Radiation fields of a dipole in arbitrary motion
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We present a version of Jefimenko’s formulas for electric and magnetic fields in material media, and
we demonstrate how this version of the formulas may be used for deriving the electric and magnetic
fields produced by an arbitrarily moving dipole containing both electric and magnetic moments.
Like the fields produced by a charge in arbitrary motion, the fields of an arbitrarily moving dipole
can also be written in two forms: The Heaviside—Feynman form and the Liénard—Wiechert form.
We derive here the first form and the radiation fields associated with the second form. These
radiation fields are expressed by means of concise, symmetric, and illuminating formulas.

I. INTRODUCTION

Jefimenko’s remarkable contribution! that the usual re-
tarded solutions of Maxwell’s equations may be expressed
without s 6patlal derivatives has generated a great deal of
interest?® (the spatial derivatives are troublesome because of
their subtle action on both field and source coordinates hid-
den inside the retarded time). Recently Jefimenko’ himself
has extended his approach (by which, roughly speaking, the
spatial derivatives of retarded quantities may be transformed
into time derivatives) to the electric and magnetic fields in
material media. However, his extended formulas [Egs. (1)
and (2) of the present paper] still contain some spatial de-
rivatives.

In this paper we present a version of Jefimenko’s formulas
in material media which contains no spatial derivatives (Sec.
II). We then use this version of the formulas for discussing
an interesting but complicated problem: To find the electric
and magnetic fields of a dipole in arbitrary motion. Like the
fields of a point charge in arbitrary motion, the fields pro-
duced by an arbitrarily moving dipole (containing both elec-
tric and magnetic moments) can be written in two forms: The
Heaviside—Feynman form and the Liénard—Wiechert form.
While the first form has been prev1ously derived by means of
the usual method of potentials,® the second form has been
discussed (in terms of unconventlonal parameters) by means
of spec1ahzed methods.”"!? In this paper we demonstrate
how our version of Jefimenko’s formulas can be used to
derive the first form (Sec. III), and the radiation fields asso-
ciated with the second form (Sec. IV). These last fields are
expressed by means of concise, symmetric, and illuminating
formulas. A complementary Appendix closes the paper.

Due to the importance of dipoles—many fundamental ob-
jects in the nature have magnetic or electric dipole
moments—we have chosen them to illustrate the power of
Jefimenko’s approach, and also to provide a useful reference
for those students who inquire about what happens when a
dipole moves arbitrarily.

II. A REFORMULATION OF JEFIMENKO’S
FORMULAS IN MATERIAL MEDIA

Jefimenko has recently extended his formulas for electric
and magnetic fields, E and B, in material media (in which the
free charge density p, the free current density J, the polar-
ization P, and magnetization M are all specified quantities).
These formulas can be written as
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where the integrals are taken over all space; with r the field
point (at which the electric field E and the magnetic field B
are evaluated) and r’ the source point (at which p, J, V-P,
VXP, and VXM are evaluated), =|r—r'| and 7 =(r—r')/r;
and finally, the square brackets [---] denote retardation, indi-
cating that the bracketed quantity is to be evaluated at the
source point ' and retarded time t' =t—r/c, where ¢ is the
time for which the E and B fields are evaluated, and c is the
speed of light. For example,

(=3 ,t)Y=J(x'",t—r/c). 3)

In stating Eqgs. (1) and (2),'® Jefimenko has defined the
magnetization M by the unusual expression M=B— u,H (re-
call that the usual definition of M is M=B/u,—H). Jefimen-
ko’s unconventional placement of the u, factor in the defi-
nition of M will imply a convenient symmetry between the E
and B fields later in this paper.

As may be seen, Eqs. (1) and (2) still have spatial-
derivative operations (“‘V operations™) inside the retardation
symbol. These V operations make it awkward to apply Egs.
(1) and (2). The action of these operations on both field and
source coordinates hidden inside the retarded time is subtle.
Following Jefimenko, we shall remove these V operations by
recasting them into time derivatives. More specifically we
are going to transform Egs. (1) and (2) in such a way that
they both contain no spatial derivatives. Consider first the
following relations (which are proved in the Appendix):
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Applying Eqs. (4) and (5) to Eq. (1), the electric field E takes
the form:
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By a similar procedure, we can transform the magnetic
field in Eq. (2). Applying Eq. (4) with P instead of M, and
the following relation (see the Appendix):
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to Eq. (2), we obtain
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The formulas (6) and (8) constitute our version of Jefi-
menko’s formulas in material media. At first sight, it might
not appear very fruitful to consider Egs. (6) and (8) instead
of Egs. (1) and (2), since the former contain more terms than
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the latter. However, Egs. (6) and (8) are more convenient
than Egs. (1) and (2) in the sense that they contain no spatial
derivatives, which are made cumbersome by retardation. Ob-
viously Egs. (6) and (8) reduce more transparently to the
familiar static forms'* and they are more symmetric than
Egs. (1) and (2).

Formulas (6) and (8) permit us to solve easily the well-
known problem of calculating the fields E and B due to a
point oscillating electrlc dipole, i.e., the so-called problem of
the Hertzian dipole.’ Slmllarly we can solve the analogous
problem for a magnetic dlpole Furthermore, Egs. (6) and
(8) permit us to calculate the E and B fields of an oscillating
dipole with dual moment, i.e., one containing both electric
and magnetic moments. Indeed, consider such a generalized
point dipole which contains both electric moment p=pe, and
magnetic moment m=me, (e, is a unit vector in the Z direc-
tion) and is located at the origin of coordinates. Both p and
m are functions of the retarded time: p(t')=p, exp(—iwt')
and m(t')=my exp(—iwt'). The polarization and magneti-
zation have a value only at the position of the dipole, i.e., at
the origin

[P]=P(r',t')=p(t') &(r'), ©

[M]=M(r',t')=m(¢')&(r"), (10)
where & is the three-dimensional Dirac delta function. For
these specific sources, the formulas (6) and (8) involve
simple integrations, €.g.,

4 J’ [M] | [m]

= | —dv=—

at

; (11)
;

where now r=|r| since r' =0 for the point dipole, and om/
dt=m. After performing all the corresponding integrations,
the final result can be written as

3 3
ERMST R
+eo[%+-[—;ﬁ-;—]-]), (12)
B=(—1—)rx(r><[[m] 37[1214_&3!1_]]
47 rc
_#0[ e, [rpz]}). (13)

We find here two familiar cases: If m=0 we have the fields
of an oscillating electric dipole,'® and if p=0 we have the
fields of an oscillating magnetic dipole.'®

I11. HEAVISIDE-FEYNMAN FORM OF THE FIELDS
OF A DIPOLE IN ARBITRARY MOTION

In this section we shall illustrate the effectiveness our ver-
sion of Jefimenko’s formulas by solving an interesting but
complicated problem: To determine the E and B fields due to
an arbitrarily moving dipole which carries both p and m
moments. Thls problem has been previously discussed by
Monaghan using the standard method of potentials. The
problem is particularly important from a physical point of
view because many objects in the nature have magnetic
and/or electric dipole moments. A special case of this prob-
lem, namely, that in which the dipole carnes exclus1vely p
moment was treated by Ellis>!? and Ward.!%!! To face this
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problem, both authors needed to develop methods quite spe-
cialized. This fact indicates the complexity of the problem
and also X glams why it was apparently not discussed until
the 60’s.3-1* This is somewhat surprising, because, with ex-
ception of a point charge (for which the fields were deter-
mined a long time ago), a dipole is the simplest localized
charge or current configuration.

Like the fields produced by an arbitrarily moving charge,
the fields of a dipole in arbitrary motion can be expressed in
two forms: The Heaviside~Feynman form and the Liénard—
Wiechert form. Both forms have advantages and disadvan-
tages. The structure of the first form is more compact but
difficult to interpret, while the second form i I easier to inter-
pret but oppressively long in its structure.!” In this section
we will show how the first form may be derived easily from
our Egs. (6) and (8).

Let us consider a moving dipole with velocity v(r)
=ds(t)/dt at the point s(z). We assume that the dipole has
polarization and magnetlzatlon which are given in terms of
the delta function by

[P]1=P(r',t")=p(t") &{r' —s(¢")}, (14)
[M]=M(r',t')=m(t') 8{r' —s(t')}, . (15)

where p and m are the electric and magnetic dipole moments
and s(¢') is the position of the dipole at the retarded time:
t'=t—|r—r'|/c=t—r/c. The substitution of Egs. (14) and
(15) into Eq. (6) gives the expression

1 (0 ( m(e)&{r' —s(t')}xF
E‘_G!E 7 dv
& m(t')B{r' —s(t')} X7
() {rc S0l Cal (16)

Because of the delta function, the diverse factors of 7, 7,...,
come outside the integrals where now they are evaluated at
the specific retarded position and time defined by
t'=t—|r—r'|/c and r'=s(t’). To stress that the vector r—r’
is now function of the retarded time, we change the notation,

r—-r'>R=Rn=r—s(¢'). 17)
Hence, the retarded time t' =¢—r/c becomes

t'=t—RJc. (18)
In the integration of Eq. (16), we use the formula®

f 53{r’—s(t’)}dv'=l, 19)

K

where

K=1-v-n/c, (20)

with v and 0 evaluated at the retarded tlme After performing
all the integrations in Eq. (16) we obtain®®

__1 [3(pmi—p 14 [3(p-B)h—p
47e, KR® c ot KR?
N 1 ¢% [ ax(aXxp) 179 mXxn
c? a2 KR T Arw KR?
L1 é* ([ mXn
c o2 | KR 1)

By a similar procedure we find from Egs. (8), (14), (15), and
(19) that the magnetic field is
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B 1 [3(m-n)h-m 1 4 [3(m-n)n—m
T 47 KR3 c ot KR?
N 1 & (aX(hxXm) o [ 4 [ pXn
2 o2 KR 4 ot | KR?
N 1 6* (pXn -
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The expressions (21) and (22) play the role of intermediate
formulas from which we obtain both Heaviside—Feynman
and Liénard—Wiechert formulas for a dipole in arbitrary mo-
tion. The Heaviside—Feynman form of Egs. (21) and (22)
may be readily obtained. From Eq. (18) we have

ot'/at=1—(1/c)dR/at which combines with
OR/dt=—(n-v)at'/dt to give the results
at’ _ 1 _ 1 _1 1 6R 23
ot 1-nwvic K = cat’ @3)

where we have considered Eq. (20). If we use Eq. (23) in
Egs. (21) and (22) and replace partial derivatives by ordinary
derivatives,” the result is

1 [3(prﬁ)ﬁ—p R d (3(p-ﬁ)ﬁ—p)

“ame| R cai\T B
d (3(p-n)a—pdR N €omXn . 1dR
dt R%c? dr R? c dt
1 d? [aX(aXp)—cey(mXi) . 1dR
2 df? R catl|/l
(24)
Be 1 3(m-ﬁ)ﬁ—m+R d [{3(m-n)h—m
T 4r R? c dt R?
3(m-n)n—m dR ,u.OPXn ) 1dR
T dt R*T  dt R? c dt
1 4% (aX(aXm)+cuy(pXi)
cZaek R
X311 14R 25
sl (25)

These are the Heaviside—Fegnman formulas for a dipole in
arbitrary motion. Monaghan® derived these formulas using
the standard method of potentials. The interpretation of the
terms in Eqs. (24) and (25) does not appear to be simple. The
first term in both expressions gives the static field of the
dipole at its retarded position while the second term gives the
first-order correction for this static field; we have no a simple
interpretation for the third term; and finally the last term
contains, at least in principle, all the radiation effects. In
order to interpret in more familiar terms the fields of a dipole
in arbitrary motion we should like to put them in the
Liénard~Wiechert form.

IV. THE RADIATION FIELDS OF A DIPOLE IN
ARBITRARY MOTION

We have already mentioned that the Liénard—Wiechert
form for the fields of a dipole in arbitrary motion may be
derived from the intermediate formulas given in Egs. (21)
and (22). Such a derivation, though straightforward, is ex-
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tremely long and the full expressions obtained for the fields
turn out to be very lengthy. Accordingly, the complete deri-
vation will be not presented here. However, we can say that
these fields may be separated naturally in terms of the form
O(1/R), O(1/R?), and O(1/R>). Moreover, these terms in-
volve complicated combinations of p, p, p, m, m, m, v, a,
and a (!)—this fact throws into relief the beautiful simplicity
of the Heaviside—Feynman form given in Eqs. (24) and (25).
We shall be content with the much less ambitious task of
finding those terms of the Liénard—Wiechert form which are
relevant for the radiation effects, that is, those terms that give
the radiation field at great distance from the dipole. These
terms vary like 1/R and their deduction is not very difficult.
Let us begin by stating the derivatives

R 3 as(t) <9s(t’)<9t’_ v
= s} = o a K
(26)

R _ 3 R aR__ﬁ-v -
a o a RRTER ST @
an 4 R _nX(an)
At {(n V)h—v}= RK (28)
K o . 9 (v
;—5(1—v-n/c)——5; T

1 [ha (&v)? v 29

K| T R Re) @)

d Rk = iR f-a (n-v)2 vy
ot ( )=] ¢ Rc Rc
W —RUIKITYh.v), (i,j integers). (30)
Now, If we expand the following term of Eq. (21)

1 &% [ ax(nxp)

c?o | RK |

we can rewrite Eq. (21) itself in a more manageable form

1 3(p-ﬁ)ﬁ—p+1 d (3(p-n)n—p
" 4me R’K c 9t R*K
+p><ﬁx1 32‘+1a pxﬁ 2 Jn
RK |7c* o "cat\RK) ¢ ot
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c o2\ RK cl 4m RK
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Let us label the quantities inside the square brackets of Eq.
(32) as follows:

_3(p~ﬁ)ﬁ—p+1 d (3(p-n)n—p
[11= R’K c ot R2K ’
pxn) 1 #n
[21={ Rk )< o
19 (pxn) 2dn
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4_132 pXn\ n
[41=2 52 | R ) %
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[]—m RK | " ¢ a2\ RK

Bearing in mind Egs. (26)—(30) we shall examine each of
the quantities [1]-[5]. Specifically our work will consist in
extracting the terms varying like 1/R from these quantities. It
is not difficult to prove that the guantlty [1] contains exclu-
sively terms of the form O(1/R*) and O(1/R?). Hence [1]
does not contribute to radiation. The time derivative of Eq.
(28) shows that the factor &’n/dr> 1n51de [2] contains only
terms of the form O(1/R) and O(1/R?). Hence the quantlty
[2] produces only terms of the form O(1/R?) and O(1/R3).
The quantity [3] is more difficult to analyze. With a bit of
manipulation we find the following expression for the first
factor inside [3]:

pxn\  pxXh pxXa pXv an
c ot " v’R’K* R’K R*K’c * RKZC
(pXn)(n-a)
TR (32

where as usual y=(1— —v?ch)1? . Evidently, thls factor con-
tains terms of order 0(1/R) and O(1/R?) exclusively.
Therefore, since M/t carries a factor of order O(l/R) the
quantltg [3] contributes only terms of the form O(1/R?) and
O(1/R%)

In the exammatlon of [4] we need first the time derivative
of Eq. (32),

16 (pxa| 4 pxi pXn
c 2\ RK /) ot \yR°K°] ot \R’K
pXv an
at \R’K2%¢ +_ RKZc
d [ (pXn)(n-a)
_[—’n_RKc . (33)

This is the first factor in [4]. It is evident that the first three
quantities of the right- hand side of Eg (33) contain only
terms of the form O(1/R%) and O(1/R%). However, the last
two quantities of Eq. (33) contain terms of the form O(1/R).
These terms are

pxXn 2(pxXn)(n-a)
RK3¢ RK*?
(pxn)(h-a) 3(pxn)(A-a)*> (pxh)(h-a)
RK*c? RK3c? RK*c?

In the last term there appears the surprising factor a, i.e., the
time derivative of the acceleration! We conclude that the
terms O(1/R) of the first factor inside [4] are

pxXn
RK3¢”
(34)

(pXn)(h-a)
RK*c?

3(pXn)(i-a)’
RK3c?

3(pXxn)(n-a)
RK*c?

With this result we conclude that the terms O(1/R) of [4]
are
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3aX(aXp)(n-a)®> 3aX(AXp)(h-a)

RK3c* RK*c3
ax(nXp)(n-a) [x(nXp)
RK° RSS2 (35)

There remains the quantlty [5]- The first element on the
right-hand side of [5] is of the form O(1/R?) whereas the
second element has the same form of the first factor inside
[4] but with m instead of p. Consequently we can easily infer
that the terms O(1/R) of [5] are given by the expression
(34) but with m instead of p, i.e., by

3(mxn)(n-a)®> 3(mxn)(h-a) (mXn)(h-a)
RK3¢3 RK*c? RK*c?

N mxn
RK3¢’
Returning now to the expression (31) for the electric field,
we see that its radiation terms are given by the terms of the
form O(1/R) of the quantities [4] and [5]. Hence the results

in Egs. (35) and (36) give us the radiation field “E ;" for a
dipole in arbitrary motion

1 [38X(AXp+ eycm)(hi-a)?

(36)

nd = ey RK3C*
3nX (DX p+ eycm)(n-a)
RK*c3
nX (DX p+ecm)(n-a) nX(AXp+ e cm)
RK*c3 RK3c?
(37

Proceeding in a similar way, we find the formula for the
radiation field “B,,4” for a dipole in arbitrary motion

1 [3aX(AXm— uycp)(h-a)?
w4 RK>c*

3naX(nXm— gycp)(n-a)
RK*c3

nX (AXm— gocp)
RK3c?

nX (nXm— ugep)(n-a)
RK?*3

(38)

The formulas (37) and (38) constitute our version of the
radiation fields of an arbltranly movmg dipole having both
electric and magnetic moments.?! In other set of words: Egs.
(37) and (38) represent effectively the radiative part of the
Liénard—Wiechert fields of a dipole in arbitrary motion. In
particular if we consider the moments p and m as defined by
Egs. (9) and (10), then the formulas (37) and (38) give us the
radiative part of the fields defined in Egs. (12) and (13).
Apart from their manifest conciseness and symmetry, Egs.
(37) and (38) are particularly illuminating because each term
can be interpreted without great difficulty.

Let us consider, for example, the terms of Eq. (37)—the
interpretation of the terms in Eq. (38) is completely analo-
gous. The first term is a novel one: It survives even when a,
p, and m are all constant quantities. However, the radiation
produced by a dipole of time-constant moment p or m, but
accelerated in position, does not appear to be a familiar or
expected result. The familiar idea is that accelerated charges
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produce radiation, but a dipole is a conﬁguratlon with net
charge equal to zero—as Griffiths'* has written recently:
“And yet, the theory of dipoles contains a rich measure of
subtlety and surprise.” The second term is one more familiar.
It arises from the time dependence of p and m as well as the
acceleration of the dipole. The third term is also novel one
since it contains the unusual time derivative of the accelera-
tion. This is a really unexpected result. Since the time deriva-
tive of the acceleration can be nonzero even when the accel-
eration itself is instantaneously zero, it follows that an
instantaneously unaccelerated dipole of time-constant mo-
ment p or m produces radiation provided the time-derivative
of the acceleration is nonzero! The fourth term (which is
independent of the acceleration) is one already known. We
find it in fields of statlonary configurations with time-
dependent dlpole moments.”? In virtue of this term, if the
dipole is moving with constant velocity, or even more, when
it is at rest we find that it produces radiation if p and/or m is
nonzero.
Finally notice that Eq. (38) can be written as

Brad=(1/c)[ﬁ]xErad: (39)

as expected. Consequently B,,4 and E,,; are perpendicular to
one another, i.e., they satisfy B,4-E,4=0. It should be noted
also that Eq. (37) can be written as E4=[n]X{---}. Hence
we have E_4-[n]=0 and B,,4-[0]=0, i.e., both E 4 and B 4
fields are perpendicular to the vector [n].
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APPENDIX: DERIVATION OF EQS. (4), (5), AND (7)

The proof of Eq. (4) is as follows. If we integrate the
equation

[V’XM]=VX[M]+V’><[—M—], (A1)
r r r
over all space we have
J' [V"TM] ij dv +JV xL_]dv
(A2)

The second integral on the right-hand side can be trans-
formed into a surface integral

[onp g0 0

But since M is zero outside a finite region of space (M is
confined in this region), while the surface integral in Eq.
(A3) is taken over all space, this last integral vanishes.
Therefore Eq. (A2) reduces to
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f [V'xM] ><M]

fVX—d !

=f { % VX[M]—[M]XV

1”
—|idv
,

(A4)

Following Jefimenko, we note that [M] depends implicitly
on the field point r through the retarded time, and hence we
can use the chain rule to obtain

190

Using this equation along with V(1/r)= —7/r? into Eq. (A4)
we obtain

f [V’TM] N

=J { [M]2><fJr (a[M]/at)xf]dV
r rc¢

(A6)

Accordingly, the time derivative of Eq. (A6) gives directly

Eq. (4).
The proof of Eq. (5) turns out to be more elaborated. Con-
sider first the relation

[V’r-P] dv'=—f { [V B)F (3[V’-P]/0t)f}dv

7'2 rc

(A7)
The demonstration of this is as follows:

vf [—Y%ll]dv’=j V[ [V;'P]]dv'

—f v p +[V P]V(l) d
= " [ ] . p v

(A8)

Now, we note that [V'-P] depends implicitly on the field
point r through the retarded time. Therefore, using Jefimen-
ko’s trick we obtain

1[4 )
V[V -P]=—;{E[V -P]]r. (A9)
The use of Eq. (A9) along with V(1/r)=—#/r? in Eq. (A8)
give us Eq. (A7).
Our second step is to rewrite the left-hand side of Eq.
(A7). The integration of the equation

(V'R @ g’

(A10)
r

over all space gives
V'.p
L ! dv
-

(A11)

The second integral on the right-hand side can be trans-
formed into a surface integral

Buf since P is confined in a finite region of space, while the
surface integral in Eq. (A12) is taken over all space, this last
integral vanishes. Hence, Eq. (A11) reduces to

(A12)
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[R5 By,
([ 4y
- {; .[P]+[P]-V(7)}dv. (A13)

The vector [P] depends implicitly on r through the retarded
time. Hence,

V.[P]=— % [6P/at] 7 (A14)

The use of this equation along with V(1/r)=—#/r’ in Eq.
(A11) give us

vV'.p Pl.7 [oP/ot]-F
VP ‘”[r]zr+[ rc] r}dv
(A15)
Now, the gradient of Eq. (A15) is
[V'-P] 4 '=_j (V[[I:]Z.r)
V{[—a-l-)/at—]';})dv'. (A16)
rc

Our next step is to evaluate the gradients inside the integral
sign on the right-hand side of Eq. (A16). After a laborious
calculation (in which we use the vector identity: V(A-B)=A
X(VXB)+BX(VXA)+(A-V)B+(B-V)A, as well as Jefi-
menko’s trick that spatial derivatives of retarded quantities
may be converted into time derivatives), we obtain the fol-
lowing equations:

| I P1-3([P]-7)7 ([oP/at]-7)rF
V{ : r]fr =[ rE 4 rzc:| : r’ (A7)
[oP/3t]-F _ [oP/ot]~2([oP/t]-T)F
v re - ric
2p; 2427, 2y 2
B K P/r(it 1 r)r. (A18)

The substitution of Egs. (A17) and (A18) into Eq. (A16)
produces the result

[V'-P] ,_J [3,([1’]‘?)?—[P]
—dv'= | |

r

N 3([oP/o¢]-F)r—[oP/dt]

r2c

F*P/ot?*]- F)F
N LW

) (A19)

rc

From Egs. (A7) and (A19) we deduce directly Eq. (5). By a
similar procedure we shall establish Eq. (7). Consider first
the relation
V' XM
X f [——7——1 dv

r2

=J[[V’><M]x?

NGk xM]/at)xf]dv,_
rc
(A20)

The proof of this is as follows:
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VXJ’ [—V—,szlldv’=f VX[&f—Ml}dv’

=f [%VX[V’XM]—[V’XM]

1

r

As before [V' XM] depends implicitly on r through the re-
tarded time. Thus

XV dv'. (A21)

VX[V’XM]=%{§;[V’XM] X 7. (A22)

Using Eq. (A22) into Eq. (A21) we obtain Eq. (A20). We
need now to rewrite the left-hand side of Eq. (A20). The curl
of Eq. (A6) along with the equations

VX[ [M]2><r } _ 3([M]-r3)r—[M]
r r

N ([(?M/¢9t]-rgr—[¢9M/¢9t] (A

rec

Vx‘ [oM/at] X7 _ 2([6M/2¢9t]-f)f
rc rec
([9*M/9t%]-#)F — [ *M/ot%]

+ rc? ’

(A24)
imply directly the expression

[V'XM]
o [ M,

___J‘ [ [M]—3([M]-f)f+ [oM/at]—3([dM/at]-F)F

r ric
[PM/362]—~ ([9*M/ 3] - F)F iy
14

+
rcT

(A25)

In the determination of Egs. (A23) and (A24), we have used
the vector identity: VX(AXB)=A(V-B)—B(V-A)+(B-V)A
—(A-V)B as well as Jefimenko’s trick. From Egs. (A20) and
(A25) we infer Eq. (7) and the proof ends.
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