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Stability properties of the monochromatic spectrum in a double-cavity laser

Alejandro A. Duarte and Herna´n G. Solari
Departamento de Fı´sica, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina

~Received 9 October 1998; revised manuscript received 7 April 1999!

We discuss the process by which the spectrum of monochromatic modes of the laser in a double-cavity laser
changes from that proper to a short cavity into that proper to a long cavity as the reflectivity of the ‘‘external’’
mirror is varied from 0 to 1. This work is the natural continuation of our previous work@Phys. Rev. A58, 614
~1998!#, where the bifurcations occurring during this metamorphosis were studied. The transformation is
mostly dictated by the boundary conditions and occurs regardless of the laser model. This transition is beyond
the possibilities of simpler double-cavity laser models, such as those of Lang and Kobayashi@IEEE J. Quantum
Electron.QE-16, 347 ~1980!#. The stability properties of the monochromatic modes are studied as a function
of the reflectivity of the external mirrorR, the external cavity lengthL, and the applied currentJ. It is shown
that for reflectivity values corresponding to the metamorphosis of the spectrum, by varyingJ and/orR, the
system can give rise to a Hopf instability that involves the excitation of a roughly discrete set of frequencies.
Note that these features are also beyond the possibilities of simpler models. We also discuss the role played by
noise and show that it is possible for the system to show a high degree of susceptibility to noise, depending on
J. @S1050-2947~99!10608-5#

PACS number~s!: 42.55.Px, 47.20.Ky, 42.65.2k
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I. INTRODUCTION

The study of the spatiotemporal behavior of extended s
tems has recently been the subject of several theoretical
experimental investigations@1#. In this kind of system, the
role played by the boundary conditions is very importa
because the number of effectively interacting modes depe
mostly on the geometric characteristics rather than the ph
cal processes occurring in the system. Therefore an un
standing of the behavior of such systems with respect to
boundary conditions is a central problem in nonlinear d
namics. In this paper we study the changes affecting
monochromatic solutions of a laser with optical reinjecti
as a function of the boundary condition controlling t
strength of the optical feedback. In particular, our study
focused on the stability properties of such solutions a
function of the boundary conditions.

The laser with optical reinjection has been the subjec
intense research during the last decade, partly becaus
origin of the dynamical regimes appearing in this system
not fully understood from the academic point of view, a
also because of its potential applications. In any case,
variety of dynamical phenomena present in this system
attracted much attention. It has been experimentally sho
that they exhibit a variety of interesting dynamical sta
induced by feedback such as ‘‘low-frequency fluctuation
@2,3# and ‘‘coherent collapse’’@3–6#.

In this paper we consider a laser~semiconductor! of
length l ( l;10–300 mm) with an external mirror of reflec
tivity R located at a distanceL(L@ l ), conforming in such a
form a ‘‘double-cavity laser’’@2–8#. While R andL are the
control parameters controlling the boundary conditions,
gain of the active media depends on the pumping currenJ,
which is the other control parameter.

The theoretical description of this system has been p
formed mainly through perturbative solutions valid only f
limit cases,R;0 @3–7# or R;1 @8#. For R;0, the laser is
PRA 601050-2947/99/60~3!/2403~10!/$15.00
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assumed to operate in a single~longitudinal! mode, so that
the interesting variation is in time rather than space. T
Lang-Kobayashi equations@7# are the paradigmatic mode
for this limit case.

Recently, a model that avoids the usual simplificatio
was presented@9#. On the one hand, the semiconductor m
dia was considered in its full spatial extension, hence allo
ing for ‘‘longitudinal multimode’’ operation. On the othe
hand, the reinjected electromagnetic field was considered
the usual boundary conditions in the external mirror and
semiconductor-vacuum interface. The resulting model i
set of partial differential equations~PDE’s! with time-
delayed boundary conditions.

Following this approach, we were able to identify th
changes occurring in the spectrum of the laser asR was
increased from 0 to 1@9#. As expected, forR50 the spec-
trum consists of a set of modes whose frequency separa
is given by the length of the semiconductor (Dv}1/l ). For
R;0 the spectrum consists of clusters~islands! of solutions
around each of the solitary laser modes. WhenR is further
increased, a drastic metamorphosis of the spectrum ta
place: the islands are progressively absorbed into a la
one that progressively invades the spectrum from the lo
frequency side. AsR is further increased, this island finall
gains the whole frequency range of interest. In this case,
physically relevant part of the spectrum, the lower part
this large island, gives a wavy appearance reflecting
original islands, but the frequency separation between a
cent modes is dictated mainly by the length of the exter
cavity (Dv}1/L). Further increasingR, the wavy appear-
ance disappears until no trace of the original spectrum
found for R;1. This transformation, which is mediated b
an unusual sequence of bifurcations completely ruled by
boundary conditions@9#, is the result of the competition be
tween the cavities of lengthl andL. Interestingly, this meta-
morphosis occurs regardless of the details of the suscep
ity model; however, some of its features are mod
2403 ©1999 The American Physical Society
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2404 PRA 60ALEJANDRO A. DUARTE AND HERNÁN G. SOLARI
dependent. Also note that this phenomenon is beyond
possibilities of the Lang-Kobayashi model.

The rest of the work is organized as follows: Sec. II fo
mulates the problem as a nonlinear eigenvalue problem
laser physics; Sec. III discusses how the monochrom
modes are found and how the transformation of the spect
takes place; Sec. IV describes how to perform the stab
analysis; Sec. V presents the results obtained by perform
the stability analysis; and finally Sec. VI presents the c
cluding remarks.

II. LASER WITH OPTICAL FEEDBACK

In this section we present the description of the doub
cavity laser. We consider a laser that extends in thex direc-
tion, the active media are located at 0<x< l , while the ex-
ternal mirror of reflectivity R is placed atx52L. The
dependence of the fields on the transversal coordinatesy and
z is neglected in what follows; hence the laser is described
the electric fieldE(x,t), the polarizationP(x,t) @P(x,t)50
for 2L<x<0#, and the carrier densityN(x,t). Note that
P(x,t)50 andN(x,t)50 for 2L<x<0.

For the sake of simplicity we consider the dimensionle
form of the equations and field. The following factor
ig(g i /g')1/2NT/2, and \(g ig')1/2/(2g), have been scaled
out of the fieldsP andE. In this case, the Maxwell equation
read

]2E~x,t !

]x2
2

]2E~x,t !

]t2
5 ib

]2P~x,t !

]t2
, ~1!

whereb5g2NT /e0\g' , g is the electric-dipole element o
the material media (g/e50.20 Å ); time and distance ar
measured in units of the inverse of the polarization de
rate g' (;1013 Hz) andcg'

21 , respectively. The materia
field N is measured in units of a typical valueNT
51024m23, and satisfies

]'

] i

]N~x,t !

]t
52N~x,t !1J1DDN~x,t !

1
1

2
@E~x,t !P* ~x,t !1E* ~x,t !P~x,t !#,

~2!

where the different variables and operators have the foll
ing meaning:J is the current pumping the carriers,D is the
diffusion coefficient for carriers,DN is the Laplacian ofN,
andg i is the nonradiative decay rate for the carrier dens
(;109 Hz).

The boundary conditions complete our set of equatio
They are the following: The electric field vanishes at t
~perfect! mirror

E~ l ,t !50; ~3!

the carriers cannot leave the semiconductor

]N~x,t !/]xux5 l5]N~x,t !/]xux50 ; ~4!

the electric and the magnetic fields are continuous~assuming
that the semiconductor presents no magnetic polarizatio!,
he
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lim
e˜0

E~2e,t !5 lim
e˜0

E~e,t !, ~5!

lim
e˜0

]E~x,t !/]xux52e5 lim
e˜0

]E~x,t !/]xux5e ; ~6!

the reflectivity of the external mirror isR. This condition has
to be written in terms of the general solution of Maxwell
equation in the vacuum,E(x,t)5H1(t2x)1H2(t1x), for
x<0, whereH is an arbitraryC2 function. The condition
reads

H1~ t1L !52RH2~ t2L ! ~7!

or E(x,t)52RH(t2t2x)1H(t1x), with t52L. Note
that having written the general solution for the electric fie
in xP@2L,0#, we need to seek solutions to Eq.~1! only for
xP@0,l #. In this setting the problem becomes a partial d
ferential equation with boundary conditions involving tim
delays@9#.

In what follows we will further restrict our study to th
case in which the diffusion of carriers is very fast; i.e.,D
large in Eq.~2!. Neglecting the spatial dependence of t
carrier densityN(x,t)5N(t) in Eq. ~2!, we obtain

]'

] i

dN~ t !

dt
52N~ t !1J

1
1

2l E0

l

dx@E~x,t !P* ~x,t !1E* ~x,t !P~x,t !#.

~8!

The approximation is compatible with the boundary con
tions and implies disregarding the nonhomogeneous co
butions to the carrier density as is customarily done@10,11#.
It also implies that we are assuming that the decay rate
perturbations of the carrier density is fast compared w
perturbations in the electromagnetic field and/or the polar
tion. A lesser degree of homogenization will increase
dynamical coupling of these perturbations. Actually, a stro
dynamical coupling~slow diffusion! would make differenti-
ating them meaningless since a perturbation of the fields
evolve into nonhomogeneous perturbations of the car
density and vice versa.

The relation between the dimensionless variablesE, P,
andN completes the equation set defining the characteris
of the active material. Under the assumption of a quadr
energy dependence~with respect to the electron wave vecto!
the following relation has been introduced in@12,13# for the
dielectric susceptibility, P(x,v)5x(v,N)E(x,v), as a
function of the frequencyv and the carrier densityN(v),

x~v!5GS 2
1

12 iV
1C1~AV1 i 2 iC2! D , ~9!

where V5v2vg is the dimensionless detuning,C1
5(2mg' /\)3/2/2pNT , and C252(2\/g'ma2)1/2. In this
case,vg is the dimensionless frequency associated with
energy gap in the electronic bands of the semiconductor.
values adopted in numerical calculations arevg5235, G
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FIG. 1. Carrier density versus frequency for the laser with different levels of feedback strength:~a! R50, ~b! R50.008, ~c! R
50.010 55, and~d! R50.018.
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50.4, C1511.4, C259.6, l 510, andL535l . These values
were taken from Ref.@13#, and are in fact based on Ref
@10,14#.

III. MONOCHROMATIC SOLUTIONS

Monochromatic solutions are the simplest solutions of
laser system, both from the mathematical and physical po
of view. They play the role of singularities@15# of the vector
field in other dynamical systems and, together with their
variant manifolds, are the backbone of the dynamics of
laser. In this section we go through the changes suffered
the monochromatic spectrum in survey fashion of the res
presented in Ref.@9# to give a broad picture of what happen
whenR is increased from 0 to 1.

In Fig. 1~a! we show the monochromatic spectrum forR
50. The frequency separation of each mode from its adjac
modes is dictated by the semiconductor length (Dv}1/l ).
The mode with minimal value ofN(v) is the stable~lasing!
solution of the laser without optical reinjection~see Ref.@13#
for a discussion!. Note also that the Lang-Kobayashi equ
tions @7# for R50 present only this stable solution and a
only valid in the vicinity of this solution. The spatial depe
dence of the solutions of this model is that of the refere
mode. AsR is increased a few more monochromatic so
tions are created through saddle-node bifurcations. Th
new solutions are clustered around the modes of the l
without optical reinjection in theN(v) plot @see Fig. 1~b!#,
and we customarily refer to them as ‘‘islands.’’ The fr
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quency separation between modes within an island is ma
dictated by the length of the external cavity (Dv}1/L),
while the frequency separation between adjacent island
roughly the same as the frequency separation of the mo
for R50.

Further increasingR changes theN(v) drastically, Fig.
1~c!. For low frequencies the islands have merged into o
large island, while for high frequencies the structure of t
modes still resembles a set of islands. These changes ar
direct consequence of the bifurcations of solutions of
boundary equations discussed in Ref.@9#.

The islands emerging from the stable solution of the la
without optical feedback approximately correspond to
solution of the Lang-Kobayashi equation~see Fig. 6 of@2#
and Fig. 1 of@3#!; but the description of the above metamo
phosis is beyond the capabilities of this model. The rea
for this is that these changes require the interaction in bi
cations of solutions coming from different islands, i.e., fro
different modes of the laser without feedback, and this p
sibility has been disregarded in the Lang-Kobayashi mod

For values ofR beyond the transition region,R.0.011,
the spectrum of monochromatic modes is represented b
single wavy line @see Fig. 1~d!#. IncreasingR causes the
waviness to disappear gradually. The resulting spectr
takes a form that closely resembles the situation forR51.

IV. LINEAR STABILITY ANALYSIS

In this section the linear stability analysis of the mon
chromatic solutions is presented. This is accomplished by
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usual methods, but special care is exercised to incorpo
the boundary conditions in the description.

Within the active media the electric field, polarizatio
and carrier density are expanded in the form

E~x,t !5exp~2 ivt !@F1exp~ ikx!1F2 exp~2 ikx!#

1exp@~l2 iv!t#@A1~x!exp~ ikx!

1A2~x!exp~2 ikx!] 1exp@~l* 2 iv!t#

3@B1~x!exp~ ikx!1B2~x!exp~2 ikx!#,
th
d

ld
na
te N~ t !5N01Xn exp~lt !1Xn* exp~l* t !,

whereF6 , N0 , v, andk are, respectively, the amplitude
carrier density, frequency, and wave vector of the monoch
matic solutions under consideration. Note that, sinceE is not
real,A1ÞA2 , in principle, andB1ÞB2 . Since the tempo-
ral dependence of the electric field is known, it is straig
forward to compute the polarization using Eq.~9!. The re-
sulting linearized polarization is
PL~x,t !5x~v,N0!exp~2 ivt !@F1exp~ ikx!1F2exp~2 ikx!#1x~v1 il,N0!exp@~l2 iv!t#@A1~x!exp~ ikx!

1A2~x!exp~2 ikx!#1x~v1 il* ,N0!exp@~l* 2 iv!t#@B1~x!exp~ ikx!1B2~x!exp~2 ikx!#

2
G

12 iV
@F1exp~ ikx!1F2exp~2 ikx!#$Xnexp@~l2 iv!t#1Xn* exp@~l* 2 iv!t#%.
le
d
r
on-
The linearized equations for the electric field under
assumption of a smooth and slowly varying envelope rea

6]xA65a~l!A61F6b~l!Xn ,

6]xB65a~l* !B61F6b~l* !Xn* ,

where

a~l!5
k21~l2 iv!2@11 ibx~v1 il,N0!#

2ik
,

b~l!52
bG~l2 iv!2

2k~12 iV!
.

This set of equations has solutions of the form

A6~x!5A6
0 exp@6a~l!x#2

b~l!

a~l!
F6Xn ,

B6~x!5B6
0 exp@6a~l* !x#2

b~l* !

a~l* !
F6Xn* .

So far we have only considered the expansion of the fie
inside the semiconductor. The electric field in the exter
cavity can be expanded in the following form:

E~x,t !5exp~2 ivt !h0@exp~2 ivx!2R exp~ ivt!exp~ ivx!#

1exp~2 ivt !

3@h~ t1x!exp~2 ivx!
e

s
l

2R exp~ ivt!h~ t2t2x!exp~ ivx!#,

whereh0 is the external field amplitude of the mode. Whi
the boundary condition forx52L has been incorporate
into the expansion ofH(x,t), the boundary conditions fo
x50 andx5 l are considered separately. The boundary c
dition for x50 imposes

$12R exp@~ iv2l!t#%Xh5A1~0!1A2~0!,

$12R exp@~ iv2l* !t#%Yh5B1~0!1B2~0!,

~l2 iv!$11R exp@~ iv2l!t#%Xh

5]xA1~0!1]xA2~0!1 ik@A1~0!2A2~0!#,

~l* 2 iv!$11R exp@~ iv2l* !t#%Yh

5]xB1~0!1]xB2~0!1 ik@B1~0!2B2~0!#.

with h(t)5Xh exp(lt)1Yh exp(l* t).

On the other side of the semiconductor,x5 l , the perfect
mirror imposes

A1
0 52A2

0 exp$22@a~l!1 ik# l %,

B1
0 52B2

0 exp$22@a~l* !1 ik# l %.

The linearized version of Eq.~8! reads~after considering
the boundary conditions!
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S l]'

] i
11DXn5@ x̂* ~l* !1x̂~0!#

12exp$22@a* ~l* !22 Im~k!# l %

2@a* ~l* !22 Im~k!# l
F2B2

0 *

1@ x̂~l!1x̂~0!* #
12exp$22@a~l!22 Im~k!# l %

2@a~l!22 Im~k!# l
F2* A2

0

2S 2G

11V2
1@ x̂* ~l* !1x̂~0!#

b* ~l* !

a* ~l* !
1@ x̂~l!1x̂* ~0!#

b~l!

a~l!D exp@4 Im~k!l #21

4 Im~k!l
uF2u2Xn ,
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After considering all the equations, a system of five~lin-

ear, homogeneous, algebraic, complex! equations with five
unknown complex numbers@Xh , Yh* , A2

0 , (B2
0 )* , andXn#

can be obtained. This system only has nontrivial solution
the determinant of the~associated! matrix is zero. Solving
for l the implicit equation resulting from these conside
ations, we obtain the time dependence of the perturbati
l.

V. STABILITY PROPERTIES
OF THE MONOCHROMATIC SOLUTIONS

In this section the stability properties of the monoch
matic modes is considered while the control parameter sp
is explored through different cuts. Sections V A–V C, de
with the variation ofR, L, andJ, respectively. In any case,
is stated whetherR,R* (v), R;R* (v), or R.R* (v),
whereR* (v) is the reflectivity value where the transition o
the spectrum occurs for the frequency range under cons
ation.

A. Linear stability as a function
of the reflectivity of the mirror

The stability properties of the monochromatic solutio
are studied asR is increased from 0, whileJ540. The effect
of R is twofold: ~i! it induces a shift of the monochromat

FIG. 2. Eigenvalue spectrum forR50 andJ540 for the thresh-
old mode. The inset shows a detail of the marginally stable eig
values.
if

s,

-
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l
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modes;~ii ! it modifies their stability properties. Our analys
accounts for both effects. Although a detailed study was p
formed, we only present here the most typical results. Th
are representative of the evolution of the stability propert
of the modes asR is increased. ForR50 the mode with
maximal gain, the threshold mode, is always~as far as we
have seen! stable. In Fig. 2 we show the real and imagina
parts of the eigenvalues forR50. The modes with nonmaxi
mal gain are unstable in one or several directions, as
pected~they inherit the stability of the laser-off solution!.
For R50.002 a pair of new modes is created through
saddle-node bifurcation. While the two modes having
lowestN are stable, the other mode is unstable. In Fig. 3
show the eigenvalue spectrum for the threshold solution.

For R;0 dramatic changes in the stability spectrum a
expected and observed. The perturbation introduced by
feedback is a singular one; forL˜` a continuous set of
allowed perturbations emerges. For finiteL these curves are
discretized by the boundary conditions. Such lines can
observed in Fig. 3. Note that the isolated points of Fig. 2
now immersed in two wavy lines with peaks~perturbations
with longer decay time! precisely corresponding to the stab
perturbations at R50. For example, the relaxation
oscillation modes have now evolved into a full family o
modes with small differences in the lasing frequency. T
effect of the external cavity is also to lower the damping r
of the perturbations whose excitation frequencies are clos

n-
FIG. 3. Eigenvalue spectrum forR50.002. The inset shows th

spectrum of monochromatic modes, and the mode under cons
ation is indicated by the arrow.
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the distance between modes of the spectrum obtained fR
50.

For R50.01055, the solution with maximal gain as we
as the two neighboring solutions are also stable. Neverthe
the stability of these solutions has weakened as consequ
of the feedback.

After the metamorphosis of the spectrum,R.R* , it is
observed that, while those modes corresponding to lo
minima of N vs v are stable, the rest of the modes are u
stable. The most unstable ones are those corresponding t
local maxima of the curveN(v). The unstable mode (R
50.002) is unstable in several directions, six of them hav
complexl, while the other has reall.

The variation of the eigenvalue spectrum of the unsta
modes is considered asR is increased. To pursue this anal
sis we focus our attention on the unstable mode forR
50.002 and study the variation of the eigenvalue spectr
of that solution asR is increased. In particular, that spectru
and the one obtained forR50.009 are compared in Fig. 4
As can be seen from the figure, the number of unstable
rections is highly dependent onR. When R is increased to

FIG. 4. Eigenvalue spectrum for an unstable mode for differ
reflectivitiesR50.002 andR50.009. Note that the degree of inst
bility of this modes increases withR. The inset in the lower pane
shows a detail of the spectrum near the origin.
ss
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0.009, the peaks that were already present in the curvel
for R50.002 get a more pronounced shape and progressi
approach the imaginary axis. As a result, the number of
stable directions with complexl is increased withR.

For R50.009 two clearly separated sets of unstable dir
tions differing in the magnitude of the excitation frequen
are observed. The excitation frequency of the two sets dif
by roughly the frequency separating the modes without fe
back.

During the metamorphosis of the spectrum, forR;R* ,
the unstable monochromatic solutions show different spe
of eigenvalues according to whether they have low, mod
ate, or high carrier densityN ~which is inversely proportiona
to the intensity!. For low carrier density, the unstable pertu
bations have Re(l)'0.003, which indicates that the solutio
is weakly unstable. For moderateN, we still observe a wavy
curve ofl. The number of unstable directions has increas
as well as the strength of the instability, measured
Re(l)'0.11. We still observe that there are certain exci
tion frequencies that are clearly more unstable than the
ers. For largeN, the solutions are strongly unstable, Re(l)
'0.4, for the unstable directions with excitation frequenc
associated with the laser cavity. The other solutions, wh
are also more unstable than in the moderateN case, are
highly degenerate in the excitation frequency.

B. Effect of the external-cavity-length variations

As L is changed, the spectrum of monochromatic so
tions is modified mainly through the creation of new so
tions. Specifically, our attention is focused on the dep
dence of the threshold solution and its stability onL.

The variations of both the frequency and carrier density
the threshold mode withL are shown in Figs. 5 and 6, re
spectively. As can be seen from these figures, the dep
dence of these parameters onL is by no means trivial or
expected. Note that for this value ofR the spectrum is
formed by islands. The variation ofwth with L reflects the
shift of the monochromatic modes: the island circula
clockwise. Having in mind that~i! the threshold mode is the
solution that overcomes the losses with a smaller app

t

FIG. 5. Dependence of the threshold frequency withL for R
50.009. Two different orders of magnitude ofL are considered; see
the upper and lower scales.
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current, and~ii ! the material losses are independent of
control parameters (R, L, and J), one could think ofiNth
2min(Nth)i as a potential measuring the ability of the syste
to accommodate such a solution.

As the island rotates, the threshold mode is shifted aw
from the potential minimum and the mode on the right
shifted towards that minimum. The carrier density of th
mode decreases withL until it eventually becomes the
threshold solution. The replacement of the threshold m
shows as the jumps inv th(L) and the peaks inNth(L).

In Fig. 5 the frequency of the threshold mode as a fu
tion of L is shown for ranges ofL differing by an order of
magnitude. The larger theL, the smaller the magnitude of th
variation ofv th . This can be understood by considering th
as the number of modes in an island is increased withL, the
distance between them is reduced. Thus, theL˜` limit of
an island of solutions is a circle of modes. In that case
mentioned effect would not be present.

This result is not limited to lowR ~islands!; the same
behavior is observed for larger values ofR ~even above the
metamorphosis of the spectrum!. The difference is that
when there are no islands, the circulation of modes ta
place on a global scale~considering also the upper part of th
spectrum!, while locally only a shift toward lower frequen
cies is observed.

The linear stability analysis of the threshold solution
considered. An applied current ofJ54Jth was used to iso-
late the effect ofL from the variation of effective pumping
due to the variation ofNth . Figure 7 shows the real an
imaginary parts of the eigenvalue, with maximal real p
corresponding to the threshold solution. Considering the
part of the eigenvalues in Fig. 7 we can see that when
threshold solution switches, the former threshold~smallerL
value! is still stable; hence for some values ofL there is a
multistability of solutions and, presumably, there are hys
esis effects with respect toL.

C. Applied-current-induced effects

In this section we explore the stability properties of t
threshold mode as the applied current is varied. AlthougJ
does not change the monochromatic spectrum, it does ch
the intensity of that solution and therefore its stability. O

FIG. 6. Dependence of the carrier density of the threshold m
with L for R50.009.
e

y

e

-

,

e

s

t
al
e

r-

ge
r

attention is focused on the threshold mode, and the evolu
of the eigenvalue with the largest Re(l) was studied asJ
was varied. The stability modes studied always belong to
family of relaxation-oscillation excitations. The analysis
performed for different values ofR: R50, R,R* , R;R* ,
andR.R* ~in our case,R* '0.010 55).

For R50 ~see Fig. 8!, the effect of the applied current i
to increase the stability of the threshold mode@lower the
maximum Re(l)# ~upper panel!, and induces a shift in the
frequency of the perturbation~lower panel!. Note that these
dependences are smooth and monotonic in accordance
what is predicted by simple rate equations@15#.

In the upper panel of Fig. 9 we show the Re(l) plot for
R50.009. The existence of the external cavity drastica
changes the response of the system to perturbations. In
case, the dependence of Re(l) on J shows a peaked structur
~nonmonotonic!, sharply contrasting with what is observe
for R50. However, the lasing mode remains stable.

The dependence of Im(l) vs J for R50.009 ~Fig. 9! is
also very different from that observed forR50, showing a
series of steps at particular values of Im(l). As J is in-
creased, the perturbation with maximall adopts a discrete
set of values related to the external cavity. The same kind
dependence is observed for other values ofR, as long asR
Þ0. In particular, the curves are practically the same.

e

FIG. 7. Stability of the marginally stable eigenvalue of th
threshold mode as a function ofL for R50.009 andJ/Jth54.
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It is important to note that the less stable excitation d
not identify the same mode in a continuous form. The sin
larities in the curves of Fig. 9 correspond to the switching
one stable excitation to a different one. Also note that t
switching is always accompanied by a sudden increase in
oscillation frequency. Thus the model predicts that the rel
ation frequencies will present sudden changes as the cu
is varied. For very low currents, the less stable~i.e., longer
lasting! relaxation oscillation presents low frequencies,
creasing the current causes the decay time to increase up
maximum and then to decrease until a perturbation of hig
frequency becomes less stable, dominating the longer-las
oscillations.

The same analysis is performed for reflectivity values c
responding to the metamorphosis of the spectrum,R
50.010 55. The resulting Re(l) vs J can be seen in Fig. 10
In this case, the behavior of Re(l) with J changes qualita-
tively. The curve still shows the peaked structure, but n
there are regions ofJ where the mode is unstable, giving ris
to a Hopf instability where the system suddenly exhibits
frequency equal to Im(l). The applied currentJ can give rise
to the birth of sustained relaxation oscillations. The mag
tude of the excitation frequency of such oscillations is rela
to the external cavity and is determined mainly byJ. A pe-

FIG. 8. Real and imaginary parts of the marginally stable eig
value of the threshold mode as a function ofJ for R50.
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culiarity of the Re(l)-curve is the alternation of regions o
stability and instability asJ is increased. It must be note
that the Hopf instability marks the starting point of a possib
sequence of instabilities that eventually leads to more co
plicated dynamical states.

Above the metamorphosis, forR50.018, the effects men
tioned above are markedly stronger; see Fig. 11. As a re
the mode can be destabilized for smallerJ.

As Re(l) can be made arbitrarily small by the effect ofJ,
it is clear that the role played by noise~always present in
semiconductor lasers! will be very important in this system
and the strength of this effect can be controlled byJ. It can
be conjectured from the above-mentioned phenomenol
that the noise-induced excitability of this system is very i
portant.

On the one hand, it is known through the experimen
classification of the different types of behavior of a doub
cavity semiconductor laser@16,11# that, asR is increased,
regimes are reached where the system shows noise-ind
hopping between several external cavity modes or where
relaxation oscillations are undamped. On the other hand,

-

FIG. 9. Real and imaginary parts of the marginally stable eig
value of the threshold mode as a function ofJ, below the metamor-
phosis of the spectrum (R50.009).
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also known that, for moderate levels of feedback, chang
the applied currentJ can reveal other interesting states: t
low-frequency fluctuations regime@17,18#. Noise can antici-
pate the appearance of this current-induced regime, and
undamping of the relaxation oscillations as well as the lo
frequency fluctuations regime can be considered as a pre
sor of the coherence collapse regimes.

Our results are consistent with the phenomenolog
classification of different regimes present in the syste
however, to reach a deeper understanding of the diffe
regimes, a study considering the temporal evolution of
system is needed. We consider that this kind of analysis
first and necessary step towards a consistent descriptio
the problem for arbitraryR.

VI. CONCLUDING REMARKS

The metamorphosis of the spectrum of monochrom
modes in a semiconductor laser with optical feedback
the stability properties of such solutions were studied a
function of the parameters of the problem, the reflectivity
the external mirror (R), the external cavity length (L), and
the applied current (J). The spectrum gradually changes asR
is increased from 0 to 1. For low values ofR, we showed
that this transformation proceeds through the formation
‘‘islands’’ of monochromatic modes around each mode
the single laser (R50). Those changes are the conseque
of the coupling between the laser and the external cavity
are qualitatively similar to those described by the Lan
Kobayashi equations@2,3#.

For larger values ofR, the merging of the islands take
place giving rise to a more complicated spectrum not
scribable by the Lang-Kobayashi model. This process
consequence of the boundary-condition equations and
described in Ref.@9#. Beyond this value of reflectivity, the
description of the laser with optical feedback requires a m
tilongitudinal model, such as the one introduced in@13#. It is
important to realize that the need for a multilongitudin

FIG. 10. Real part of the marginally stable eigenvalue of
threshold mode as a function ofJ, during the metamorphosis of th
spectrum (R50.010 55).
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model has been already suggested in at least one experi
tal work @4# where multilongitudinal operation of a semicon
ductor laser with optical feedback has been reported bey
the region known as coherence collapse.

The stability properties of the monochromatic solutio
were studied by performing different cuts in the parame
space, (R,L,J). WhenR is increased, the spectrum of eige
values of the different modes is strongly affected, reflect
the presence of the external cavity. At a given value ofR, we
found that the number of unstable directions is greatly
creased, with the intensity of the lasing mode proportiona
J2N(v i). An increase inR drives corresponding increase
in the number of unstable eigenvalues and their real parts
all cases the threshold mode is stable. The variation of
threshold mode and its stability was studied as a function
L for different values ofR. We found that whenL is varied
the threshold mode and its eigenvalue with larger real p
are shifted in an unusual fashion~Sec. V B!. Nevertheless,
the threshold mode remains stable. We also show that asL is
varied there is a multistability of solutions.

The variation of the marginally stable perturbation withJ
is shown to be remarkably different, whetherR50 or R
Þ0. In particular, within the latter case (RÞ0), different
behavior is observed, depending on the actual stage of
metamorphosis of the spectrum. Interestingly, the stab
type can only be changed for reflectivity values correspo
ing to the metamorphosis of the spectrum or larger. T
stronger the reflectivity of the external mirrorR, the stronger
the dependence onJ will be. Note that the destabilization o
the threshold mode cannot be recovered by the simpler La
Kobayashi model.

The applied currentJ can induce the birth of sustaine
relaxation oscillations, whose excitation frequency adopt
set of roughly discrete values related to the external cav
The role played by noise will be highly dependent on t
values ofR andJ. Below the transition, the degree of pote
tially noise-induced excitability depends onJ. In this case,
although the effect is moderate, depending on the amoun
noise, the system can show noise-induced hopping betw

e FIG. 11. Real part of the marginally stable eigenvalue of
threshold mode as a function ofJ once the metamorphosis of th
spectrum has taken place (R50.018).
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the eigenmodes of the stability problem.
For R corresponding to the metamorphosis of the sp

trum, we found that for large enoughJ the dumping of this
perturbation can be made arbitrarily small. As a result,
system can be driven into regimes that will be highly susc
tible to noise. Above the metamorphosis~large R), this de-
pendence onJ is highly enhanced, and the mentioned r
gimes will be reached for smallerJ.
n

n
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