Física Teórica 3 Serie 8: Modelo de Ising. Fenómenos críticos

1^{er} Cuatrimestre de 2010

Problema 1: El modelo de Ising se utiliza para estudiar transiciones de fase en sistemas magnéticos. Consiste de N spines en una red que, en presencia de un campo magnético B, interactúan en la forma

$$H = -\sum_{i=1}^{N} B\mu s_i - J \sum_{\langle i,j \rangle}^{N} s_i s_j \quad (s_i = \pm 1)$$

donde la última suma es sobre los primeros vecinos.

El modelo del gas de red ("Lattice Gas") se utiliza para estudiar transiciones de fase líquidogas. Consiste en N sitios cada uno de los cuales puede estar ocupado a lo sumo por una partícula. Las partículas interactúan entre sitios vecinos, siendo ε la energía de interacción.

Muestre que ambos modelos son isomorfos. Para ello derive las relaciones que ligan los parámetros del modelo de *Ising* con los del gas de red, de modo que la función de partición canónica del primero sea idéntica (a menos de una constante de proporcionalidad) a la función de partición gran canónica del segundo.

Problema 2: En una dimensión el modelo de Ising puede ser resuelto en forma exacta.

a) Considere a los N spines colocados en un círculo con condiciones periódicas de contorno (es decir $s_1 = s_{N+1}$). Muestre que la función de partición canónica Q_N es

$$Q_N(b, K) = \sum_{s_1, \dots, s_N = \pm 1} \exp \left(\sum_{i=1}^N (bs_i + Ks_i s_{i+1}) \right),$$

donde $b = \beta \mu B$ y $K = \beta J$.

b) Muestre que $Q_N = \text{Traza}(q^N)$ donde q es la matriz 2×2 de elementos

$$\exp [b(s+s')/2 + Kss'] (s, s' = \pm 1)$$

Ayuda: El sumando del argumento de la exponencial en Q_N puede ser reescrito en la forma $b(s_i + s_{i+1})/2 + Ks_is_{i+1}$.

c) Muestre que la función de partición puede escribirse en la forma

$$Q_N = \lambda_+^N + \lambda_-^N \,,$$

siendo

$$\lambda_{\pm} = e^K \left\{ \cosh b \pm (\sinh^2 b + e^{-4K})^{1/2} \right\}$$

1

los autovalores de la matriz q.

d) Muestre que en el límite termodinámico, lím $_{N\to\infty} \frac{\ln Q_N}{N} = \ln \lambda_+$

e) Calcule la magnetización media M=M(T,B) y muestre que no hay magnetización espontánea cuando $B\to 0^+$.

Ayuda: la magnetización media de cada spin es

$$\langle s_i \rangle = \frac{1}{N} \frac{\partial \ln(Q_N)}{\partial b} |_K$$

Problema 3: En la aproximación de campo medio para un sistema de Ising, halle los exponentes críticos de las siguientes magnitudes termodinámicas:

- a) La magnetización media a campo nulo, que se comporta como $M(T, B = 0) \sim (T_c T)^{\beta}$ para $T \lesssim T_c$.
- b) La magnetización media en la temperatura crítica, que se comporta como $M(T_c, B) \sim B^{1/\delta}$ para $B \to 0$.
- c) La susceptibilidad magnética $\chi_T(T,B=0)$, la cual diverge como $(T_c-T)^{-\gamma}$ para $T\stackrel{<}{\sim} T_c$.

Problema 4: Considere una red cuadrada bidimensional formada por dos tipos de sitios A y B con momentos magnéticos μ_A y μ_B respectivamente. El Hamiltoniano es del tipo Ising, pero con interacción a primeros y segundos vecinos. Las constantes de acoplamiento son:

$$J_1 > 0$$
 entre sitios vecinos de la red A
 $J_1 > 0$ entre sitios vecinos de la red B
 $J_2 < 0$ entre sitios vecinos A y B

- a) Escriba el hamiltoniano en términos de s_i^A y s_i^B .
- b) Calcule el campo magnético efectivo (en la aproximación de campo medio) que ven los spines de la red A. Idem para la red B.
- c) Halle las ecuaciones para $\langle s_i^A \rangle$ y $\langle s_i^B \rangle$.
- d) Muestre que la susceptibilidad magnética a campo nulo obedece la ley de Curie

$$\chi(T, B \to 0) \sim \frac{1}{T - T_{
m curie}}$$

Problema 5: La hipótesis de scaling de *Widom* supone que la energía libre es una función homogénea generalizada,

$$F(\lambda^a t, \lambda^b B) = \lambda F(t, B)$$

donde t es la temperatura reducida $t = (T - T_c)/T_c$ y B es el campo magnético.

- a) Calcular los exponentes críticos α , β , γ y δ en función de a y b.
- b) Verificar que se satisfacen las igualdades

$$\alpha = 2 - \beta(1 + \delta)$$
 $\alpha + 2\beta + \gamma = 2$

2