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Abstract

Many non-linear deterministic models for interacting populations present damped oscillations towards
the corresponding equilibrium values. However, simulations produced with related stochastic models
usually present sustained oscillations which preserve the natural frequency of the damped oscillations of the
deterministic model but showing non-vanishing amplitudes. The relation between the amplitude of the
stochastic oscillations and the values of the equilibrium populations is not intuitive in general but scales
with the square root of the populations when the ratio between di�erent populations is kept ®xed. In this
work, we explain such phenomena for the case of a general epidemic model. We estimate the stochastic
¯uctuations of the populations around the equilibrium point in the epidemiological model showing their
(approximated) relation with the mean values. Ó 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Interacting populations are common in ecology and epidemiology as well as in many other
areas of natural sciences. Usually, the dynamics are described by a system of coupled deterministic
di�erential equations whose solutions may present damped oscillations. However, stochastic
simulations show that the oscillations may persist, with amplitudes considerably larger than the
square root of the mean value [1]. The dynamics of interacting populations are, in general, a
stochastic process. In view of this we must ask: What is the validity of the deterministic de-
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scription? Why do oscillations not die out? How do the mean oscillation amplitudes depend on the
parameters?

In this work, we answer these questions for a simple but frequently found two-dimensional
system. We consider two interacting populations of time-dependent size N�t� and n�t�. We assume
that the dynamics are well captured by the following model:
· The N-population receives a constant ¯ux Xa (`birth').
· The populations interact at rate bNn=X, with b constant. After each encounter, the N -popula-

tion decreases by one while the n-population increases by one (`contagion').
· The per capita removal rate in the n-population is b (`death').

This system has been widely used in epidemic models (see [2] for a critical review), and is similar
to those used for modeling predator±prey interactions [1], chemical kinetic reactions [3] or laser
light±carrier interactions [4]. The deterministic version was used by Soper [5] to study the peri-
odicity of measles outbreaks. The stochastic counterpart was developed by Bartlett [6,7]. Inclusion
of seasonality [8] or a latency period not exponentially distributed [9] allows a better match with
®eld data. In some of these works, `initial' conditions are such that extinction after an outbreak is
almost certain, and recurrence is due to an infected population ¯ux (see also [1, p. 341]); in this
context, the expected time to extinction plays a central role.

In spite of the simplicity of the system, there is no exact solution for it. Approximate results
were obtained by means of the di�usion approximation [2,10].

In this work, we study the behavior of the solutions of the stochastic version of the model when
extinction is unlikely. We ®nd that there is a region of the phase space, �N ; n�, for which the
deterministic description is absolutely inappropriate. Depending on the ratio of the mean values
of the populations at equilibrium, this region may be signi®cantly large, its size relative to the
equilibrium populations diminishes with the `size' of the system (see the parameter X below, Eqs.
(1)). This result may have consequences in the design of experiments testing density-dependence
regulation or in the analysis of temporal series.

The rest of the article is organized as follows: in Section 2, we introduce the deterministic
model; in Section 3, we present and analyze the stochastic model; Section 4 presents a summary
and discussion of results, while Section 5 presents the concluding remarks.

2. Deterministic description

In this section we brie¯y review the deterministic model, presenting the results that will be
useful later. The model reads

dN
dt
� aXÿ bNn=X;

dn
dt
� bNn=Xÿ bn:

�1�

The parameter X plays the role of a scale factor, i.e., the time evolution of the variables N=X and
n=X does not depend on X. The introduction of the scale parameter in (1) is particularly useful to
relate the deterministic and the stochastic dynamics (see, for example, [11, Chapter IX]) and is
usually associated with the total population size (see, for example, [2]).

16 J.P. Aparicio, H.G. Solari / Mathematical Biosciences 169 (2001) 15±25



Model (1) has only one equilibrium given by Neq � Xb=b, neq � Xa=b. Linearization of the
system around the equilibrium values leads to

dx
dt
� ÿb=X�neqx� Neqy� � ÿ�ba=b�xÿ by;

dy
dt
� b=X�neqx� Neqy� ÿ by � �ba=b�x;

�2�

where we have de®ned x � N ÿ Neq and y � nÿ neq.
The linear set of equations (2) is equivalent to the second-order di�erential equation

d2x
dt2
� ÿ�ba=b�dx

dt
ÿ bax � ÿc

dx
dt
ÿ x2

0x �3�

for a damped oscillator of damping ratio c � ba=b. Here, x0 �
������
ba
p

represents a characteristic
frequency.

The existence of damped oscillatory solutions requires that x0 > c=2, which is equivalent to the
condition

a2 � b2

ba
� x0

c

� �2

� Neq

neq

>
1

4
:

The period of oscillations is

s � 2p
x0

1������������������������
1ÿ �1=4a2�p :

The stability of the ®xed point in the linear approximation can be asserted using Liapunov's
®rst stability criteria (see, for example, [12]) by considering the Liapunov function

E � x2 � a2y2: �4�
Note that constant values of E determine (deformed) circles in the phase space �N ; n� of radius r �����

E
p

(the circles can be seen scaling n by a). The variable r can also be considered as a coordinate of
the system, and in such a case, the complementary coordinate is the angle h � arctan�ay=x�, which
is an increasing function of time under Eq. (3).

The Liapunov function E is non-negative and equals zero only at the equilibrium point
�x; y� � �0; 0�; moreover, its derivative along the linearized ¯ow (3) is

dE
dt
� ÿ2ba=bx2 � ÿ2cx2: �5�

As such, it su�ces to prove the local stability of the equilibrium point under the linear approx-
imation. The Liapunov function E can then be extended to a Liapunov function of the non-linear
¯ow by adding higher-order terms. However, standard considerations [13] allow us to build a one-
parameter family of Liapunov functions, EC, for 0 < C < 1, of the form

EC � ��1ÿ C�x2 � a2y2� � C�x� y�2; �6�
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which is non-negative and takes the value zero only at the equilibrium point as required in
Liapunov's theorem (the function E is a limit point for this family of functions). The derivative of
EC following the non-linear ¯ow (1) reads

dEC

dt
� ÿ2c�1ÿ C� y

neq

�
� 1

�
x2 ÿ 2by2 C

�
ÿ x

neq

�
; �7�

which is negative de®ned in the rectangular region

f�x; y� such thatÿ Neq < x < Cneq; ÿneq < y < neqg �8�
and takes the value zero only at the equilibrium point �0; 0�. The function EC satis®es all the
requirements for a Liapunov function to imply (local) asymptotic stability of the equilibrium
point.

We will later study the evolution of the Liapunov functions E under the stochastic dynamics
and brie¯y comment on the di�erences that appear when EC is considered.

3. Stochastic description

The stochastic model is produced by considering three independent events: `birth' in the
N-population, `contagion', and `death' in the n-population. The e�ect of each event on the
population numbers and the corresponding transition rate for the probabilities are summarized in
Table 1.

The forward Kolmogorov (or master) equation for the probability distribution reads

dPN ;n

dt
� W Nÿ1;n

b PNÿ1;n � W N�1;nÿ1
c PN�1;nÿ1 � W N ;n�1

d PN ;n�1 ÿ �W N ;n
b �W N ;n

c � W N ;n
d �PN ;n: �9�

We will understand this equation as being valid for all possible integers values of n and N and will
restrict attention to the realistic cases where only a non-negative number of individuals can be
found, i.e., we will only accept initial conditions with PN ;n � 0 whenever N < 0 or n < 0. The
Kolmogorov equation propagates this property to all times, since the death rate is zero when n �
0 and the contagion rate is also zero when n � 0 or N � 0.

Individual realizations of the stochastic process are simulated with event probabilities
Pb � W N ;n

b =R, Pc � W N ;n
c =R and Pd � W N ;n

d =R, where R � W N ;n
b � W N ;n

c � W N ;n
d , while the inter-event

times are given by a random variable Dt exponentially distributed with mean 1=R [1].
In Fig. 1, we show a stochastic simulation compared to the deterministic solution. It can be seen

that, for a time of approximately 3s, both solutions are almost identical. Then, the deterministic

Table 1

Event E�ect Transition rate

Birth �N ; n� ! �N � 1; n� W N ;n
b � Xa

Contagion �N ; n� ! �N ÿ 1; n� 1� W N ;n
c � bNn=X

Death �N ; n� ! �N ; nÿ 1� W N ;n
d � bn
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oscillation `dies out', while the stochastic simulation presents `undamped oscillations'. In Fig. 2,
we start a stochastic simulation from the deterministic equilibrium values, and we can see that an
oscillatory regime is soon established. A simple explanation of this behaviour is given in the
following.

We will now focus our attention on the geometry of the trajectories, and hence, we map the
stochastic process into an embedded stochastic process with constant time interval between
events.

Close to the deterministic equilibrium values, the three events have almost the same probability
of occurrence since

aX � bNeqneq=X � bneq: �10�
The population state close to the equilibrium point �Neq; neq� performs a random walk in phase
space whose three possible steps are along the axes or the diagonal, the three events having almost
the same probability of occurrence. As a consequence, we expect the distance from the population
state to the deterministic equilibrium value to be of the order of

�����
M
p

after M steps. This behavior

Fig. 1. Deterministic solution and stochastic simulation. The deterministic equilibrium values are Neq � 104, neq � 103,

hence a � �����
10
p

. The time unit is the period of the deterministic solutions s ' s0 � 2p=
������
ba
p

. The horizontal lines are

placed at N � Neq � a
�������
Neq

p
. Parameter values are a � 1, b � 10, b � 10, X � 104.
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cannot proceed forever because far enough from the deterministic equilibrium value dominates
the deterministic dynamics.

In order to obtain some quantitative results we consider the linear approximation for the
(conditional) probabilities of occurrence of events

Pb � 1

3
ÿ 1

9
�x=Neq � 2y=neq� �O��x=Neq�2 � �y=neq�2�;

Pc � 1

3
� 1

9
�2x=Neq � y=neq� �O��x=Neq�2 � �y=neq�2�; �11�

Pd � 1

3
� 1

9
�ÿx=Neq � y=neq� �O��x=Neq�2 � �y=neq�2�:

A remark is pertinent at this point: the probabilities Pb, Pc and Pd are functions only of the
variables x=Neq and y=neq; hence the quality of the approximation (11) depends only on the relative
size of the ¯uctuations with respect to the equilibrium values. The scale parameter X only plays a
role through the equilibrium values and is not essential to the approximation.

Fig. 2. Stochastic simulation. Initial conditions correspond to the deterministic equilibrium values Neq � 105, neq � 103,

and therefore a � 10. The horizontal lines are placed at Neq �
�������
Neq

p
and neq � a

�������
Neq

p
. Parameter values are a � 0:1,

b � 10, b � 10, X � 105.
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We shall now consider the average change of the Liapunov function E, Eq. (4), with each event.
The three contributions DEb, DEc and DEd due to each possible event are (we indicate the cor-
responding changes for EC as well in the last column):

where we recall that a2 � Neq=neq, and Neq > �1=4�neq.
The mean value of the variation of the Liapunov function E is

hDEi � DEbPb � DEcPc � DEdPd � 2

3
�a2 � 1� � 1

9

y
neq

�2a2 ÿ 1� � 1

9

x
Neq

�a2 � 1� ÿ 2

3

x2

Neq

:

The condition of zero average variation of the Liapunov function E, hDEi � 0, de®nes a pa-
rabola in phase space

y � 6

a2�2a2 ÿ 1� x
2 ÿ a2 � 1

a2�2a2 ÿ 1� xÿ 6neq

a2 � 1

2a2 ÿ 1
; �12�

and the intersections of the parabola with the x-axis for Neq; neq � 1 are

x1;2 � �
�������
Neq

neq

s �������������������
Neq � neq

p
(see Fig. 3).

The deterministic equilibrium state �x � 0; y � 0� is in the `interior' region of the parabola,
where events tend, on average, to increase E. As this happens, the structure of the system favors
the sustenance of an oscillatory regime (it can be veri®ed that, under the conditions a2 > 1=4,
Neq � x� 1 and neq � y � 1, the stochastic variable h also increases on average).

The population state cannot remain in the interior region forever. When one of the parabola
branches is crossed, events tend, on average, to decrease E, and then, the population state is not
expected to move too far away from the deterministic equilibrium state. In the long term, the
Liapunov function must ¯uctuate around the value

Ebal � Neq

neq

�Neq � neq�

representing the balance of the deterministic drive towards the equilibrium and the random walk
away from it.

The intersection of the deformed circle E � Ebal with both axes gives an estimate of the ¯uc-
tuations of the populations. We have

DN �
�������
Neq

neq

s �������������������
Neq � neq

p
; �13�

Dn � �������������������
Neq � neq

p
: �14�

Birth DEb � 2x� 1 DECb � DEb � C2y
Contagion DEc � ÿ2x� 1� 2a2y � a2 DECc � DEc � C�2xÿ 1�
Death DEd � ÿ2a2y � a2 DECd � DEd � C�1ÿ 2xÿ 2y�,
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When the Liapunov functions EC of the deterministic dynamics are considered, similar ex-
pressions are obtained. However, the Liapunov function increases on average in a compact re-
gion. For example, considering E1=2, the average change under the transition rates (11) reads

DE1=2 � ÿ 1

3neq

y2
�
ÿ �2a2 ÿ 1� y

3

�
ÿ 1

3Neq

x2
�
ÿ �2a2 ÿ 1� x

6

�
� 2

3
�a2 � 1�; �17�

and the condition of zero average variation of the Liapunov function E1=2, hDE1=2i � 0, de®nes a
deformed circle not centered at the equilibrium point.

Estimates of the mean amplitude of the oscillations, based on EC, are of the same order as those
obtained before (expressions (13) and (14)).

Hence, our heuristic argument implies that the deterministic equilibrium point is `stochastically
unstable', meaning that the probability of a stochastic trajectory leaving the vicinity of the
equilibrium point is one provided the vicinity is in the interior of the region where E < Ebal.
Furthermore, in view of the available results on stochastic stability [14±16], we conjecture that a
generalization of Liapunov's instability theorem is possible, formalizing and sharpening the
heuristic discussion presented here.

4. Summary

We have considered a two-dimensional deterministic system with an equilibrium point which is
a global attractor for all the trajectories in phase space except for the invariant set n � 0. The
solutions of this system present damped oscillations towards equilibrium values. The deterministic
trajectories, solutions of the deterministic model, spiral toward the equilibrium point when
Neq=neq > 1=4.

Considering that the evolution of the system is well captured by a stochastic jump process, we
observe that all the events have almost the same probability of occurrence close to the deter-
ministic equilibrium point. Hence, the population state performs a random walk, moving away
from the deterministic equilibrium point.

The Liapunov function, E, of the deterministic system increases (rather than decreases) on
average close enough to the equilibrium point under the stochastic dynamics. The region where E
increases in average consists of the interior of a parabola determined by the condition hDEi � 0.

While the population state, �N ; n�, lies in the interior of the parabola, events tend, on average,
to increase E. The expected oscillation amplitudes correspond to the largest (deformed) circle
E � Ebal inscribed in the parabola and its intersections with the N - and n-axes, i.e.,���������������

Neq=neq

p �������������������
Neq � neq

p
for the N-population and

�������������������
Neq � neq

p
for the n-population give the expected

¯uctuations for the populations. Close to the deterministic equilibrium the stochastic behavior
dominates, producing undamped oscillations.

5. Concluding remarks

The description of a stochastic process by a master equation for the probability distribution is a
complex task when more than one population is involved. Furthermore, this picture may obscure
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some features as the persistence of oscillations. Often, analytical results are obtained by means of
the so-called di�usion approximation which is valid for su�ciently large X. We have favored here
an approach closer to the jump process, which is intuitive and clearly shows the mechanisms
behind the sustained oscillations. The agreement between the predicted and observed mean am-
plitude is very good.

We found that the deterministic equilibrium population state �Neq; neq�, which is a global at-
tractor for all the phase-space trajectories of the deterministic system except the invariant axis
n � 0, becomes `stochastically unstable'.

However, for large population numbers, and far enough from the equilibrium, the deterministic
dynamics drives the motion along the deterministic trajectories. Therefore, there are two regions
in phase space with substantially di�erent dynamics. One of them is pictured as the interior of the
parabola where hDEiP 0; the other is the exterior region where the deterministic element of the
dynamics dominates. By the nature of the processes, the boundary between these regions is di�use.

The relative size of the ¯uctuations scales with the square root of the scale parameter X.
However, in the present approach, this parameter plays only a secondary role; the large numbers
are indeed the population values at equilibrium.

We ®nally notice that a large a2 value implies a large ratio between the characteristic time of
decay and the characteristic time of oscillations a2 � x2

0=c
2. When a is large (slow decay) the

¯uctuations of the n population are enhanced since the factor
�������������
a2 � 1
p

multiplies the standard
1=

������
neq
p

term.
Finally we would like to bring to notice the fact that, since the pioneering works of Lotka and

Volterra, the problem of oscillating populations has been an essential contribution to the de-
velopment of modern ecological theory. Although it has been a long time since then, deterministic
models continue constituting the core of most ecological thought. It is then not surprising that the
oscillations of natural populations are usually explained by deterministic models whose solutions
present sustained oscillations or models incorporating seasonality (the discussion by Renshaw [1,
p. 204] is pertinent at this point). In the present work, we show that signi®cant (i.e., observable
and measurable) oscillations may take place even when the related deterministic dynamics show
damped oscillations towards an asymptotic steady state, and these oscillations are traced to the
stochastic nature of the problem.
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