÞ:

AðtÞ ¼ PðE; tÞ ¼ rE

ðE�1Þ!
Z t

0
e� rττE�1dτ¼ 1

ðE�1Þ!
Z rt

0
e� ssE�1ds¼ ΓðE; rtÞ:

A.2. Case with mortality

Introducing death events at each intermediate stage, the
possible evolution of a larva in stage j is either dying at that stage
or evolving to the stage jþ1. We call q and r the rates correspond-
ing to one or the other event. The probability of reaching an
intermediate stage k at time tþΔt modifies to

Pðk; tþΔtÞ ¼ Pðk�1; tÞrΔtþPðk; tÞð1�ðqþrÞΔtÞþoðΔtÞ
while the differential equations for the intermediate stages now
read

_Pðk; tÞ ¼ rPðk�1; tÞ�ðqþrÞPðk; tÞ; _P ð0; tÞ ¼ �ðqþrÞPð0; tÞ:
The final equation for reaching pupal stage E remains unmodi-

fied. The previous procedure can be reproduced straightforwardly, if
now matrix G reads: G¼ �ðqþrÞIþrJ1. Finally, we obtain

PðE; tÞ ¼ rE

ðE�1Þ!
Z t

0
e�ðqþ rÞττE�1dτ¼ r

qþr

� �E 1
ðE�1Þ!

Z ðqþ rÞt

0
e� ssE�1 ds:

Appendix B. Confidence intervals for the estimated parameters

Confidence intervals for the estimated parameters have been
calculated using the statistical method known as bootstrap (Efron
and Tibshirani, 1993; Chernick, 2008). We start discussing
how bootstrap relates to the distinction between theory and
description.

As stated in the introduction, the present work is an attempt to
produce a theory of aspects of the development process of the
larvae of Ae. ae. concerning mostly the time spent as larvae until
achieving pupation and the time spent as larvae and pupae until
emerging as adult. While theories are produced by a process of
abstraction and abduction (Burks, 1946) resulting in (tentative)
universal statements after removing the particular properties that
distinguish any particular realization of the theory, experiments
are (at most) realizations of the theory which are subject to
particular circumstances in each situation. In the case of our
experiment, the number of larvae used for each treatment and
the decision to sample with one-day intervals are perhaps the
most relevant circumstances. They are also the outcome of a
compromise between resources and the adaptation to biological
times. The experimental data then reflects not the theory but a
particular experiment. In addition to these decisions there are
undetected errors and unavoidable uncertainties that will have an
effect on the measurements, at some level of precision. For the
sequel, let P0 denote the true distribution for the process, while ~P0

is the distribution of the data from the actual experiment.
The method of bootstrap (Beran, 1986; Romano, 1988) concerns

~P0 and the space Ω of descriptions compatible with the underlying
theory, along with a procedure Θ to pick a description from Ω. Let
P̂ denote the chosen description. We have ΘðdataÞ ¼ P̂AΩ. The
procedure Θ usually minimizes some weighted error between the
data and the corresponding quantities in the description. The only
constraint for Θ at this point is that if pdataðP0Þ is any set of
pseudo-data obtained with random deviates from the distribution
P0, then, ΘðpdataðP0ÞÞ ¼ P0 Romano (1988). The method proceeds
by generating pseudo data and recalculating the description via Θ.

There are two bootstrap “flavours”, characterized by the equa-
tions Θðpdatað ~P0ÞÞ ¼ ~P0, and ΘðpdataðP̂ ÞÞ ¼ P̂ . In the first one, the
pseudo data are taken from the actual experimental distribution
~P0 while in the other – called parametric bootstrap – the pseudo
data come from the chosen description P̂ (Section 5). If ~P0AΩ,
these equations are equivalent in the limit (for a sufficiently large
amount of bootstrap replications). However, these equations will
never be satisfied exactly. Instead, the computation of confidence
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intervals over the bootstrap replications is used. Since we compute
a finite amount of replications and we are never in the limit, the
choice of Θ, the number of replications, the experimental nuisance,
etc., will to some extent influence the results, as it is in any
statistical appraisal.

Note that none of the bootstrap flavours uses P0. Whether
P0AΩ is an issue that bootstrap takes for granted, being unable to
decide about it Beran (1986), Romano (1988), Efron and Tibshirani
(1993), Chernick (2008). Therefore, bootstrap does not belong in
the appraisal of the theory, but rather it is involved in the
estimation of the accuracy of the description. Its proper place is
among the tests discussed in Section 5, or rather after them since
the bootstrap procedure in itself does not care (Hjorth, 1994) about
the fulfillment of the hypothesis P0AΩ.

If P̂ is within the resulting confidence intervals, we may be
confident that Θ did not introduce important systematic errors or
bias. Because of the limitations of the experimental protocol
discussed above, it is advisable in this work to perform parametric
bootstrap, analysing ΘðpdataðP̂ ÞÞ. Θ, as described in Section 5, is
not a projector in the space of models for the experiment but
rather a projector in the space of theories.

For the present experimental situation, the pupation times are
independent of each other (according to the theory, Eq. (9),
Tj ¼ nPτ0þmτj, where j runs over food-treatments). Further, the
theory expects TasP ¼ ðnA�nPÞτ0, the time spent between pupation
and emergence, to be independent of the treatment. Finally the

integer parameters in the theory can be recasted as (nP ;nasP ¼
nA�nP ;m) being thus asymptotically independent of each other and
of the above times. The confidence intervals obtained assuming
normal deviates of the parameters and percentiles over 2000
realizations of the ideal experiment are reported below in terms
of these quantities. Values reported under the label C were
computed forcing the pseudo-data into the experimental protocol
of one-day measurements (this is expected to closely mimic ~P0)
while the values with label Rwere computed as given by P̂ , which is
free from experimental limitations.

The intervals CI of Table B1 represent the 90% tightest con-
fidence intervals achievable with an ideal experiment following 30
larva in each treatment. Additionally we compared the error given
by Θ for each bootstrap replicate with the error for P̂ , finding
PðErrorB4ErrorP̂ Þ ¼ 0:666, which means that the experimental
data satisfies the relation predicted by the theory and reflected
in Eq. (10) as much as it can be expected. It also means that the
restricted KS test of Section 5 (pn

KS ¼ 0:20) is a more demanding
test than PðErrorB4ErrorP̂ Þ, being both fair tests.

Appendix C. Symbols table

Table C1.

Table B1

Outcome of bootstrap analysis. Data corresponds to the experimentally recorded average times. Description corresponds to P̂ , the computed parameters in Section 5, while
Average correspond to the mean after 2000 replicas of the experiment (C is computed grouping event times in one-day intervals and R is without grouping). CI displays
confidence intervals for the respective bootstrap averages, assuming normal deviations (N) and as 5–95% percentiles.

Parameter T1 T2 T3 T4 TasP nP nasP m

Data 3.93 4.33 7.16 18.91 1.74 – – –

Description 4.01 4.38 7.16 18.78 1.74 50 24 7
Average R 4.02 4.38 7.15 18.79 1.74 � 57 � 30 � 8
Average C 4.01 4.38 7.16 18.80 1.74 � 50 � 27 � 8
CI(NR) 3.85–4.18 4.20–4.57 6.72–7.59 17.03–20.56 1.69–1.79 37–77 18–42 4–11
CI(R) 3.85–4.19 4.19–4.56 6.74–7.60 17.08–20.63 1.69–1.79 33–70 18–40 5–11
CI(NC) 3.83–4.19 4.19–4.57 6.74–7.59 17.02–20.58 1.66–1.82 28–72 13–40 4–11
CI(C) 3.83–4.19 4.19–4.57 6.74–7.59 17.05–20.63 1.66–1.82 30–70 16–40 5–11

Table C1
Table of the main symbols used in this work.

Symbol Meaning

Tph Physiological time
TB Time to reach a target body-mass
T Mean developmental time
Te Temperature
E Gamma shape parameter (number of steps)
τ0 Food-independent Gamma scale factor
τF Food-dependent Gamma scale factor
r Gamma rate (r ¼ 1=τ)
B Body-size (weight)
a Coefficient of anabolic process (gain) in Eq. (5)
b Coefficient of catabolic process (loss) in Eq. (5)
α Exponent for body-size gain in Eq. (5)
Eeff Effective number of steps (shape parameter for a one-gamma model)
Di Death rate in stage i
Wi Transition rate from stage i to iþ1
BC Cumulative biomass
A(t) Probability to have matured at time t
n ðnP ;nAÞ Number of food-independent steps (P: pupation, A: emergence)
m Number of food-dependent steps
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