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We discuss the process by which the spectrum of monochromatic modes of the laser in a double-cavity laser
changes from that proper to a short cavity into that proper to a long cavity as the reflectivity of the “external”
mirror is varied from 0 to 1. This work is the natural continuation of our previous \ehlys. Rev. A58, 614
(1998], where the bifurcations occurring during this metamorphosis were studied. The transformation is
mostly dictated by the boundary conditions and occurs regardless of the laser model. This transition is beyond
the possibilities of simpler double-cavity laser models, such as those of Lang and Kol#g&&hd. Quantum
Electron.QE-16, 347 (1980]. The stability properties of the monochromatic modes are studied as a function
of the reflectivity of the external mirrdR, the external cavity length, and the applied curregt It is shown
that for reflectivity values corresponding to the metamorphosis of the spectrum, by vdrgimdjorR, the
system can give rise to a Hopf instability that involves the excitation of a roughly discrete set of frequencies.
Note that these features are also beyond the possibilities of simpler models. We also discuss the role played by
noise and show that it is possible for the system to show a high degree of susceptibility to noise, depending on
J. [S1050-294{®9)10608-5

PACS numbgs): 42.55.Px, 47.20.Ky, 42.65k

[. INTRODUCTION assumed to operate in a singlengitudina) mode, so that
the interesting variation is in time rather than space. The
The study of the spatiotemporal behavior of extended systang-Kobayashi equation¥] are the paradigmatic model
tems has recently been the subject of several theoretical aridr this limit case.
experimental investigationgl]. In this kind of system, the Recently, a model that avoids the usual simplifications
role played by the boundary conditions is very importantwas presentef®]. On the one hand, the semiconductor me-
because the number of effectively interacting modes dependfia was considered in its full spatial extension, hence allow-
mostly on the geometric characteristics rather than the physing for “longitudinal multimode™ operation. On the other
cal processes occurring in the system. Therefore an undehand, the reinjected electromagnetic field was considered via
standing of the behavior of such systems with respect to ththe usual boundary conditions in the external mirror and the
boundary conditions is a central problem in nonlinear dy-semiconductor-vacuum interface. The resulting model is a
namics. In this paper we study the changes affecting theet of partial differential equation$PDE’s) with time-
monochromatic solutions of a laser with optical reinjectiondelayed boundary conditions.
as a function of the boundary condition controlling the Following this approach, we were able to identify the
strength of the optical feedback. In particular, our study ischanges occurring in the spectrum of the laserRawas
focused on the stability properties of such solutions as ancreased from 0 to 19]. As expected, foR=0 the spec-
function of the boundary conditions. trum consists of a set of modes whose frequency separation
The laser with optical reinjection has been the subject ofs given by the length of the semiconductaxec1/1). For
intense research during the last decade, partly because tRe-0 the spectrum consists of clustéislands of solutions
origin of the dynamical regimes appearing in this system isaround each of the solitary laser modes. Wikers further
not fully understood from the academic point of view, andincreased, a drastic metamorphosis of the spectrum takes
also because of its potential applications. In any case, thplace: the islands are progressively absorbed into a larger
variety of dynamical phenomena present in this system hasne that progressively invades the spectrum from the low-
attracted much attention. It has been experimentally showfrequency side. AR is further increased, this island finally
that they exhibit a variety of interesting dynamical statesgains the whole frequency range of interest. In this case, the
induced by feedback such as “low-frequency fluctuations” physically relevant part of the spectrum, the lower part of
[2,3] and “coherent collapse[3—-6]. this large island, gives a wavy appearance reflecting the
In this paper we consider a las¢semiconductgr of  original islands, but the frequency separation between adja-
lengthl (1~10-300 xm) with an external mirror of reflec- cent modes is dictated mainly by the length of the external
tivity R located at a distande(L>1), conforming in such a cavity (Aw>=1/L). Further increasind, the wavy appear-
form a “double-cavity laser’[2—8]. While R andL are the ance disappears until no trace of the original spectrum is
control parameters controlling the boundary conditions, thédound for R~ 1. This transformation, which is mediated by
gain of the active media depends on the pumping cudent an unusual sequence of bifurcations completely ruled by the
which is the other control parameter. boundary condition§9], is the result of the competition be-
The theoretical description of this system has been pertween the cavities of lengthandL. Interestingly, this meta-
formed mainly through perturbative solutions valid only for morphosis occurs regardless of the details of the susceptibil-
limit cases,R~0 [3—7] or R~1 [8]. For R~0, the laser is ity model; however, some of its features are model
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dependent. Also note that this phenomenon is beyond the imE(—€,t)=limE(e,t), (5
possibilities of the Lang-Kobayashi model. €0 e—0

The rest of the work is organized as follows: Sec. Il for-
mulates the problem as a nonlinear eigenvalue problem in lim 9E(X, 1)/ 9X|y— _ = lim JE(X,t)/ 9X|y—; (6)
laser physics; Sec. Il discusses how the monochromatic e—0 €0

modes are found and how the transformation of the spectrum
takes place; Sec. IV describes how to perform the stabilitythe reflectivity of the external mirror iR. This condition has
analysis; Sec. V presents the results obtained by performintp be written in terms of the general solution of Maxwell's
the stability analysis; and finally Sec. VI presents the conequation in the vacuung(x,t)=H (t—x)+H_(t+x), for
cluding remarks. x=<0, whereH is an arbitraryC? function. The condition
reads
Il. LASER WITH OPTICAL FEEDBACK

, , . Hi(t+L)=—-RH_(t—L) )
In this section we present the description of the double-

cavity laser. We consider a laser that extends indtléec- E(x,t)=—RH(t— 7—x)+H(t+x), with 7=2L. Note

tion, the active media are located at@<I, while the ex-  4; having written the general solution for the electric field

ternal mirror of reﬂ_ectivityR is placed atx=— L The xe[—L,0], we need to seek solutions to Ed) only for
dependence of the fields on the transversal coordiryedes! xe[0/]. In this setting the problem becomes a partial dif-

zis neglected in what follows; hence the laser is described bygential equation with boundary conditions involving time
the electric fieldE(x,t), the polarizationP(x,t) [P(x,t)=0 delays[9].
for —L<x=<0], and the carrier densitj(x,t). Note that In what follows we will further restrict our study to the
P(x,t)=0 andN(x,t)=0 for —L<x=0. _ _ case in which the diffusion of carriers is very fast; i.B.,
For the sake of simplicity we consider the dimensionlesgage in Eq.(2). Neglecting the spatial dependence of the
form of the equations and field. The following factors, -4rier densityN(x,t) =N(t) in Eq. (2), we obtain
ig(y)/y.)"N/2, and%(yy,)"%(2g), have been scaled ' '
out of the fields? andE. In this case, the Maxwell equations 9, dN(t)

read 3 T =N(t)+J
FPE(XY)  PE(XY) . 9PP(X1) 1 (1
P Y -8 a2 ) +EdeX[E(X,t)P*(X,t)+E*(x,t)P(x,t)].
where3=g?Nt/efiy, , g is the electric-dipole element of (8)

the material mediag/e=0.20 A); time and distance are S . . .
measured in units of the inverse of the polarization decayfhe approximation is compatible with the boundary condi-
rate y, (~10% Hz) andcn‘l, respectively. The material tions and implies disregarding the nonhomogeneous contri-
field N is measured in units of a typical valudl; butions to the carrier density as is customarily dgh@,11.

=10*m~3, and satisfies It also implies that we are assuming that the decay rate of
perturbations of the carrier density is fast compared with

d, IN(Xx,t) perturbations in the electromagnetic field and/or the polariza-
9, at =—NX,1)+J+DAN(X1) tion. A lesser degree of homogenization will increase the

dynamical coupling of these perturbations. Actually, a strong

dynamical couplingslow diffusion) would make differenti-

ating them meaningless since a perturbation of the fields will

evolve into nonhomogeneous perturbations of the carrier
2 density and vice versa.

where the different variables and operators have the follow- 'N€ refation between the dimensionless variatiies,
ing meaning:J is the current pumping the carrie, is the andN completes the equation set defining the characteristics

diffusion coefficient for carriersAN is the Laplacian oN, of the active material. Under the assumption of a quadratic

and y; is the nonradiative decay rate for the carrier density©N€"9y dependencwith respect to the electron wave veqgtor
(~10£ Hz). the following relation has been introduced[it2,13 for the

The boundary conditions complete our set of equationsdielecwiC susceptibility, P(x,w) = x(w,N)E(x,»), as a

They are the following: The electric field vanishes at thefunction of the frequency and the carrier densiti(«),
(perfecy mirror

+%[E(x,t) P*(x,t)+ E* (x,t)P(x,1)],

1
E(1,1)=0; @ x(@)=T| - =5 +C:(O+i-iC)|, (9

the carriers cannot leave the semiconductor . . . .
where Q=w—w, is the dimensionless detuningC,

IN(X, )X =1 = IN(X, 1)/ IX| =0 @  =(2my, /1)¥27Ns, and C,=2(2#/y, ma’)* In this

case,wgq is the dimensionless frequency associated with the

the electric and the magnetic fields are continu@ssuming energy gap in the electronic bands of the semiconductor. The
that the semiconductor presents no magnetic polarization values adopted in numerical calculations asg=235, I
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FIG. 1. Carrier density versus frequency for the laser with different levels of feedback stréagfR=0, (b) R=0.008, (c) R
=0.01055, andd) R=0.018.

=0.4,C,;=11.4,C,=9.6,1=10, andL=35. These values quency separation between modes within an island is mainly
were taken from Ref[13], and are in fact based on Refs. dictated by the length of the external cavith¢o=1/L),
[10,14. while the frequency separation between adjacent islands is
roughly the same as the frequency separation of the modes
for R=0.

Further increasind? changes theN(w) drastically, Fig.

Monochromatic solutions are the simplest solutions of thel(c). For low frequencies the islands have merged into one
laser system, both from the mathematical and physical pointérge island, while for high frequencies the structure of the
of view. They play the role of singularitidd 5] of the vector ~ modes still resembles a set of islands. These changes are the
field in other dynamical systems and, together with their in-direct consequence of the bifurcations of solutions of the
variant manifolds, are the backbone of the dynamics of th&oundary equations discussed in Réf. _
laser. In this section we go through the changes suffered by The islands emerging from the stable solution of the laser
the monochromatic spectrum in survey fashion of the result¥/ithout optical feedback approximately correspond to the

presented in Ref9] to give a broad picture of what happens Solution of the Lang-Kobayashi equati¢see Fig. 6 of 2]
whenR is increased from O to 1. and Fig. 1 of(3]); but the description of the above metamor-

In Fig. 1(a) we show the monochromatic spectrum fr phosis is beyond the capabilities of this model. The reason

=0. The frequency separation of each mode from its adjacerﬁ?r this is that these changes require the interaction in bifur-

modes is dictated by the semiconductor len m. cations of solutions coming from different islands, i.e., from
The mode with minin{al value dfl(w) is the sta?lﬁzlgsing different modes of the laser without feedback, and this pos-

solution of the laser without optical reinjecti¢see Ref[13] ~ SiPility has been disregarded in the Lang-Kobayashi model.

for a discussion Note also that the Lang-Kobayashi equa- h For values OIR beyor;]d the Fransit(ijon regiorlR>0.0lé, b
tions [7] for R=0 present only this stable solution and arethe spectrum of monochromatic modes s represented by a

only valid in the vicinity of this solution. The spatial depen- single wavy line[see Fig. 1d)]. IncreasingR causes the

dence of the solutions of this model is that of the referencd/@viness to disappear gradually. The resulting spectrum
mode. AsR is increased a few more monochromatic SO|u_takes a form that closely resembles the situationRerl.

tions are created through saddle-node bifurcations. These
new solutions are clustered around the modes of the laser
without optical reinjection in théN(w) plot [see Fig. 1b)], In this section the linear stability analysis of the mono-
and we customarily refer to them as “islands.” The fre- chromatic solutions is presented. This is accomplished by the

III. MONOCHROMATIC SOLUTIONS

IV. LINEAR STABILITY ANALYSIS
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usual methods, but special care is exercised to incorporate N(t)=Ng+ X, exp(At)+X* expA*1),
the boundary conditions in the description.
Within the active media the electric field, polarization,
and carrier density are expanded in the form
whereF ., Ny, w, andk are, respectively, the amplitudes,

E(x,t) =exp( —iot)[F . expikx)+F _ exp(—ikx)] carrier density, frequency, and wave vector of the monochro-
fexd(A—iw)tTTA exn(ik matic solutions under consideration. Note that, siBés not
XA —Tw)tA. Ooexpikx) real, A, #A_, in principle, andB . #B_ . Since the tempo-
+A_(x)exp —ikx)]+exgd (N —iw)t] ral dependence of the electric field is known, it is straight-
. _ forward to compute the polarization using ). The re-
X[B(x)expikx)+B_(x)exp( —ikx)], sulting linearized polarization is

P (X, t)=x(w,Ng)exp —iwt)[F,explikx)+F_exp( —ikx) ]+ x(w+iN,Ng)exd (A —iw)t][ A (X)expikx)

+A_(xX)exp —ikx) ]+ x(w+iN* ,Ng)exgd (A* —iw)t][ B4 (x)exp(ikx) + B _(x)exp —ikx)]

- %[F+exp(ikx)+F,exp(—ikx)]{xnexp[()\—iw)t]+xﬁ exd (\* —iw)t]}.

The linearized equations for the electric field under the —Rexplior)h(t—7—x)exp(i wx)],
assumption of a smooth and slowly varying envelope read

whereh, is the external field amplitude of the mode. While

oA =a(N)AL+FLb(N)X,, the boundary condition fox=—L has been incorporated
y p
into the expansion of(x,t), the boundary conditions for
+ 3B, =a(\*)B. +F.b(\*)X*, g;gnzifg?izloairneq;é)snes;dered separately. The boundary con-
where {1-Rexg (io—\) 7} Xy=A,(0)+A_(0),
K2+ (A—iw)1+iBx(w+i\,Ng)]
a(N)= >k , {1-Rexd (io—\*)7]}Y,=B.(0)+B_(0),
bx)— Br (A —iw)? (A—lo){1+Rexg(io—N)7]}X,
2k(1-i) - = 0xA.(0)+0xA_(0)+IK[A . (0)~A_(0)],

This set of equations has solutions of the form
(M —iw){1+Rexd (io—\*)7]}Y,
b(\ =d,B,(0)+,B_(0)+ik[B,(0)—B_(0)].
Ai(x)zA‘iexqta(x)x]—%thn, B (0)+3dxB_(0)+ik[B.(0) (0)]
with h(t) =X, exp(\t)+ Y, exp*t).

B+(x)=Bﬁexp[ta()\*)x]—b()\*) F.X*. On the other side of the semiconducter I, the perfect
h - alz*) " mirror imposes

So far we have only considered the expansion of the fields o 0 _
inside the semiconductor. The electric field in the external Ay =—AZ exp{—2[a(\) +ik]l},
cavity can be expanded in the following form:

E(x,t)=exp —iot)h[exp —iwx) — Rexpiwr)expiwx)] B% = —B? exp{—2[a(\*) +ik]I}.

+exp —iwt) . . . L
The linearized version of E48) reads(after considering
X[h(t+x)exp(—iwX) the boundary conditions
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—(1+QZ+[X W)+ O S+ X+ X OIS | gimagr P10
|

where y(A\)=x(w+iX,Ng). modes;(ii) it modifies their stability properties. Our analysis

After considering all the equations, a system of filie-  accounts for both effects. Although a detailed study was per-
ear, homogeneous, algebraic, compleguations with five formed, we only present here the most typical results. These
unknown complex numbeifsX;,, Yi, A° , (B%)*, andX,]  are representative of the evolution of the stability properties
can be obtained. This system only has nontrivial solutions iPf the modes asR is increased. FOR=0 the mode with
the determinant of théassociated matrix is zero. Solving maximal gain, the threshold mode, is alwags far as we
for N the implicit equation resulting from these consider- have seenstable. In Fig. 2 we show the real and imaginary
ations, we obtain the time dependence of the perturbationparts of the eigenvalues f&=0. The modes with nonmaxi-

\. mal gain are unstable in one or several directions, as ex-
pected(they inherit the stability of the laser-off solutipn

V. STABILITY PROPERTIES For R=0.002 a pair. of new modes is created thrc_)ugh a

OF THE MONOCHROMATIC SOLUTIONS saddle-node bifurcation. While the two modes haVIng the

_ _ B _ lowestN are stable, the other mode is unstable. In Fig. 3 we
In this section the stability properties of the monochro-show the eigenvalue spectrum for the threshold solution.
matic modes is considered while the control parameter space For R~0 dramatic changes in the stability spectrum are
is explored through different cuts. Sections V A-V C, dealgypected and observed. The perturbation introduced by the
ywth the variation ofR, LL andJ, respfctlvely. In any*case, it feedback is a singular one: far—o a continuous set of
is stated whetheR<R*(v), R~R*(w), or R>R*(0),  55ed perturbations emerges. For finiteéhese curves are

. : 2 L
whereR* (w) is the reflectivity value where the transition of discretized by the boundary conditions. Such lines can be

th_e spectrum oceurs for the frequency range under COnSide{)'bserved in Fig. 3. Note that the isolated points of Fig. 2 are
ation. L :

now immersed in two wavy lines with peakgerturbations

with longer decay timeprecisely corresponding to the stable
A. Linear stability as a function perturbations atR=0. For example, the relaxation-
of the reflectivity of the mirror oscillation modes have now evolved into a full family of

The stability properties of the monochromatic solutions™modes with small differences in the lasing frequency. The
are studied aRis increased from 0. whild=40. The effect  €ffect of the external cavity is also to lower the damping rate
of Ris twofold: (i) it induces a shift of the monochromatic ©f the perturbations whose excitation frequencies are close to

0.2 T 0.5
! R=0 Re=0.002
J=40 J=40
: L
0.0 fovmmmmmsmmm e B : 0.0 [--mmmmmmm e Aol TR
i
2 o2 o | 0.02 2 05 %
£ - i . E / 2.5 —
! |
0 S [ z 123t 1
° | H
04} ! e A -1.0 }
’ 1 093 0004 (JI) 0.0004 H0 g Lo o
1 N
. : : : 334,825 234.830 234.835
) (0]
0.6 — : 5
0. o L . ; " ~
0.1 0.0 0.1 20010 0008  -0.006 -0004  —0002  0.000
Re(d) Re(™)
. 2. Eigenvalue spectrum f&=0 andJ= 40 for the thresh- . 3. Eigenvalue spectrum fét=0.002. The inset shows the
FIG. 2. Eigenvalue spectrum f&=0 andJ=40 for the thresh FIG. 3. Eigenvalue spectrum fé&=0.002. Th t shows th

old mode. The inset shows a detail of the marginally stable eigenspectrum of monochromatic modes, and the mode under consider-
values. ation is indicated by the arrow.
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FIG. 5. Dependence of the threshold frequency witfior R
; : ; . . ‘ =0.009. Two different orders of magnitudelofre considered; see
; R=0.009 the upper and lower scales.
J=40
0.0 f--==fommmmm o P 0.009, the peaks that were already present in the curse of

for R=0.002 get a more pronounced shape and progressively
approach the imaginary axis. As a result, the number of un-
stable directions with compleXx is increased withR.

For R=0.009 two clearly separated sets of unstable direc-
tions differing in the magnitude of the excitation frequency
are observed. The excitation frequency of the two sets differs
by roughly the frequency separating the modes without feed-
back.

During the metamorphosis of the spectrum, R R*,
the unstable monochromatic solutions show different spectra
of eigenvalues according to whether they have low, moder-
ate, or high carrier density{ (which is inversely proportional
to the intensity. For low carrier density, the unstable pertur-
bations have Re&() ~0.003, which indicates that the solution

FIG. 4. Eigenvalue spectrum for an unstable mode for differents weakly unstable. For moderaltg we still observe a wavy
reflectivitiesR=0.002 andR=0.009. Note that the degree of insta- curve of\. The number of unstable directions has increased
bility of this modes increases witR. The ins_et_ in the lower panel g5 well as the strength of the instability, measured by
shows a detail of the spectrum near the origin. Re(\)~0.11. We still observe that there are certain excita-
tion frequencies that are clearly more unstable than the oth-
ers. For largd\, the solutions are strongly unstable, Rp(
~0.4, for the unstable directions with excitation frequencies
ggssociated with the laser cavity. The other solutions, which
[e also more unstable than in the moderdtease, are
Ighly degenerate in the excitation frequency.

Im(A)

RE . ‘ . ‘ ‘ . ‘
-0.008 0.000 0.008 0016 0.024 0.032 0040 0.048 0056
Re())

the distance between modes of the spectrum obtaineR for
=0.

For R=0.01055, the solution with maximal gain as well
as the two neighboring solutions are also stable. Neverthele
the stability of these solutions has weakened as consequenﬁ
of the feedback.

After the metamorphosis of the spectruR>R*, it is
observed that, while those modes corresponding to local
minima of N vs w are stable, the rest of the modes are un- As L is changed, the spectrum of monochromatic solu-
stable. The most unstable ones are those corresponding to thens is modified mainly through the creation of new solu-
local maxima of the curveN(w). The unstable modeR  tions. Specifically, our attention is focused on the depen-
=0.002) is unstable in several directions, six of them havinglence of the threshold solution and its stabilitylan
complex\, while the other has real. The variations of both the frequency and carrier density of

The variation of the eigenvalue spectrum of the unstablehe threshold mode with are shown in Figs. 5 and 6, re-
modes is considered &sis increased. To pursue this analy- spectively. As can be seen from these figures, the depen-
sis we focus our attention on the unstable mode Ror dence of these parameters bnis by no means trivial or
=0.002 and study the variation of the eigenvalue spectrunexpected. Note that for this value & the spectrum is
of that solution aRk is increased. In particular, that spectrum formed by islands. The variation of,, with L reflects the
and the one obtained fd®=0.009 are compared in Fig. 4. shift of the monochromatic modes: the island circulates
As can be seen from the figure, the number of unstable dielockwise. Having in mind thati) the threshold mode is the
rections is highly dependent dR WhenR is increased to solution that overcomes the losses with a smaller applied

B. Effect of the external-cavity-length variations
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FIG. 6. Dependence of the carrier density of the threshold mode

with L for R=0.0009.
-1.724

current, and(ii) the material losses are independent of the R=0.009
control parametersR, L, andJ), one could think of|[Ny, SL7S g R =4
—min(Ny,)| as a potential measuring the ability of the system X
to accommodate such a solution. —1726
As the island rotates, the threshold mode is shifted away
from the potential minimum and the mode on the right is
shifted towards that minimum. The carrier density of this -L7z1
mode decreases with until it eventually becomes the
threshold solution. The replacement of the threshold mode _us |
shows as the jumps i@, (L) and the peaks iN,(L).
In Fig. 5 the frequency of the threshold mode as a func-
tion of L is shown for ranges of differing by an order of L7200 35001 35002 350.03
magnitude. The larger tHe the smaller the magnitude of the L
variation ofwyy, . This can be understood by considering that, B _ _
as the number of modes in an island is increased ljtine FIG. 7. Stability of the marginally stable eigenvalue of the
distance between them is reduced. Thus,lthes limit of ~ threshold mode as a function bffor R=0.009 and)/Jy,=4.
an island of solutions is a circle of modes. In that case the
mentioned effect would not be present. attention is focused on the threshold mode, and the evolution
This result is not limited to lowR (islandg; the same of the eigenvalue with the largest R§(was studied asg
behavior is observed for larger valuesRfleven above the was varied. The stability modes studied always belong to the

metamorphosis of the spectrumThe difference is that, family of relaxation-oscillation excitations. The analysis is
when there are no islands, the circulation of modes takegerformed for different values & R=0, R<R*, R~R*,

place on a global scalgonsidering also the upper part of the 5nqRr> R* (in our caseR* ~0.01055).
spectrum, while locally only a shift toward lower frequen- For R=0 (see Fig. 8 the effect of the applied current is

cies is observed. . .
: . . .. to increase the stability of the threshold modewer the
Cogshgelrlggarp;taab'“lt.)é;r;alxselrsn %223 threassholsle;cilcl)ﬂ.lgg_ 'S maximum Rek)] (upper pangl and induces a shift in the
! ) PPl u th Was u : frequency of the perturbatioflower pane). Note that these

I;lte tthe tﬁﬁeCt (.)ﬂ;. fromf\ﬁhe vlgnat|on7ofheffect[[\r/]e pumlpln% dependences are smooth and monotonic in accordance with
ue to the vanafion olNy. Higure £ Shows e real and 54 jg predicted by simple rate equatidi$].

imaginary parts of the eigenvalue, with maximal real part In the upper panel of Fig. 9 we show the Rg(plot for

corresponding to the threshold solution. Considering the rear_lzzo_oog_ The existence of the exteral cavity drastically

Fhargscr)lfoltcrj]esgllﬁjt?gr:/asl\lljviihlgsFIt%e7fc;/;/r?1:??hrseefsiéh;tal\ll; Tﬁn thghanges the response of the system to perturbations. In this
S i ' . case, the dependence of R¢(nJ shows a peaked structure
value is still stable; hence for some values lofthere is a . . ; -

; o . (nonmonotonig, sharply contrasting with what is observed
multistability of solutions and, presumably, there are hyster—f - he lasi q . bl
esis effects with respect to or R=0. However, the lasing mode remains sta} e

The dependence of Im{ vs J for R=0.009 (Fig. 9 is
also very different from that observed f&=0, showing a
series of steps at particular values of Nj( As J is in-

In this section we explore the stability properties of thecreased, the perturbation with maximaladopts a discrete
threshold mode as the applied current is varied. Altholigh set of values related to the external cavity. The same kind of
does not change the monochromatic spectrum, it does changependence is observed for other valuefRofs long aR
the intensity of that solution and therefore its stability. Our+0. In particular, the curves are practically the same.

107 Im(\)

C. Applied-current-induced effects
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FIG. 8. Real and imaginary parts of the marginally stable eigen-
3,

value of the threshold mode as a functionJdbr R=0.

th

FIG. 9. Real and imaginary parts of the marginally stable eigen-
value of the threshold mode as a functionJpbelow the metamor-

It is important to note that the less stable excitation doe®N0Sis of the spectrumR=0.009).

not identify the same mode in a continuous form. The singu-

larities in the curves of Fig. 9 correspond to the switching of

one stable excitation to a different one. Also note that thisculiarity of the Re}\)-curve is the alternation of regions of

switching is always accompanied by a sudden increase in thetability and instability as] is increased. It must be noted

oscillation frequency. Thus the model predicts that the relaxthat the Hopf instability marks the starting point of a possible

ation frequencies will present sudden changes as the curres¢quence of instabilities that eventually leads to more com-

is varied. For very low currents, the less stalbile., longer plicated dynamical states.

lasting relaxation oscillation presents low frequencies, in- Above the metamorphosis, f&=0.018, the effects men-

creasing the current causes the decay time to increase up tdianed above are markedly stronger; see Fig. 11. As a result,

maximum and then to decrease until a perturbation of highethe mode can be destabilized for smaller

frequency becomes less stable, dominating the longer-lasting As Re(\) can be made arbitrarily small by the effectbf

oscillations. it is clear that the role played by noigalways present in
The same analysis is performed for reflectivity values corsemiconductor laserwill be very important in this system

responding to the metamorphosis of the spectru®, and the strength of this effect can be controlledJbyt can

=0.01055. The resulting Rej vsJ can be seen in Fig. 10. be conjectured from the above-mentioned phenomenology

In this case, the behavior of Re( with J changes qualita- that the noise-induced excitability of this system is very im-

tively. The curve still shows the peaked structure, but nowportant.

there are regions af where the mode is unstable, giving rise  On the one hand, it is known through the experimental

to a Hopf instability where the system suddenly exhibits aclassification of the different types of behavior of a double-

frequency equal to InX). The applied current can give rise ~ cavity semiconductor lasdil6,1] that, asR is increased,

to the birth of sustained relaxation oscillations. The magni+egimes are reached where the system shows noise-induced

tude of the excitation frequency of such oscillations is relatedhopping between several external cavity modes or where the

to the external cavity and is determined mainly byA pe-  relaxation oscillations are undamped. On the other hand, it is
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FIG. 10. Real part of the marginally stable eigenvalue of the FIG. 11. Real part of the marginally stable eigenvalue of the
threshold mode as a function &f during the metamorphosis of the threshold mode as a function dfonce the metamorphosis of the
spectrum R=0.01055). spectrum has taken plac®€0.018).

also known that, for moderate levels of feedback, changing

the applied currend can reveal other interesting states: themodel has been already suggested in at least one experimen-
low-frequency fluctuations reginfd 7,18. Noise can antici- tal work [4] where multilongitudinal operation of a semicon-
pate the appearance of this current-induced regime, and tt#ictor laser with optical feedback has been reported beyond
undamping of the relaxation oscillations as well as the low-ihe region known as coherence collapse.

frequency fluctuations regime can be considered as a precur- The stability properties of the monochromatic solutions
sor of the coherence collapse regimes. were studied by performing different cuts in the parameter

Our results are consistent with the phenomenologicagpace, R,L,J). WhenRis increased, the spectrum of eigen-
classification of different regimes present in the systemvalues of the different modes is strongly affected, reflecting
however, to reach a deeper understanding of the differerihe presence of the external cavity. At a given valuRofve
regimes, a study considering the temporal evolution of thédound that the number of unstable directions is greatly in-
system is needed. We consider that this kind of analysis is greased, with the intensity of the lasing mode proportional to
first and necessary step towards a consistent description df- N(w;). An increase irR drives corresponding increases
the problem for arbitranRr. in the number of unstable eigenvalues and their real parts. In

all cases the threshold mode is stable. The variation of the
threshold mode and its stability was studied as a function of
L for different values oR. We found that whert is varied

VI. CONCLUDING REMARKS the threshold mode and its eigenvalue with larger real part
are shifted in an unusual fashi@gBec. V B. Nevertheless,

The metamorphosis of the spectrum of monochromatiche threshold mode remains stable. We also show thatisis
modes in a semiconductor laser with optical feedback andaried there is a multistability of solutions.
the stability properties of such solutions were studied as a The variation of the marginally stable perturbation with
function of the parameters of the problem, the reflectivity ofis shown to be remarkably different, wheth@e=0 or R
the external mirror R), the external cavity lengthL(), and  #0. In particular, within the latter caseR¢0), different
the applied current)). The spectrum gradually changesRas behavior is observed, depending on the actual stage of the
is increased from O to 1. For low values Bf we showed metamorphosis of the spectrum. Interestingly, the stability
that this transformation proceeds through the formation otype can only be changed for reflectivity values correspond-
“islands” of monochromatic modes around each mode ofing to the metamorphosis of the spectrum or larger. The
the single laserR=0). Those changes are the consequencatronger the reflectivity of the external mirrBr the stronger
of the coupling between the laser and the external cavity anthe dependence ahwill be. Note that the destabilization of
are qualitatively similar to those described by the Lang-the threshold mode cannot be recovered by the simpler Lang-
Kobayashi equationg2,3]. Kobayashi model.

For larger values oR, the merging of the islands takes = The applied currend can induce the birth of sustained
place giving rise to a more complicated spectrum not derelaxation oscillations, whose excitation frequency adopts a
scribable by the Lang-Kobayashi model. This process is &et of roughly discrete values related to the external cavity.
consequence of the boundary-condition equations and wakhe role played by noise will be highly dependent on the
described in Ref[9]. Beyond this value of reflectivity, the values ofR andJ. Below the transition, the degree of poten-
description of the laser with optical feedback requires a multially noise-induced excitability depends dn In this case,
tilongitudinal model, such as the one introducedB]. Itis  although the effect is moderate, depending on the amount of
important to realize that the need for a multilongitudinal noise, the system can show noise-induced hopping between



2412 ALEJANDRO A. DUARTE AND HERNAN G. SOLARI PRA 60

the eigenmodes of the stability problem. ACKNOWLEDGMENTS
For R corresponding to the metamorphosis of the spec-
trum, we found that for large enoughthe dumping of this It is a pleasure to thank Gabriel B. Mindlin, Jorge

perturbation can be made arbitrarily small. As a result, thelredicce, Salvador Balle, and Claudio Mirasso for useful
system can be driven into regimes that will be highly suscepédiscussions. This work has been supported in part by the
tible to noise. Above the metamorphosiarge R), this de-  University of Buenos AiregGrant No. Ex-104and the Eu-
pendence onl is highly enhanced, and the mentioned re-ropean Economic Community under Contract No.
gimes will be reached for smallgr CI1*CT93-0331.

[1] M. C. Cross and R. C. Hohemberg, Rev. Mod. P§&.851  [10] G. P. Agrawal and N. K. Duttal.ong-Wavelength Semicon-

(1993. ductor LasergVan Nostrand Reinhold, New York, 1986
[2] J. Mork, B. Tromborg, and P. L. Christiansen, IEEE J. Quan-[11] Guido Henri Maria van Tartwijk, Ph.D. thesis, Vrije Univer-
tum Electron.QE-24, 123(1988. siteit, 1994(unpublishegl
[3] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsaer, [12] S. Balle, Opt. Communl19, 227 (1995.
E. Gdoel, and D. Lenstra, Phys. Rev. Let6, 220(1992. [13] A. A. Duarte and H. G. Solari, Opt. Commui¥4, 99 (1997).
[4] D. Lenstra, B. H. Verbeek, and A. J. Den Boef, IEEE J. Quan-[14] W. W. Chow, S. W. Koch, and M. Sargersemiconductor-
tum Electron.QE-21, 674 (1985. Laser PhysicgSpringer, Berlin, 1994
[5] I. Fischer, O. Hess, W. Elsaer, and E. Gmel, Phys. Rev. Lett. [15] H. G. Solari, M. A. Natiello, and B. G. MindlinNonlinear
73, 2188(1992. Dynamics. A Two Way Trip from Physics to M&t®P, Bris-
[6] J. Sacher, D. Baums, P. Pauknin, Wolfgang &es, and E. O. tol, UK, 1996.
Gobel, Phys. Rev. A5, 1893(1992. [16] R. W. Tkach and A. R. Chraplyvy, J. Lightwave Technol.
[7] R. Lang and K. Kobayashi, IEEE J. Quantum ElectrQt- LT-4, 1655(1986.
16, 347(1980. [17] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J.
[8] M. H. Rose, M. Lindberg, W. W. Chow, S. W. Koch, and M. Tredicce, Phys. Rev. B5, 6414(1997.
Sargent I, Phys. Rev. A6, 603(1992. [18] M. Eguia, B. G. Mindlin, and M. Giudici, Phys. Rev. &3,

[9] A. A. Duarte and H. G. Solari, Phys. Rev. %8, 614 (1998. 2636(1998.



