
A simple calculation of the rate of emission of energy and of linear
and angular momentum by a point charge in arbitrary motion

R. Napolitanoa) and S. Ragusa
Instituto de Fı´sica de Sa˜o Carlos, Universidade de Sa˜o Paulo, Sa˜o Carlos, Sa˜o Paulo 13560-970, Brazil

~Received 2 April 1998; accepted 17 March 1999!

We calculate directly the rates of emission of energy and linear momentum by a point charge in
arbitrary motion using mathematical results that render the calculation of solid-angle integrals very
simple. We show that the results of these explicit calculations agree with those based on covariance,
illustrating how deeply special relativity is rooted in classical electrodynamics. Then, we use these
covariance arguments to calculate the emission of angular momentum, which is a new result. We
also indicate how this calculation can be done in the direct, but much longer, way. ©1999 American

Association of Physics Teachers.
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I. INTRODUCTION

We have found that emission of linear and angular m
mentum by a multipolar charge distribution has receiv
careful attention in the literature.1~a!,1~b!,2~a!,3~a! Although there
are very well-presented calculations of energy emission
an arbitrarily moving point charge,1–4 the specialized text-
books do not present any material on the emission of ang
momentum by the moving charge. The purpose of this art
is twofold. First, it is meant to supplement classical elect
magnetism textbooks by presenting a very simple calcula
of the emission of energy and of linear momentum by
arbitrarily moving point charge, in a noncovariant formalis
The second aim of this paper is to present the calculatio
the emission of angular momentum by the charge, which
new result.

We do the calculation of the emission of energy and
linear momentum by an arbitrarily moving point char
without relying on cumbersome brute-force computations
on relativistic arguments that could seem too obscure fo
undergraduate student not accustomed to the intricacie
the covariant formulation of electrodynamics. The meth
we adopt is not difficult to understand and dramatically si
plifies the calculations, so that any student can obtain gen
results without going through many hours of tedious wo
Afterwards, we sketch the covariance arguments leadin
the same result for the linear momentum emission rate. T
we reverse the procedure and calculate the angular mom
tum emission by using the experience gained through
covariance reasoning. We also indicate how the same re
can be calculated in the direct way.

This work has pedagogical purposes and, accordingly
organized as follows. In Sec. II we review the concept
emission of energy by an arbitrarily moving point charg
We employ Poynting’s vector and the electric and magn
fields in the radiation region to write down the rate of ener
emission in terms of solid-angle integrals. These integrals
solved in Sec. III, using simplifying mathematical resul
Section IV reviews the formulation of the rate of linear m
mentum emission by an arbitrarily moving point charge a
shows how this quantity can be easily obtained using
results of Sec. III. In Sec. V we sketch the covariance ar
ments to obtain the linear momentum emission from its va
at small velocities. A succinct version of this topic can
found in Ref. 3~b!. In Sec. VI we calculate the emission o
angular momentum by using covariance arguments, and
also indicate how the same result can be obtained thro
997 Am. J. Phys.67 ~11!, November 1999
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the direct, but much longer, method of Sec. III. Finally,
Sec. VII we conclude by summarizing the results of th
work.

II. THE RATE OF ENERGY EMISSION BY A POINT
CHARGE IN ARBITRARY MOTION

As explained in an exemplary way by Panofsky a
Phillips,4~a! the rate of energy emitted by a charged particle
positionxc(t8) is given, in Gaussian units, by

dW

dt8
5 R

S
S dt

dt8D S cE3B

4p D •ndS ~1!

~the loss would be2dW/dt8!, where c(E3B)/(4p) is
Poynting’s vector,E and B are the electric and magneti
fields, respectively,S is an arbitrary closed surface contai
ing the point charge,n(unu51) is the external normal to the
surfaceS, t is the time at the observation pointx on S, the
particle’s own timet8 is related tot by t85t2r /c, and r
5ux2xc(t8)u. Since the energy emitted by the particle eve
tually reaches infinity, we chooseS to be a spherical surfac
of very large radiusr, centered at the position the partic
occupied at its own timet8, retarded with respect tot. The
quantitydt/dt8 is easily calculated to be

dt

dt8
512n•b, ~2!

where b5v/c and v5v(t8) is the velocity of the point
charge at timet8. Let us notice that our choice of the surfac
S implies n5r /r , wherer is the vector from the position o
the charge at timet8 to the point on the surfaceSwheren is
being calculated@r5x2xc(t8)#.

Only the terms of first order inr 21 are necessary for the
fields in Eq. ~1!, because Poynting’s vector is quadratic
the fields anddSis proportional tor 2. Anyway, we will write
the full expression of the electric field,4~b! because we will
need it in Sec. VI for the calculation of the angular mome
tum emission:

E5
e~12b2!~n2b!

r 2~12n•b!3 1
en3@~n2b!3a#

rc2~12n•b!3 , ~3a!

B5n3E, ~3b!
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wherea5a(t8) is the acceleration of the point charge at tim
t8. In the radiation zone, only the second term on the rig
hand side of Eq.~3a! contributes. It follows from Eq.~3!
that, in this region,E•n50 and (E3B)•n5uEu2. Then, to-
gether with Eq.~2! and the relationdS5r 2dV, Eq. ~1!
becomes4~c!

dW

dt8
5

e2

4pc3 E $n3@~n2b!3a#%2

~12n•b!5 dV. ~4!

As indicated in Ref. 4, the calculation of the integral throu
the analysis of the nodal lines is somewhat complicated
this point we emphasize that there are two simple a
straightforward ways to perform the angular integration. O
of them is based on the simple fact that, when we expand
numerator, the integrals containing componentsni of the
normal vector can be written as derivatives with respect tob i
of a single elementaryV integral. The other is based o
vector-algebra arguments to get the general form of th
integrals. These simple procedures are carried out in deta
Sec. III.

III. THE CALCULATION OF THE SOLID-ANGLE
INTEGRALS

There are probably many different ways to calculate so
angle integrals involving components of the unit vector n
mal to the spherical surface, multiplied by some power
(12n•b)21. In particular, Konopinski3~c! suggested in prob
lems that Eq.~4! can be manipulated algebraically to be wr
ten as a linear combination of integrals of (12n•b)2s, with
s53,4,5, which can be easily integrated. Here we prese
different and somewhat easier method, by means of wh
only one integral needs to be performed: the integral of
2n•b)23.

Expanding the numerator of the integrand in Eq.~4! al-
lows us to write

4pc3

e2

dW

dt8
5a2I 12~a•b!aiJi2~12b2!aiajKi j , ~5!

where henceforth we assume that repeated Roman ind
are summed from 1 to 3 and

I 5E dV

~12n•b!3 5
4p

~12b2!2 , ~6a!

Ji5E nidV

~12n•b!4 5
1

3

]I

]b i
, ~6b!

Ki j 5E ninjdV

~12n•b!5 5
1

12

]2I

]b i]b j
, ~6c!

where I is the only integral we had to calculate. Its valu
comes from choosing thez axis alongb and writing n•b
5b cosu and dV52d(cosu)dw. Next, by using]b2/]b i

52b i we immediately get, from Eq.~6!,

Ji5
16pb i

3~12b2!3 , ~7a!

Ki j 5

4pS d i j 1
6b ib j

12b2D
3~12b2!3 . ~7b!
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A second reasoning for the straightforward calculation
these integrals is as follows. Consider firstJi in Eq. ~6b!.
Being a vector that depends only onb, its general form must
be Ji5 f (b2)b i , where we can already guess thatf will de-
pend only onb2. To obtainf we just contract Eq.~6b! with
bi to reduce the integral to an elementary one. We get w
x5b cosu anddV52b21 dx dw,

2p

b E
2b

b x dx

~12x!4 5 f b2.

After calculating this simple integral we immediately get E
~7a!. Next, becauseKi j in Eq. ~6c! is a symmetric tensor tha
depends only onb, its general form must beKi j 5ad i j

1bb ib j , where, again, the coefficients depend only onb2.
Contracting firsti and j and then withb i andb j , we end up
with two elementary integrals to determine the coefficien
We get

2p

b E
2b

b dx

~12x!5 53a1bb2,

~8!
2p

b E
2b

b x2 dx

~12x!5 5ab21bb4.

After solving these simple integrals we get Eq.~7b!. From
Eqs. ~5! to ~7!, we finally obtain the energy emission of
moving point charge and the result can be expressed as4~c!

dW

dt8
5

2e2

3c3 Fa22~a3b!2

~12b2!3 G . ~9!

This is the instantaneous rate of radiation evaluated at
particle’s timet8.

IV. THE LINEAR MOMENTUM EMISSION BY A
POINT CHARGE IN ARBITRARY MOTION

In this section we illustrate how equally easy it is to ca
culate the linear momentum emission rate by a point cha
in an arbitrary motion. By the method of Sec. III, only oneV
integral has to be performed, the one of (12b2)22. Analo-
gously to the case of energy emission, we can express
rate of momentum emission by the charge as1~a!

dPi

dt8
52 R

S
S dt

dt8DTi j nj dS ~10!

~the loss would be2dPi /dt8, which is equal to the force
reacting on the system!, wherePi is thei th component of the
momentum being emitted andTi j is Maxwell’s stress
tensor,4~d!

Ti j 5
1

4p FEiEj1BiBj2
1

2
~E21B2!d i j G . ~11!

It follows from Eq. ~3! that, in the radiation region,E•n
5B•n50 and, sinceE'B, then E25B2. Hence, Eq.~11!
gives

Ti j nj52
1

4p
E2ni . ~12!

Using Eqs.~2!, ~3a!, and~12!, we can write Eq.~10! as
998R. Napolitano and S. Ragusa
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4pc4

e2

dPi

dt8
5a2Ai12~a•b!ajBi j 2~12b2!ajakLi jk ,

~13!

where, with the indication

M5E dV

~12n•b!2 5
4p

~12b2!
,

we have

Ai5E nidV

~12n•b!3 5
1

2

]M

]b i
5

4pb i

3~12b2!2 , ~14a!

Bi j 5E ninjdV

~12n•b!4 5
1

6

]2M

]b i]b j
5

4pS d i j 1
4b ib j

12b2D
3~12b2!2 ,

~14b!

Li jk5E ninjnkdV

~12n•b!5

5
1

24

]3M

]b i]b j]bk

5

4pS d i j bk1d ikb j1d jkb i1
6b ib jbk

12b2 D
3~12b2!3 . ~14c!

The quantitiesAi andBi j are obtained in a way analogous
the calculation leading to Eq.~7!. Another way of getting the
result for Li jk is to notice that Eq.~14c! is a completely
symmetric third-order tensor~changes sign under inversion!
depending only onb. Therefore, its general form isLi jk

5A(d i j bk1d ikb j1d jkb i)1Bb ib jbk , containing only odd
powers ofb i . Contraction withd i j bk and withb ib jbk leads
again to elementary integrals for the determination ofA and
B, and the final result is again Eq.~14c!.

Finally, from Eqs.~13! and ~14!, it readily follows that

dP

dt8
5

2e2

3c4 Fa22~a3b!2

~12b2!3 Gb. ~15!

This result was first obtained by Abraham5 by a different,
and rather involved, method. We stress that this expressio
the instantaneous rate of momentum emission evaluate
the particle’s timet8.

V. COVARIANCE ARGUMENTS

In this section we analyze the previous result in the lig
of covariance arguments of special relativity, obtaining
rate of linear momentum emission from its value at sm
velocities. Essentially, here we present an expanded varia
of the succinct discussion by Konopinski3~b! and, following
this section, we employ the same covariance reasonin
calculate the emission of angular momentum.

After a rather simple calculation we obtain thei th compo-
nent of the rate of momentum emission at small velocitie

S dPi

dt8 D
1

52
2e2

3c4 a2b i , ~16!

where the index 1 means that this value is of first order inb.
To get this result we just expand (12n•b)25'115n•b in
the integrand of Eq.~10!, use the known results1~c!
999 Am. J. Phys., Vol. 67, No. 11, November 1999
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E ninj dV5~4p/3!d i j ,

E ninjnknl dV5~4p/15!~d i j dkl1d ikd j l 1d i l d jk!,

which actually inspired the second method to obtain theV
integrals in Sec. III, and notice that the integral over an o
number of normal components is equal to zero.

Equation~16! holds in a reference frame where the ma
nitude of the velocity of the particle is much less than t
speed of light. Now it is straightforward to obtain a covaria
expression whose purely spatial components reduce to
~16! in the limit of low speed:

dPm

dt
5

2e2

3c4 ananum, ~17!

where henceforth we assume that repeated Greek indice
summed from 0 to 3,am5dum/dt is the four-acceleration
um5dxm/dt is the four-velocity,t is the proper time,x0

5ct8, x15xc(t8), x25yc(t8), x35zc(t8), x05ct8, x1

52xc(t8), x252yc(t8), andx352zc(t8). Therefore,

amam52Fa22~a3b!2

~12b!3 G . ~18!

As this result reduces to2a2 andt to t8 whenb50, andui

reduces tocb i to first order inb, the space part of Eq.~17!
reduces to Eq.~16! and, therefore, this covariant expressi
should be the desired result. Equation~17! is valid in any
other frame, that is, for arbitrary velocities. In terms ofb and
a, the space part of Eq.~17! becomes Eq.~15! if we consider
Eq. ~18!. This is the method we shall use in Sec. VI
calculate the emission of angular momentum.

VI. EMISSION OF ANGULAR MOMENTUM BY AN
ARBITRARILY MOVING POINT CHARGE

In this section we calculate the emission of angular m
mentum for the arbitrary motion of the particle, which is
new result, by using covariance arguments. For this purp
we calculate the emission for low velocities. Thence
boost the answer to arbitrary velocities by using the exp
ence gained in Sec. V. Again, on pedagogical grounds,
indicate afterwards how the calculation could be perform
by the direct method of Sec. III.

The emission of angular momentum is given by2~b!

dLi

dt8
5 R

S
S dt

dt8DnjM ji dS,

where

M ji 5eimnTjmxn ,

Tjm is given by Eq.~11!, and dt/dt8 is given by Eq.~2!.
Therefore, taking into account thatn•B50, from Eq. ~3b!,
we get

dL

dt8
5

1

4p R
S
S dt

dt8D ~n•E!~E3n!r 3 dV. ~19!

For the calculation to first order inb, the electric field of
Eq. ~3a! becomes
999R. Napolitano and S. Ragusa
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E5
e~n2b!

r 2~12n•b!3 1
en3@~n2b!3a#

rc2~12n•b!3 . ~20!

We could expand the denominators, but it is more con
nient to do so after multiplication bydt/dt8, given by Eq.
~2!. When calculatingn•E, only the first,r 22, term does not
vanish. On the other hand, when calculatingn3E, only the
second,r 21, term contributes to the integral, because of
factor r 3 in Eq. ~19!. A straightforward calculation gives

dL

dt8
5

e2

4pc2 R
S
@3~n3a!~n•b!1~n3b!~n•a!#dV,

which can also be expressed in terms of Cartesian com
nents as

dLi

dt8
5

e2

4pc2 @3e i jkakb l1e i jkalbk# R
S
njnl dV

5
2e2

3c2 e i jkb jak , ~21!

where we have used Eq.~7b! with b50. To make the gen-
eralization to the covariant form of Eq.~21!, it is convenient
to eliminate thee i jk tensor by defining the quantity

dLmn

dt8
5emni

dLi

dt8
5

2e2

3c3 ~vman2vnam!. ~22!

Now it is straightforward to obtain a covariant expressi
whose purely spatial components reduce to Eq.~22! in the
limit of low speed:

dLmn

dt
5

2e2

3c3 ~uman2unam!, ~23!

where the four-velocityum and four-accelerationam are de-
fined in Sec. V. In terms ofb and ofdb/dt8, the space par
of Eq. ~23! becomes

dL i j

dt
5

2e2

3c~12b2!3/2Fb i

db j

dt8
2b j

db i

dt8 G ,
or

dL i j

dt8
5

2e2

3c2~12b2!
@b iaj2b jai #.

Hence, from Eq.~22!, we obtain

dLi

dt8
5

1

2
e imn

dLmn

dt8
5

2e2

3c2~12b2!
e imnbman ,

or
1000 Am. J. Phys., Vol. 67, No. 11, November 1999
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dL

dt8
5

2e2

3c2

b3a

~12b2!
, ~24!

which is the new result. It is the instantaneous rate of em
sion of angular momentum at the particle’s timet8. In the
case of a charge in a central-force motion, this result redu
to Eq. ~16.16! of Ref. 2 if we take the limit of small veloci-
ties @see also Refs. 2~a! and 3~d!#.

Just for completeness, we indicate how the calculation
be done by the direct method of Sec. III. From Eqs.~3a! and
~19!, it follows that we should calculate the solid-angle int
gral

dL

dt8
5

e2~12b2!

4pc2 E F ~n•a!~n3b!

~12n•b!4 1
n3a

~12n•b!3GdV.

~25!

If we write Eq. ~25! in terms of its components, we see th
substituting the integralsAi andBi j of Eqs.~14a! and ~14b!
into ~25! gives, after some algebraic operations, the resul
Eq. ~24!.

VII. CONCLUSION

In this paper we have shown two straightforward metho
to calculate the solid-angle integrals for both the energy
linear momentum emission rates by a charged point parti
Because the emission rate of linear momentum is an imp
tant feature of accelerated charges, we believe that this w
really supplements the existing material in classical te
books. We have also shown how covariance arguments
further reduce the calculation.

In a second stage we have calculated the emission of
gular momentum by the moving point charge, which cons
tutes a new result. This we have done reversing the pro
dure, that is, using the covariance arguments. We have
indicated how it could be obtained through the direct,
though rather long, process of calculation.
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IMMORTALITY

So Greek mathematics is ‘permanent’, more permanent even than Greek literature. Archimedes
will be remembered when Aeschylus is forgotten, because languages die and mathematical ideas
do not. ‘‘Immortality’ may be a silly word, but probably a mathematician has the best chance of
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