8{a)-10(a) show results for a struck string in L /4, L /3, and
L /2, respectively. A free-fall sphere from 17.0 cm was used
to produce the excitation on the string. The corresponding
spectra for each shape are given in Figs. 8(b)-10(b). As be-
fore, the discrepancies in the 6th [Fig. 8(b}] and 5th [Fig.
9(b)] components can essentially be explained by the same
arguments.

V. CONCLUSIONS AND COMMENTS

This paper shows that the analysis of a point may give
information about the amplitude and velocity shape with
good approximation. The evolution of the string shape may
be followed with this detection system and hence it is possi-
ble to analyze damping and characterize the material string
considering dissipative forces. The experiment may be im-
proved by performing an electromagnetic excitation if an
iron string is used. This could ensure simultaneity when the
string is excited in two points.

The experiment allows students to observe discrepancies
presented in some textbooks. It has been designed for labo-
ratory work for intermediate and sophomore university
students, thus incorporating mathematical techniques
learned in parallel courses. In some cases and depending

Acceleration without radiation
Tyler A. Abbott and David J. Griffiths

upon the teacher’s criteria, the experiment may be realized
to high school students just as a demonstrative experiment.
The main aim, however, is to stimulate students’ criteria
for experimental work.
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We study the radiation generated by electric currents in (1) infinite cylinders with longitudinal
flow, (2) infinite cylinders with solenoidal flow, and (3) infinite planes. In each case we work out
four specific examples, for which the retarded fields can be calculated exactly, and we derive a
“Larmor-like”” formula for the power radiated, in the limit of infinitesimal cross section. We then
consider sinusoidal currents with finite cross section, and discover that for certain special
frequencies the external fields are zero and there is no radiation. We relate our results to the work
of Goedecke and others, and conclude with some remarks on the radiation reaction in these

configurations.

1. INTRODUCTION

When a point charge accelerates, it radiates. The power
radiated is given by the Larmor formula®
P = (1/4m¢,) (2¢°/3c%)a?, (1)

where e is the charge, a is its acceleration, and c is the speed
of light. Surprisingly, however, it is possible for an ex-
tended charge to accelerate without radiating. For exam-
ple, a nonrotating uniformly charged spherical shell (radius
R ) will not radiate if its center oscillates sinusoidally at a
frequency” such that

sinfR /¢) =0,
which is to say
w; =jmc/R), j=0,1,2,.... (2)
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In fact, any superposition of such oscillations is radiation-
less;? if the position of the center of the sphere is given by

re) = 20 [a, cos(e;t) + b; sin(aw;)] (3)

for constant vectors a; and b;, the sphere will not radiate.
Since any periodic function can be expanded in such a
Fourier series, it follows that the sphere does not radiate as
long as its motion has period 2R /c¢ (the time it takes light to
cross a diameter}. Similarly, a spherical shell which rotates
sinusoidally about a diameter will not radiate if its frequen-
cy is such that*

J@R /) =0, (4)

where j,(z) is the first-order spherical Bessel function.
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We would like to study the phenomenon of radiationless
motion in greater detail. Unfortunately, there are very few
nontrivial localized configurations for which one can cal-
culate the electromagnetic fields exactly. In this paper,
therefore, we examine three special classes of nonlocalized
currents: infinite cylindrical *“pipes” with longitudinal flow
(Sec. II), infinite solenoids (Sec. III)}, and infinite planes
which carry uniform surface currents (Sec. IV). For each
geometry we first analyze the case of infinitesimal cross
section, working out four specific examples and deriving a
“Larmor” formula for the power radiated. We then consid-
er sinusoidal currents with finite cross section, obtaining an
infinite set of frequencies which do not radiate. In Sec. V we
show that our results are consistent with Goedecke’s gen-
eral criterion for radiationless motion,® and in Sec. VI we
conclude with some remarks about the radiation reaction
force in these configurations.

11. THE INFINITE PIPE

Suppose an infinite straight wire, lying along the z axis,
carries a time-dependent current I{t). We assume that the
wire is electrically neutral,® so the scalar potential is zero,
while the retarded vector potential is given by’

A(r,t):ﬁiﬁjw _I._(t__-_L/cldz

=ij I(t g/cd 5)
2r

where (see Fig. 1)

Since A has only one component, we will write A = A2. The
fields, then, are

E( t)-— _g_é= _._aiz,
at at
B(r,t)=VxA= —43. )
ar
The Poynting vector is
Sir, 1) = - (EXB) = ——(1‘4)(‘9")?, 8
Ho ot

and hence the energy per unit time passing out through a
cylinder of radius » and length L is

P,(t):fs-da— —-(‘;‘:)("A)z oL . )

To get the total power radiated we take the limit of P, as
r— oo . However, there is a delicate point here: Because of
the retardation, as we go farther and farther from the wire
(ata given time ¢ ), we are sampling fields that lef? the wire at

1(t) ~—> dz
Fig. 1. The infinite straight wire; geometry for Eq. (5).
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earlier and earlier times. If we want the energy that left the
wire at a fixed time z,, we must “follow the fields out” to
infinity—that is, we want the limit of P, with £, =¢ — r/c
(rather than ¢ itself) held constant. Thus the power per unit
length radiated from the wire at time ¢, is given by

#?=Limp (to + f), with ¢, held constant. (10)
[

r—» o

Example 1.® Suppose a constant current [, is turned on
abruptly at time ¢ = 0:

0, <0,
)= [Io, t>0.

For t> r/c (i.e., 5> 0), only points on the wire out to

zr, 1) =t F =7 (11)

contribute, and we have

A(r,t)—'u"l°

f dz = Holo ln(z0 ¥ d) ,
,/? el 27 r
tolo € 5 Bir, 1)<t g
2r 2 T o1z,
_ oI5
47 ¢, '
Example 2. If the current increases linearly,
0, <0,
=]
) at, t>0.
We find (for > r/c):

Alrr)= L2 o"(t—v?’:?/c) dz

s [f25) 5]
27 r cl’

Elr,t)= —

E(r, 1) = —%ﬁln(ﬂﬁ)z
T

r

N 2
B(r,t)=%°ﬂii-‘;—¢, P ="°: ty.

Example 3. If the current is a sudden burst at =0,

I({t)=qlt),

then (for t>r/c):

A(,’,)zu;oj S =p/e) 4, — Bl

J/—,TTP 27z,
B(r,t)=

3

E(r,t)=£29q—°—cs—t2,
Tz

—Ho (@)2 1
7 \4/) ¢t}

Example 4. For a sinusoidal current,

I(t)=I,sin(wt); (12)
the results are as follows®:

“ sin ot /c
S {t —p/c) dp

r ." ;

— ﬁi'ﬁ’- [sin(wt )N, (—c—r—)

+ cosior ) J (“’7’)]., (13)

_ B4 T 5
27 z3¢

A(r’t]zluolo
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where J, and N, are the Bessel and Neumann functions of
order zero;

E(r, t) =£ Oi"w [cos(a)t )N (ﬁc’;)

— sin{wt ) J, (-%r-)] z, (14)

Bir, 1) = — £ol [sin(a;t W, (%)

+ cos(wt ) J, (ch_)] ¢Aﬁ , (15)

andl()
P = (ol 3/8) [1 + sin2wty)] . (16)
If all we are interested in is the total power radiated,
there is no need to calculate the fields exactly; what we
require are the “radiation fields”—the terms in E and B
which go like 1/y/7 at large distances from the wire.!' To

pick out the radiation term in the vector potential, we make
the substitution

u=(p—r/ec (17)
in Eq. (5):
Al =L o=y 4, (18)
o Juu+2r/c
Recall that
to=t—r/c (19)

is to be held constant as we send r— . Expanding the
radical,'?> we obtain a series of the form

W/r () + (/PO + P () + - (20)
The first term is the one we want:

_ Mo [ (T Iltg—u)
A,,d(r,t)—zﬂ\/;J; et du. 21)

Since the only time dependence in 4,4 is carried by ¢,, it
follows that

,,d(r,w——""\/—f”’*’ du, (22)

where the overdot denotes differentiation. 4,4 depends on

r both explicitly (through the 1/y/7 in front of the integral)
and implicitly (through z,), so there are two terms in d4,,4/

Jr. However, the first goes like 7~>/2, so
B, t) =20 _"_,}J Ilto—u) 4, =L(?XEmd)
27c 2r  Jo Ju c
(23)

and the power radiated, per unit length, is

Z = (po/47) [Q(t)]°, (24)
where

Q(:)=f Te—u) 4, (25)

o Ja

Equation (24) is the analog, in this geometry, to the Lar-
mor formula—or rather, to the Liénard formula, since no
nonrelativistic approximation has been invoked. The read-
er is invited to check Eq. (24) for each of the examples
considered earlier. Notice that a steady current (/ = 0) does
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|
RN
1 K(t) == \%U §

Fig. 2. The infinite pipe of radius R; geometry for Eq. (27).

..
o

not radiate (of course); evidently this is the only radiation-
less case, just as constant velocity is the only radiationless
motion for a point charge.

Suppose now that our infinite wire has a nonzero radius
R, and the current 7 (¢ ) is uniformly distributed over its sur-
face, so that the surface current density is

K(t)=1I(t)/2nR. (26)

The vector potential is
Alr 1) = Lo f f 5(’—L—d Rds,  (27)

where (see Flg. 2)

p=VET+Z _ (28)

and
E=yRT+7P —2Rrcos¢ . (29)
Consider a sinusoidal current,
I{t)=1,sin(wt). (30)

The z integral is performed as before®:
A(r,t)—'u"[" f ————ﬂ—_sm”’(’ ) dp dg

e e (4]
+ cos(wt) J, (%g)] dé . (31)

The ¢ integral can also be evaluated exactly'*:

- 8) e )

+ cosiwt) J, (“’T’)] . (32)

Apart from an overall constant factor of Jy(@wR /c)—which
reduces to 1 in the limit R—0—this is exactly what we
found in Example 4 for the wire of zero radius! The fields
will be multiplied by the same factor, and the power radiat-
ed at time ¢, can be read from Eq. (16):

P = (ugwl3/8) [Jo (@R /c)]* [1 + sin(2ety)] . (33)

[The same result holds for a current I (t) = I, cos(wt ), ex-
cept that the plus sign becomes a minus sign.] Evidently the
wire will not radiate if the current is sinusoidal with a fre-
quency o such that (@R /c) is a zero of Jy(z):

w; =A;c/R), j=12,3,..., where Jy{4;)=0. (34)
Notice that for these special frcquencies the fields are pre-
cisely zero everywhere outside the wire. There is, as it were,

perfect destructive interference in all directions. Because
the fields obey the superposition principle, it follows that

A t)=
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Fig. 3. “Fourier-like” expansion [Eq. (35)] of the step function [Eq. (36)].
Horizontal (time) axis in units of R /c. The coefficients are a 1, =0,
ho Ao (A
T w4 & [(2k + 1)

any current of the form

I(t)= 2 [a cosiw;t) + b sin(w;?)] , (35)

with w; given by Eq. (34), will generate no external fields,
and produce no radiation.

This raises an intriguing mathematical question: What is
the most general function 7 (¢ ) that can be expanded in such
a “Fourier-like” series? It is not a true Fourier series, of
course, because the frequencies w; are not integer multiples
of a fundamental, but rather are proportional to the zeros
of Jy(z). Nevertheless, it turns out that the functions
{cos w;t, sin w;¢ } are complete' on the interval (— R/
¢, R /c): Any well-behaved function on this interval can be
written in the form (35). (In a related paper'® we show how
to determine the coefficients a; and b;, for a given func-
tion.) Unlike a Fourier series, however, the extension out-
side this interval does not generate a periodic function. For
example, the step function
—1, for —R/c<t<0
+1, for O<t<R/c '’
expanded according to (35), extrapolates as shown in Fig. 3.
What this means is that a nonradiating current can be any-
thing whatever, on an interval of length 7= 2R /c (the time
it takes light to cross a diameter), provided [ (¢ ) has just the
right matching form [given by (35)] for all earlier and later
times—in fact, the electric and magnetic fields outside the
pipe will vanish identically.'s

It)= (36)

IT1. THE INFINITE SOLENOID

Suppose now that the current flows around the pipe,
rather than along it. The surface current density is

K()=K(t)é. (37)
In this case the vector potential is given by

A(r,t):%jl‘i‘;fﬁ)dzzedfp

_ﬁo};af"f‘” K—p/d cos gdzdg, (38)
47 P

where (see Fig. 2)

p=VE’+2Z and £=yR?+ 7 —2Rrcos¢. (39)
This time [writing A(r, ) = A (r, t }$}, we have

Elr, 1) = ——ai&, B(r,t)=i%trA)2, (40)
o - L0 2007
P(t)———(;)—( L. 1)
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As before, the power radiated per unit length is

P = 1 lim P, (to + 1), with 7, held constant. (42)
rsw c

Once again, we begin with the limiting case R—0—phy-
sically, this represents a string of infinitesimal magnetic
dipoles. Expanding the integrand to first order in R, and
performing the ¢ integral, we find

A(r,t)=&'1(frkz)r (K(’_‘” 2/

o + 2%
Kt — /c

In terms of the magnetic dipole moment per unit length,

M(t)=mR*K (1), (44)
then,
Ar t)

_p (7 (M(t—p/c) + M(t—-p/c)) dp

27 Jy cp s NP
— _ B “_Q_(M(t—;p/c)) dp . (45)
27 J» dp P =~

Example 1. Suppose the current is turned on abruptly at
time ¢t = 0:

t) = [0, <0,
M, t>0.
Then
M(t)=M,é(t),
and (for ¢ > r/c)
Al 1) =ELu, U de—pla 4
cpNp” =7
+J‘ " l dp> ,‘LOMO Ct —_,
rop ,IPZ_;Z 2T rZ,

where, as before,

zo=+ctF—r.
It follows that

E(r, t ___ﬁ)ﬂo_ﬂ", B(r, t = HoMy ct o
(r, ) 5 o¢ {r,t) w

—Ho (M o) 2
w\dc/) 3
Example 2. If the current increases linearly with time:

0, <0,
M(t)_[at 0,

we find (for ¢ > r/c)
A n)=(E2)8, gy = - (L2) 24,

21 2w ] zyr
1
Bir,t)= — ——'“"a)——‘, 7 =
(r.2) (27 zocz 477'czt0

Example 3. If the current consists of a sudden burst at
t=0:

M(t)=pbit),
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then (for ¢ > r/c)

08) re
Ar, t)= £ =,
() ( 2r ]z}
3t 4
E ’t = — _L..) s
1) ( 27 )z ¢
2
Bir 1) = _( 03) [# +2fet}] ,
27 z;
_ S upt 1
64 mc* t}
Example 4. For a sinusoidal current,
M(t)=M,sin(wt}, (46)

the results are as follows!”:

-y "Z"w [sin(a)t )V, (ﬂcr—)
+ cos(wt ) J; (_‘j’c_’,)] , (47)
Er,t)= &—Tc"a—’z [cos(wt WA (%)

A t)=

— sin(w? ) J; (2})] &, (48)
Bir,1)= — L’Zg“i [sin(a)t A (ﬁ’cl)

+ cos{wt ) J, (_a:_r)] z, (49)
P = ""A:c [1— sin2w1,)] . (50)

These results are strikingly similar to those for the infinite
wire carrying a longitudinal sinusoidal current, with the
roles of E and B reversed.®

To obtain the “Larmor” formula for the power radiated
in this configuration, we proceed as before. Let

u=(p—ry/c (51)
and remember that
to=t—r/c (52)

is to be held constant as 7— o0 . Expanding the integrand in
(45), and keeping only the term in 1/y7, we find

md(r,t)—’z‘; 2crf M(i;_‘”’d (53)
It follows that
E. )= 27@; f Mty u)du, (54)
Bmd(r,t)=—2ﬂ‘/__ J M(to
== (XEna), (55)

and the power radiated at time ¢, is, as before,
Z = (uo/47) [Q(6)]%, (56)

where in this case
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on=L11" M" 4 du 57
Equation (56} is the analog to the Larmor formula for radi-
ation from an infinitely long solenoid of infinitesimal diam-
eter. The reader is invited to check that it reproduces the
final results in Examples 1-4. Notice that a steady current
(M = 0) does not radiate (of course); nor (surprlsmgly) does
a current which increases linearly (M 0) for all time.’

Suppose now that our infinite solenoid has a nonzero
radius R, and carries a sinusoidal surface current:

K(t) = (My/7R ?) sinfwt ) . (58)
Putting this into Eq. (38), and peforming the z integral®:

A(r,t)=MJ. (f M’LEME)COS¢4¢

2R
= ”"M" f [sm(a)t ( )
+ cos(wt) J, (ﬂf-)] cos ¢ di . (59)

This integral can be done exactly®’; the result is

+ coslot )7, (“’T’)] . (60)

Apart from an overall factor (2c/@wR ) J, (@R /c)—which re-
duces to 1 in the limit R—0—this is identical to the corre-
sponding result for the solenoid of infinitesimal radius [Eq.
(47)]. The fields are likewise multiplied by this factor, and
we may read the power radiated, at time ¢, from Eq. (50):

Z = (uw/8) [(My/R)J; (oR /¢)]? [1 — sin2wi,)] . (61)

[The same result holds for M (¢t ) = M,, cos(wt ), except that
the minus sign becomes a plus sign.] Evidently the solenoid
will not radiate if the current is sinusoidal with a frequency
such that (wR /c) is a zero of J,{z):

w; =A;(c/R), j=0,1,2,..., where J,(4;,)=0. (62)

[Note that z = Qis a zero of J;(z); we will call it A,.] At these
special frequencies the fields are precisely zero everywhere
outside the solenoid. It follows that any current of the form

Mit)= _20 [a; cosiw,?) + b, sin(@, t)] , (63)

with w; given by Eq. (62), will generate no external fields
and produce no radiation.

Once again, this raises an interesting mathematical ques-
tion: What is the most general function M (¢) that can be
expanded in such a “Fourier-like” series? As before, it
turns out that the functions {cos(w;?), sin(w;?)} are com-
plete* on the interval ( — R /c, R /c): Any well-behaved
function on th1s interval can be written in the form (63). Ina
related paper'® we show how to evaluate the coefficients a;
and b;, and examine the behavior of the series outside the
interval (—R/c,R /c)*!

IV. THE INFINITE PLANE

Suppose the y—z plane carries a time-dependent surface
current

Kit)=K(t)z. (64)
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K(t) —-—

Y/

Fig. 4. The infinite plane; geometry for Eq. (65).

The plane is electrically neutral, so the scalar potential is
zero, and the vector potential at a distance x from the plane
is given by

A(x,t)=—i‘—1‘;—2£ K(’; /) 2r dr

=&2J K(t—ﬁ)dp, (65)
2 x c
where (see Fig. 4)
p=yr+7r. {66)
The fields are
o4 . 04 .
Ex,t)= ——2, B{x,t)= ——9J. 67
(x, ) e (x, ) o (67)
(As before, we write A = 4%.) The Poynting vector is
S(r, )= —— (i’i) (3_,4) % (68)
Bo\dt/ \dx

and the energy per unit time passing through a surface of
area q at a height x above the plane is

ra= 4 (28) (2

The same energy, of course, passes through a symmetrical-
ly located area below the plane, so the total power radiated
per unit area, at time ¢, is

#=2tm P, (to + i), with #, held constant . (70)
a x—wo C

Example 1. Suppose a constant current K, is turned on
abruptly at time ¢ = 0:

0 t<0
Kt ={ ’
) K, t>0.
For t>x/c, we find

A(x,t)=—“fﬁ’-(ct-—x), E(x, t) = _ bk
2 2

N>

»

©oK 3¢
2
Example 2. If the current increases linearly,
0, <0
K=
(r) at, 20,
then, for t > x/c

Bix, 1) = “Ofo 5 P =

A(x,t):%c'?—(ct—x){
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Elx, t) = —’u—;a—(ct—x)f,

Bx,t)= B (ct—xp, &= B (aty) .
2c 2

Example 3. If
K({tj=p6t]),
then

A(x,t)=&f£9(ct—x),
Ex,t)= ——'lizgc—z—&(ct——x)i,

Bix, ¢) =E°_2ﬁ'£5(ct _xp, P = %——’2326 [8(25)]2.

(The latter is of formal interest, at best, since the square ofa
delta function is undefined.)

Example 4. To obtain the vector potential for a sinusoi-
dal current, we are obliged to turn the current off at some
time in the distant past:

K, sinfwt), t> — 1T,
Kt ={ 0
() 0, t —T.
Then

A (x, t) = (poKoe/20) [cosi@T) — cos wlt — x/c)] . (72)

Because the cutoff appears only as an additive constant, it
does not affect the fields:

Ex, t)= — (uoKyc/2) sin (t — x/c)Z,
B(x, t) = (uKo/2) sin oft — x/c)p , (73)
P = (uK 5¢/2) sin*(wt,) . (74)

To derive the “Larmor” formula for radiation from a
plane, we make the usual substitution

(71)

u=(p—x)/ec (75)
and remember that
to=1t—x/c (76)

will be held constant as x— . In terms of these variables,
Eq. (65) becomes

A(x,t)=’—‘§£f Kty —u)du . (77)
0
It follows that
Elx, t) = —’-‘ﬁ‘fwi K(t,—u)] du.
{x, ) 22061‘[ (o — )}
Now

a a a
—5;K(t0—u)=5t—K(to—u}=—Et—l-K(to—u). (78)

0
The integral can now be done, and we are left with the

surprisingly simple result*

E(x, t)= — (uec/2) K (2,2 . (79)
Similarly,

Bix, 1) = (u,/2) K (t,)0 = (1/¢) (X XE) . (80)
Thus the Poynting vector is

Six, 1) = (uoc/4) [K (t)]* % (81)
and the power radiated, per unit area, is

P = (poe/2) [K (to))* . (82)
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This is the “Larmor” formula for radiation from an infinite
plane. Notice that—unlike the spherical and cylindrical
cases—we never had to take the limit (x— o0 with #, held
constant); Eqgs. (77), (79), (80), and (81) are exact, and the
same power (82) passes through every surface on its way
out to infinity. The reader is invited to check these formulas
against the results in Examples 1-4.

Consider now a pair of planes, one at x = R and one at
x = — R, each carrying a surface current K (¢)/2. (This is
the analog to the spherical shell, the pipe, and the solenoid
of nonzero radius.) We simply replace X (¢,), in Egs. (79) and
(80), by} [K (to + R /c) + K (t, — R /c)]. Inparticular, if the
current is sinusoidal,

K(t)=K, sin{wt) (83)
and we find that

Ex, 1) = — /”% cos (E’cﬁ) sin(or )2,
Bix,t)= &'L{Q cos (ﬂ&) sin(wt,)p , (84)
[

P = "°K°C ( R) sin?(ot,) . (85)
c
These results are identical to those for a single plane (Ex-
ample 4}, except for the factors of cos(wR /c). [For a current
K (t) = K cos(wt ) the sines in (84) and (85) are simply re-
placed by cosines.] Evidently the double plane will not ra-
diate if the current is sinusoidal with a frequency such that
(@R /c) is a zero of cos z:

@, =(j+1/2)7(c/R), j=0,1,2,.... (86)

In fact, for these special frequencies the exterior fields are
precisely zero. It follows that any current of the form

K(t)= -io [a; cos(w;t) + b, sin (@;¢)] , (87)

with ; given by Eq. (86), will generate no fields, and pro-
duce no radiation. As we know from Fourier analysis, any
well-behaved function on the interval ( — R /¢, R /c)canbe
written in the form (87), with the familiar procedure for
evaluating the coefficients. Outside this interval the series is
periodic, with alternating signs.”?

V. GOEDECKE’S CONDITION

Some time ago, Goedecke’ derived a stunningly simple
test for the absence of radiation. Goedecke’s criterion
amounts to the condition that the Fourier transform of the
current density

TH(k) = 11; f ) 1 () (88)

vanishes whenever its argument is lightlike**:

J#(k)=0, when K"k, =0. (89)
In this section we check that our results are consistent with
Goedecke’s condition.

For the “pipe” configuration, with an axially symmetric
sinusoidal current flowing in the z direction, we have?®*

J¥x)=10,0,0,j(r) e'] . (90)
The Fourier transform is
J#k)=10,0,0J(k})], 91)
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where
J(k ) — # f et( - k°ct+k-r)j(r) eiwt dt d3r . (92)

In cylindrical coordinates,

kr=k,rcos¢ +k,rsing +k.z
and

d’r=rdrdpdz. (93)
Carrying out the ¢, ¢, and z integrals, we obtain

T(k) =278 (k o_ ﬁ‘c’-) 8(k,) f i dkArdr,  (94)
(1]

where k, = \/kZ + k2 is the radial component of k and &,

_is its Z component. Because of the delta functions, J # (k ) is

automatically zero except when k, = Oand k ° = w/c; if k*
is lightlike, this leaves k, = w/c. Thus Goedecke’s condi-
tion reduces in this case to

f ](r)JO( ” )rdr—- (95)

In particular, if the current is confined to the surface of the
pipe, so that

Jjir)={/27R)8(r — R), (96)
there will be no radiation provided
Jy (@R /c) =0, (97)

which is precisely what we found before [Eq. (34)].2°
For the “solenoid” configuration we have

J*(x)= (0, —sin ¢, cos ¢, 0) j(r) e* (98)
and the Fourier transform is
JEk)=(0, —k,, k., 0)J(k), (99)
where

Jik)= Ekﬂ 5 (k° _ EC’-) 5(k,) J:j(r) Tk Ardr. (100

In this case, then, Goedecke’s condition reduces to the con-
straint

J j(r)Jl( . )rdr—

If the current is confined to the surface of the solenoid, so
that

ji) = (My/7R?) 8r - R},
then there is no radiation provided
Ji(wR /c) =0

confirming our previous result {Eq. (64)].>7
For the “plane” configuration, we have

J#x)=10,0,0,jx)e],
so that

JH#(k)=1[0,0,0,J(k)],
with

(101)

(102)

(103)

(104

(105)

J(k) =275 (k° — 2) 8k,) 8ik,) f " ) e dx . (106)
c -_— 0

In this case Goedecke’s condition reduces to
f Jix)exp ( ) dx =
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If the current is confined to two parallel planes, so that

Jx) = (Ko/2) [6x + R)+8x —R)], (108)
there will be no radiation if
cos (R /c)j=0 (109)

)28

confirming Eq. (86).

VI. RADIATION REACTION

Ordinarily, the emission of radiation is accompanied by
a “radiation reaction”—a recoil force attributable to the
fields acting back on the source. Indeed, one would suppose
that the work done against this radiative recoil force (by
whatever agency it is that moves the charge) must equal the
energy radiated, for which it is ultimately responsible. By
the same token, if there is no radiation, there should be no
radiation reaction. However, the connection between emis-
sion of radiation and the radiation reaction force is a subtle
one, as we can see by comparing the Larmor formula for
the power radiated from a point charge’

P = (1/4xn¢,) (2¢*/3c% a?,

with the Abraham~Lorentz formula for the radiation reac-
tion on such a charge?

Froy = (1/47€,) (26%/3¢%) a0 .

Observe that the particle radiates whenever it accelerates,
but it experiences a radiation reaction force only when its
acceleration changes. The explanation for this apparent
violation of conservation of energy is that the nearby fields
function as a “reservoir,” in which energy can be stored, so
that work done against the radiation reaction need not
show up directly in the form of radiation.*® Nevertheless,
for periodic motion it is certainly the case that the work
done against the radiation reaction force in one full cycle
must equal the energy radiated during one full cycle, since
the energy stored in the nearby fields is the same at the end
of the interval as at the beginning.

For example, in the hollow pipe configuration the power
necessary to drive a current /(¢ ) is given by*!

P, = —IEL, (110)

where £ is the electric field at the surface of the pipe and L
is the length of the segment. Referring to our results in Sec.
II [see Eq. (32)] for a current I (¢t ) = I, sin(wt ), we find that
the driving power per unit length is

“"140 0( ; )sin(cot)

% [sin(wt)Jo (%) — cos(wt )N, (“’CR)] .

This is plainly not equal to the power radiated [Eq. (33)],
but the work done per unit length in one full cycle

27/ @ 2
¥ = P, dt= “OWI" [Jo( )]

0

Py=

(111)

(112)

does equal the total energy radlated. Similarly, for the hol-
low solenoid the power needed to drive a surface current
K(t)is

P, = —27RKEL
and we find, for the current in Eq. (58),

(113)
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] .
Py = ’uol;:zo Jl(c)sm(a)t)

X [sin(a)t \J, (ﬁ’cﬁ) — cos(e! )N, (%5)] .

Again, this differs from the power radiated [Eq. (61)], but
both yield the same energy when integrated over a full cy-
cle:

W = (ugmM2/R?) [J, (@R /c)]?. (115)

Finally, for the parallel planes, the power required to sus-
tain a surface current X (¢) is

P, = —KEa, (116)

where a is the area of the section in question. For the sinu-
soidal current K|, sin(w? ), the driving power per unit area

[see Eq. (84)] is
P,= %’-‘ﬁ cos (%&) sin(wt ) sin @ (t — -1-:;) , (117)

which is not the same as the power radiated [Eq. (85)], but
they both yield the same energy in one full cycle®:

¥ = (mu K ic/w) cos® (@R /c) .

(114)

(118)
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'J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), 2nd
ed., p. 659. The Larmor formula assumes that > <c*. However, the rela-
tivistic generalization [Liénard’s formula (Jackson, p. 660)] shares the
feature that P is proportional to a°.

2This result, originally due to G. A. Schott [Philos. Mag. 7, 752 (1933)] is
discussed in detail by P. Pearle in his excelient review “Classical Elec-
tron Models,” which appears in Electromagnetism: Paths to Research,
edited by D. Teplitz (Plenum, New York, 1982}, Chap. 7. The sphere is
taken to be rigid in the lab frame. Pearle [Found. Phys. 7,931 (1977)] has
shown that a shell which is rigid in its own instantaneous rest frame
admits no nontrivial radiationless modes.

3Because the Poynting vector is quadratic in the fields, power does not, in
general, obey the superposition principle. However, in this case the radi-
ation ficlds themselves vanish, so the linear combination in Eq. (3) re-
mains radiationless.

“This result, originally due to A. Sommerfeld {Verh. III Int. Math.
Kongr. Heidelberg, 1904) is discussed more recently by J. Daboul and J.
H. D. Jensen, Z. Phys. 265, 455 (1973).

5G. Goedecke, Phys. Rev. 135B, 281 (1964).

SBecause [ is independent of z, the charge density A (z) is necessarily con-
stant in time, and as far as the radiation is concerned there is no loss of
generality in taking A = 0.

"D. ). Griffiths, Introduction to Electrodynamics (Prentice-Hall, Engle-
wood Cliffs, NJ, 1981), Egs. (5.26) and (9.8). Because the current extends
to infinity, the vector potential may not exist (for a steady current, in
particular, it is logarithmically divergent). In such cases we may, in prin-
ciple, truncate the integral at very large |z|, calculate the fields, and then
let the cutoff go to infinity. In this paper, however, it will never be neces-
sary to perform this operation explicitly.

8We thank Professor L. Schecter for bringing this example to our atten-
tion.

9The necessary integrals may be found in I. S. Gradshteyn and 1. M.

T. A. Abbott and D. J. Griffiths 1210



Ryzhik, Tables of Integrals, Series, and Products (Academic, New York,
1981), Sec. 3.753.

191 we average P, (t) over one full cycle (Ref. 9, Sec. 8.477) the  depen-
dence drops out: {P,(t)) = powI L /8. Thus the same energy crosses
each cylindrical surface—as is to be expected, for a periodic system.

"1 the case of localized charge/current distributions one looks for fields
which go like 1/7, so that the Poynting vector goes like 1/7% integration
over a spherical surface then yields a constant. Here we are integrating
over a cylinder, so we want S~ 1/7, and hence E, B~ 1/4r.

12A careful justification of this procedure will be found in T. A. Abbott,
senior thesis (Reed College, 1984, unpublished).

DReference 9, Sec. 6.684. Incidentally, the potential inside the wire is
given by Eq. (32) with 7 and R interchanged.

14R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex
Domain (Am. Math. Soc. Colloquium, New York, 1934), Vol. XIX,
Chap. VI

15R. Mayer, T. A. Abbott, and D. J. Griffiths, in preparation.

'For an arbitrary longitudinal current density j{r}, we simply replace I,
[in Eq. (32)] by jir)27r dr, and integrate. Thus if the current is uniform
over the cross section [Ref. 9, Sec. 6.561], Jo(wR /c}—(2¢/oR ) J (@R /¢).
In this case there is no radiation if (WR /c) is a zero of the first-order
Bessel function.

17In this case we found it easiest to go back to Eq. (38) and do the z integral
first, instead of working from Eq. (45). See Ref. 9.

1845 before (Ref. 10), if we average P, (t) over a full cycle the r dependence
drops out: (P,(t)) = uM3i0’L /8%

19This actually holds for a solenoid of arbitrary diameter, as the reader can
check, using Eq. (38). See, also, Ref. 12. Incidentally, a spherical shell
which rotates with constant angular acceleration is likewise radiation-
less; see Ref. 4, p. 462.

2Integrate by parts, and use Ref. 9, Sec. 6.684.

21For an arbitrary solenoidal current density j{r), we replace M, [in Eq.
(60)] by jirjmr? dr, and integrate. Thus for a uniformly charged solid
cylinder which rocks back and forth about its axis (Ref. 9, Sec. 6.561),
Ji(@R /c)—{4c/wR ) J(@R /c). Inthis case thereis noradiationif (wR /c)

is a zero of the second-order Bessel function.

22We assume here that the current goes to zero in the remote past, as is
implicitly required already in Eq. (77). As we found in Example 4, how-
ever, currents which do not go to zero can sometimes be handled with a
suitable cutoff procedure, and the final results [(79)-(82}] still hold. An
exception is the constant current K (¢} = K, for which, of course, £ =0
and Z =0.

Ror an arbitrary symmetrical current density j{x), we replace K, [in Eq.
(84)] by ji{x) dx, and integrate. Thus if the current is uniform over a slab
of thickness 2R, cos(@R /c)}—{c/@R ) sin(wR /c). In this case there is no
radiation if (@R /c) is a zero of the sine function.

24Goedecke’s criterion was generalized and perfected by Pearle (Ref. 2) to
anecessary and sufficient condition: k °J # (k) = k* J°(k ) for lightlike k.
Because our sources are neutral, J °(k ) = 0; in dropping the factor k ° we
lose, at most, the case @ = 0, which is trivially radiationless.

For simplicity we use ¢ here, instead of sin(wt ) or cos{w? ). Really, the
terms B(k°— w/c) should be replaced by (1/2) [6(k°—w/c)

— 8lk° + w/c)] or } [8(k° — e/c) + Bk ® + w/c}], respectively, in Egs.
(94), (100), and (106), but the rest of the argument is unaffected.

6For a current uniformly distributed over the cross section of the wire,
Eq. (95) yields J (@R /¢) = 0, as we found in Ref. 16.

Z’For a uniformly charged rotating cylinder, Eq. (101) yields J(@R /c)

=0, as we found in Ref. 21.
28For current uniformly distributed over a slab, Eq. (107) yields sin{wR /c)
=0, as we found in Ref. 23.

29Reference 7, p. 380.

3The term “radiation reaction” is in fact something of a misnomer—it
should really be called the “field reaction.”

31p — Fy = gEv = (AL )Ev = JEL. We include a minus sign because we
want the work done against, not by, the field.

MInterestingly, for those special frequencies which do not radiate, the
radiation reaction vanishes identically. The same is true for a nonrotat-
ing spherical shell (see Pearle, Ref. 2). For further discussion of the
relation between radiationlessness and the radiation reaction, sec Ref. 4
and T. Erber, Fortschr. Phys. 9, 343 (1961).

SOLUTION TO THE PROBLEM ON PAGE 1191

To disassemble the planet, one must overcome the gravi-
tational forces holding it together.
For constant mass density

p=M/4/37R? (1)
we have inside any radius 7 a mass
m=M(/R). 2)

Then, a spherical shell of massdm = pdnr’ dris attract-
ed to the solid volume of matter inside radius 7.
The gravitational potential energy of the mass dm is
dE— — Gmdm
r

= oM (LY Losnra
= —om(Z) Losrrar @)

The total potential energy of all mass elements compris-
ing the solid sphere is [combining Egs. (1) and (3)]
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=0 R¢ 5 R
For Alderaan with R = 6.4%10%5, M = 6+10%, and

g = GM /R * = 9.8 the energy required to disassemble the
planet is

E= +3gMR =211.7+10J = 50.4%10" MT,

certainly, and fortunately, several billion times our present
capability.

r=R 2.4 2
E=__J' 3 GM’r'dr 3 GM? 4
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