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Birdsong is a complex behavior, which results from the interaction between a nervous system and a

biomechanical peripheral device. While much has been learned about how complex sounds are generated in

the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced

by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among

bird species makes birdsong a most suitable model to study phenomena associated to the production of complex

vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical

model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential

equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine

its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of

a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model

of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed

phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the

shift of the fundamental frequency observed in heliox experiments.
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I. INTRODUCTION21

Birdsong is one of the preferred animal models to study22

complex, learned, motor behavior [1]. Reasons for this choice23

lie on the parallels found, in many species of birds, between the24

mechanisms of acquisition of song and the learning of human25

speech [2]. Songbirds, as well as humans, must hear a tutor26

during a sensitive period of time in which they develop the27

adequate motor gestures that produce the proper vocalizations28

of the adult.29

The complex vocalizations that compose the adult song30

come as a result of the interaction between a nervous system,31

which generates motor instructions, and a biomechanical32

periphery. Even though much progress has been made in33

understanding the motor control mechanisms at both levels34

[3,4], little is certain about how responsible for that complexity35

is the highly nonlinear biomechanical periphery or the neural36

activity generating the patterns.37

The avian vocal organ, the syrinx, is composed in oscine38

birds of two sound sources. Each source has a set of tissues39

(labia) that enter a regime of sustained oscillations when driven40

by an airflow, which is in its turn controlled by the bird via41

the subsyringeal air sac pressure [5,6]. The human voice is42

produced in a very similar way: There is one source in the43

larynx, made up of a set of vocal folds that oscillate when44

driven appropriately [7].45

The dynamics of the source, nonlinear in its nature,46

exhibits complex phenomena that might create complexities47

in the vocalizations even when driven by simple physiological48

instructions. In a recent work, Zollinger et al. investigated49

the occurrence of such nonlinear phenomena in the vocal50

organ of the northern mockingbird (Mimus polyglottos) in an51

attempt to assess to what degree the intrinsic nonlinearities52

of the vibratory sound-generating structures in the vocal53

organ contribute to song complexity [8]. Among their various54

findings, we highlight the unilateral occurrence of nonlinear55

phenomena, such as frequency jumps (i.e., jumps in the 56

frequencies of the vocalizations). They observed that these 57

events were consistent neither with fluctuations of the air 58

sac pressure nor with the syringeal airflow, supporting the 59

hypothesis that their occurrence did not require complex motor 60

gestures. 61

Between the sound source and the environment stands 62

the tract. The interglottal pressure, which provides the force 63

driving the oscillations of the labia, depends on the pressure 64

at the input of the tract. In this way, the tract is capable of 65

affecting the labial motion. In humans, the dynamics of the 66

vocal folds has been observed to be independent of the tract 67

(except in some exceptional situations [9,10]). Beyond the 68

sound source-filter hypothesis, however, the consideration of 69

the interactions between the source and the filter adds a great 70

deal of complexity to the biomechanical periphery responsible 71

for sound generation [11,12]. 72

A theoretical analysis of the nonlinear phenomena of the 73

source-tract interacting system was carried out in a previous 74

work [13]. One of the most popular models to account for 75

the transfer of energy of an airflow to the tissue capable of 76

displaying self-sustained oscillations is the two-mass model, 77

introduced by Ishizaka and Flanagan [14], in which the 78

dynamics of the vibrating tissue is described in terms of 79

two masses and a set of springs. In Ref. [13], a sound 80

source modeled as a two-mass system was coupled to a tract 81

(modeled as a tube). A numerical exploration exhibited the 82

characteristic features of a chaotic dynamical system [13]. 83

When the coupling is strong enough, instabilities appear and 84

bifurcations leading to, for instance, coexistence of periodic 85

solutions are observed. In this kind of model it is difficult, 86

however, to discern whether the complexity of the behavior 87

is originated by the source-tract interaction. Since one deals 88

with a four-dimensional model for the source (two dimensions 89

for each of the masses), complex dynamics might occur even 90
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when the interaction with the tract is neglected. Additional91

difficulties arise in this approach when analytical calculations92

are attempted to unveil the dynamical origins of the nonlinear93

phenomena found in the numerical explorations.94

With the aim of finding if complexity can occur only due95

to source-tract interaction, we presented in previous work a96

minimal model in which the source, when uncoupled to the97

tract, could only undergo a Hopf bifurcation [12]. In this way,98

any additional nonlinear phenomena taking place when the99

coupling was added to the model could be identified as a100

consequence of the interaction with the tract. In particular, by101

taking the system to a highly dissipative limit and studying102

the phase equations of the system, analytical expressions for103

the periodicity of the solutions could be found. Conditions104

for the coexistence of periodic solutions could be established105

for a parameter accounting for the length of the tract, and a106

mechanism for the occurrence of jumps in the frequency of107

vocalizations was proposed.108

The motor gestures that determine the fundamental fre-109

quencies of vocalizations of songbirds are coordinated with the110

geometry of several parts of the vocal tract, such as the length111

of the trachea, the volume of the oropharyngeal-esophageal112

cavity, or the beak aperture [3,15,16]. In many of the reported113

experiments, however, this coordinated activity does not result114

in nonlinear effects as obvious as jumps in frequency. In order115

to determine the contributions of the source-tract coupling to116

the complexity of birdsong it is helpful to derive its effects on117

the amplitude of the sound, which is the most direct observable118

of birdsong.119

Keeping this in mind, we study here the model presented120

in Ref. [12] in a way that allows us to observe nonlinear121

phenomena in the amplitude of the sound. This model holds122

the advantage that phenomena associated with the coupling are123

easily identified. Working in the weakly nonlinear limit, we124

derive analytical expressions for the amplitude of the sound.125

With these expressions we are able to explore systematically126

the effects on it introduced by the coupling, paying special127

attention to the regions where the frequencies of the sound128

produced in the source are close to the resonances of the tract.129

The organization of this work goes as follows. In Sec. II,130

we describe our model and a selection of results, obtained131

by numerical exploration, which can be related to acoustic132

features of the solutions. In Sec. III, we deal analytically133

with the model in the weakly nonlinear limit. We discuss134

the acoustic properties of synthetic birdsong generated by135

our model in Sec. IV, focusing on the features that appear136

when going beyond the source-filter approximation. Finally,137

we present our conclusions in Sec. V.138

II. THE MODEL139

As we did in a previous work, we introduce a model140

for the source based on Titze’s “flapping mechanism,” in141

which the motion of the labia are ruled by a second-order142

equation [12]. This model is a simplified version of the one143

presented in Ref. [6], which was built on a previous model144

proposed by Titze to account for the oscillation of human145

vocal folds [17]. It assumes that each labium supports both an146

upward propagating surface wave, which is often observed147

as a phase difference between the upper and lower ends 148

of the fold, and a lateral oscillation of its center of mass. 149

Requiring that the labia have a more convergent profile when 150

they are moving away from each other than when they are 151

closing in, the force made on them by the glottal pressure 152

will be greater in the opening phase than in the closing 153

phase. In this way, the folds are capable of performing a 154

“flapping” motion that enables a net transfer of energy from 155

the airflow to sustain oscillations in the labia. This can be 156

mathematically written in terms of Newton’s second law for 157

the departure from equilibrium of the center of mass of a 158

labium, x: 159

{ .
x = y
.
y = −kx − βy − cx2y + pi + (ps − pi)f (x,y),

where, in the second equation, the first term describes the 160

elastic restitution of the labium, the second term represents 161

dissipation, and the third term a nonlinear saturation that 162

bounds the labial motion. The system is driven by the last 163

two terms. They account for the average interglottal pressure, 164

written in terms of the subsyringeal pressure ps , and the 165

pressure at the input of the tract pi (all pressures in this work 166

are defined per unit mass per unit area of the labium). In 167

the driving term, f (x,y) is a function of the geometry of the 168

folds that depends on the ratio of the cranial and bronchial 169

areas of the labial valve. The experimentally observed phase 170

difference between the upper and lower portions of the labia 171

is introduced in this function [6,11,12,17]. An equivalent way 172

of stating the requirements for flapping motion is that the 173

average pressure between the labia is closer to the bronchial 174

pressure when the labia present a convergent profile, and 175

closer to atmospheric pressure when they are divergent. The 176

force goes therefore in the same direction as the velocity 177

of displacement of the labia, which might overcome the 178

dissipation for high enough subsyringeal pressure. These 179

requirements are met if f (x,y) is proportional to the velocity 180

of the labia, i.e., f (x,y) = y/vchar, with vchar a characteristic 181

velocity [6]. In contrast to the more detailed two-mass models, 182

our system restricts the dynamics of the source to a simple 183

spatial mode. In a previous work, we explored its dynamics 184

in the (ps,k) parameter space and found that it is capable 185

of accounting for the mechanisms of sound production of 186

the northern cardinal (Cardinalis cardinalis) [18]. Despite 187

its simplicity, the simplified model proved realistic enough 188

to synthesize birdsong when driven by actual physiological 189

recordings of subsyringeal pressure and ventral muscular 190

activity [19]. 191

With the proposed f (x,y) = y/vchar, the system has a fixed 192

point at (x,y) = (0,0). After a change of scales (t → t/γ and 193

y → γy), and setting vchar = 1 for simplicity, we write 194

{ .
x = y
.
y = −kγ 2x + γ (ps − β)y − γ cx2y + γpi(γ − y).

(1)

To assume that the source-filter separation hypothesis holds 195

means that the pressure at the input of the tract is con- 196

sidered negligible in the driving part of the system. This 197

is expressed by setting pi = 0 in (1). For certain values 198

of the parameters (ps,β), the driving force overcomes the 199

dissipation, and a Hopf bifurcation occurs: The fixed point 200
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becomes unstable, and a limit cycle is born with zero201

amplitude and finite frequency [20]. Beyond the bifurcation,202

the midpoint of the labia oscillates around their equilibrium203

position.204

Coupling between the source and the tract is introduced by205

pi �= 0. When the dynamics of pi = pi(x,y,t) is introduced,206

complexity is added to the equations of motion of the labia.207

If the labial valve is coupled to a tube, the pressure at the208

input of the tract pi will be affected by the reflections of the209

sound wave at its output. There is a contribution to the driving210

term that comes from a feedback that depends on the value of211

pi at a previous time depending on the length L of the tract.212

We derived in Ref. [12] a functional form of pi that accounts213

for this feedback. We assume two main contributions to the214

supraglottal pressure pi : one due to the fluctuations originated215

in the glottis and injected into the tube, and the other one216

due to the feedback. For flow fluctuations of the order of kHz217

and tube section of the order of mm, the contribution of the218

fluctuating glottal flow Ug can be written as p+ = ρ0vsUg/Ai ,219

where ρ0 is the unperturbed air density, Ai the section of the220

input of the tract, and vs the speed of sound. The average221

speed of the air in the glottis is given by a phenomenologically222

corrected Bernoulli’s law, Vm =
√

2ps

ktρ0
, in which kt stands for223

the trans-glottal pressure coefficient [17]. The glottal flow can224

be approximated as Ug = Vmam, where the glottal area am225

is proportional to the displacement from equilibrium of the226

midpoint of the labia x. We can therefore write the contribution227

to pi due to fluctuations in the glottal flow as p+ = α
√

psx,228

where α is inversely proportional to the area of the tube. The229

other contribution to the pressure at the input of the tract comes230

from the reflection at the output. We model the tract as a tube231

of length L, open at the end that is the furthest from the source.232

A sound wave entering the tube will be partially transmitted at233

the other end and partially reflected with a coefficient r . The234

reflection of a sound wave entering the tube at a given time235

will contribute to the pressure at the input of the tract with a236

delay of τ = 2L/vs (the time it takes the wave to propagate to237

the other end and back), and opposite sign. Considering both238

contributions, the supraglottal pressure can be written as239

pi(t) = α
√

psx − rpi(t − τ ). (2)

In previous work [12], motivated by the experimentally240

observed coordination between the geometry of the avian241

vocal tract and the fundamental frequencies of vocalizations242

[1,15,21], we performed a numerical search for qualitatively243

different solutions of system (1) and (2) in the region where the244

resonant frequency of the tract was close to the fundamental245

frequency of the unperturbed source.246

For strong enough coupling, we found a region of coexis-247

tence of periodic solutions. Working in the high-dissipation248

limit, a phase equation was derived for the dynamics of249

the source. Then, introducing the coupling to the tract as a250

perturbation to the phase dynamics, a bifurcation leading to251

the appearance of a coexistence region of periodic solutions252

was identified [12].253

The coexistence of periodic solutions found was proposed254

as a mechanism by which frequency jumps can be achieved255

as a result of the coordination between the activities of the256

source and the tract. Beyond this effect in the frequencies257

of vocalizations, we are interested in nonlinear phenomena 258

leaving their signature in the most direct observable of 259

birdsong, i.e., the recorded sound amplitude. 260

Here we search for qualitative changes introduced by 261

the coupling in the amplitude of sounds generated in the 262

system. The acoustic pressure at the input of the tract is 263

pi(t). Hence the partially transmitted wave at the output of 264

the tract at a given time t is p(t) = (1 − r)pi (t − τ/2). This 265

quantity is the acoustic pressure at the output of the system. 266

To find the amplitude of a synthesized sound we compute 267

p(t) by numerically integrating Eqs. (1) and (2) and, after a 268

long enough transient (i.e., long enough for oscillations with 269

constant amplitude to be observed), find the maximum of its 270

norm. This quantity, |p|max, is hereafter called the “sound 271

amplitude.” We focus on the region where the fundamental 272

frequency of the sound produced by the unperturbed source 273

f0 = ω0/2π is close to the resonance of the tract, which 274

is where we previously found coexistence [12]. Since we 275

focus on the qualitative changes introduced by the source-tract 276

coupling in the dynamics of the system, we set the parameters 277

to dimensionless values that enable us to spot bifurcations in 278

the oscillatory solutions through the numerical exploration. 279

We find a nontrivial behavior of the amplitude, depending on 280

the strength of the coupling coefficient α. These findings are 281

summarized in Figs. 1 and 2. In Fig. 1 we plot |p|2max versus 282

(k,α). Each point represents the value of |p|2max, computed for 283

a grid of different initial conditions (x0,y0). When the coupling 284

is considered, the values of k at which the maximum sound 285

amplitude occurs shift, and their corresponding peaks grow. 286

Both the shift and the enhancement of the peaks are observed 287

even for smaller values of α than the ones required for the 288

bifurcation leading to coexistence to take place. Consequently, 289

phenomena associated with source-tract coupling are more 290

likely to be identified in the amplitude of the vocalizations, 291

where their signature is not restricted to a constrained region 292

in the parameter space. A region of coexistence appears 293

for strong enough coupling, as is evident in Fig. 2. In this 294

picture, the squared amplitudes for a particular α are plotted 295

for the coupled system, together with the results of computing 296

the same quantity when the contribution of the supraglottal 297

pressure is neglected in the forces driving the source. When 298

the source-filter hypothesis is assumed, there is no bifurcation 299

leading to coexistence. Moreover, no shift is observed in the 300

frequency at which the peak occurs, and its corresponding 301

amplitude is smaller than when the coupling is considered. 302

Numerical observations motivate analytical work. In order 303

to find out the dynamical origin of the amplitude effects 304

of source-tract coupling, we will reduce the system (1) and 305

(2) to a simpler set of equations preserving the dynamics 306

of the amplitude of oscillatory solutions. We propose here 307

to study the weakly nonlinear limit of the system, in which 308

the nonlinearities introduce a deviation from the periodic 309

solutions of the linear part of the system [20,22]. In this 310

limit we are able to obtain analytical expressions for the 311

mentioned deviations, both in amplitude and in the phase 312

of the oscillations. Different oscillatory solutions will appear 313

when the nonlinear perturbations are introduced. Moreover, 314

the types of solutions found when the nonlinearities include 315

the source-tract coupling might be different from those 316

found when the nonlinearities contain only the dynamics 317
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FIG. 1. Sound amplitude against k for different values of the

coupling coefficient α. As the coupling increases, the amplitude at

the resonance grows. For large enough α, a coexistence region sets in,

where two oscillatory solutions with different amplitudes are possible.

Parameters used for numerical integration were (γ, ps, β, c, r) =
(7000π, 0.1, 0.01, 1 × 10−6, 0.71) in dimensionless units, τ =
1.43 × 10−4 s.

of the source. For this reason, we concentrate on the sys-318

tem319

..
x +ω2

0x = µ

[

.
x −c̃x2 .

x +(1−
.
x)α̃

∞
∑

n=0

(−r)nx(t − nτ )

]

,

(3)

which is essentially the same as the one described by320

Eqs. (1) and (2), with γ = 1,µ = ps − β,c̃ =321

c/µ,α̃ = √
psα/µ,ω2

0 = k.322

III. ANALYSIS OF THE MODEL323

The advantage of studying system (3) in the weakly324

nonlinear limit (µ << 1) is that, as the nonlinear part is seen325

as a perturbation, trajectories will be deviations from harmonic326

oscillations. Conditions can be found for those trajectories to327

FIG. 2. (Color online) Detail of sound amplitude against k and

comparison with the source-filter uncoupled system. Crosses repre-

sent the amplitude of sounds originated in a source-filter system. Dots

represent sounds generated in the source-tract coupled system. Empty

dots highlight the region of coexistence of periodic solutions: At those

values of k, the amplitude of the sound will be either of two values,

depending on the initial conditions. Parameters used for numerical

integration were (γ, ps, β, c, r, α) = (7000π, 0.1, 0.01, 1 ×
10−6, 0.71, 0.0014) in dimensionless units, τ = 1.43 × 10−4 s.

be oscillatory. Moreover, bifurcations can be found leading to, 328

for instance, coexistence of oscillatory solutions. Equation (3) 329

can be written equivalently as 330

{ .
x= y
.
y= −ω2

0x + µ[y − c̃x2y + (1 − y)α̃
∑∞

n=0(−r)nx(t −n τ )].

(4)

Before introducing any approximations, we begin by propos- 331

ing the change of variables 332

{

x = aeiωt + ae−iωt + āe−iωt

y = iωaeiωt − iωāe−iωt ,

where a = a(t) is a new, complex variable, and ā stands for its 333

complex conjugate. By replacing variables in system (4) we 334

can derive an equation for
.
a: 335

2iωȧ =
(

ω2 − ω2
0

)

(a + āe−2iωt ) + µf (a,ā,eiωt ,e−iωt ). (5)

At this point, no approximations have been made, and this 336

last equation is identical to (4). If µ = 0, the system has a 337

fixed point at ω = ω0, where a is constant and oscillations are 338

harmonic. When we consider the case where the dissipation 339

and the nonlinearities are small µ << 1, solutions at ω ≈ ω0 340

will deviate slightly from harmonic oscillations and
.
a<< a. 341

In this way, the change in a over one period of oscillation can 342

be neglected. If these assumptions hold, many terms in the 343

system can be eliminated, leading to a simpler equation that 344

retains the dynamics. Equation (5) can be written in the form 345

.
a=

µ

2iω

∞
∑

n=0

Fn(a,ā)eiωnt ,

where the right-hand side of the equation is the Fourier series 346

of the right-hand side of (5), with coefficients 347

Fn =
1

T

∫ t+T

t

[

ω2 − ω2
0

µ
(a + āe−2iωt ′ )

+µf (a,ā,eiωt ′ ,e−iωt ′ )
]

e−inωt ′dt ′.

This expansion is exact if a is constant. If a changes slowly, 348

a = a(µt), its change over one period of the oscillation T is 349

small, and we can consider it approximately constant when 350

evaluating the integral. Since we are interested only in the 351

slow changes in a, we keep only the nonoscillating terms in the 352

expansion. By means of this standard procedure, we eliminate 353

all the nonresonant terms in the equation, which are those that 354

would have zero average over one cycle of oscillation of the 355

slow varying a. After this and upon the introduction of the new 356

variables t → t ′ = (µ/2)t and a → A = a/
√

c̃, we obtain a 357

dimensionless equation for the dynamics of the deviation from 358

harmonic oscillations A(t ′) = ρ(t ′)eiφ(t ′): 359







.
ρ= ρ

[

1 + α
√

psr

(ps−β)ω

sin (ωτ )

1+r2+2r cos (ωτ )

]

− ρ3

.
φ= ω2

0−ω2

(ps−β)ω
+ α

√
ps

(ps−β)ω

1+r cos (ωτ )

1+r2+2r cos (ωτ )
.

(6)

The search for oscillatory solutions to the system (1) and (2) 360

now reduces to a search for fixed points in (6). Thus, observing 361

the bifurcations in the fixed points of (ρ,φ), we can find 362

qualitative changes in the oscillatory behavior of x, and by 363
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these means of the squared amplitude of the sound produced364

by the source-tract system per unit α,365

|p|2max = (1 − r)2 psρ
∗2

1 + 2r cos (ωτ ) + r2
, (7)

where ρ∗ is the value of ρ at a fixed point:366

ρ∗2 = 1 +
α
√

psr

(ps − β)ω

sin (ωτ )

1 + r2 + 2r cos (ωτ )
,

with ω satisfying367

ω2
0 = g(ω) = ω2 + α

√
ps

1 + r cos (ωτ )

1 + r2 + 2r cos (ωτ )
. (8)

With these expressions we can identify the conditions under368

which three, one, or no fixed points exist for ω ≈ ω0.369

Moreover, the stability of the solution can be determined370

analytically. These results are summarized in Fig. 3. Given371

a value of ω that satisfies condition (8), the system will present372

a stable fixed point if
∂g

∂ω
> 0, unstable if

∂g

∂ω
< 0. Function373

g(ω) increases from ω = 0, in a way that fixed points will374

be stable unless it happens that g(ω) presents a maximum at375

some value satisfying
∂g

∂ω
= 0,

∂2g

∂ω2 < 0. At this maximum, a376

saddle-node bifurcation occurs, and three fixed points coexist:377

two stable and one unstable. If that maximum is found, g(ω)378

also presents a minimum for a larger value of ω (
∂g

∂ω
= 0,379

∂2g

∂ω2 > 0 at that point). A stable and an unstable fixed point will380

collide in a new saddle-node bifurcation. The existence of this381

pair of saddle-node bifurcations requires that g(ω) presents382

a maximum. Consequently, it is possible to find, for fixed383

(r,ω), the smallest value of α for which the conditions (8)384

and
∂2g

∂ω2 > 0 can be satisfied. These critical values of (α,ω0)385

happen at a cusp bifurcation. For every fixed point of a, the386

source-tract system oscillates. In Fig. 4 we plot the square387

FIG. 3. (Color online) Angular frequencies of fixed points of

system (6). The dark bold lines indicate stable fixed points, where

condition (8) is met and
∂g

∂ω
> 0. Thinner, lighter lines indicate

unstable fixed points, at which
∂g

∂ω
< 0. The lines in the (α,ω0)

plane delimit the region of coexistence of fixed points. On these

lines
∂g

∂ω
= 0, indicating the occurrence of saddle-node bifurcations

of fixed points. The point where they meet is where a cusp bifurcation

occurs: that is, the critical value for (α,ω0) at which coexistence is

possible. Parameters used were (ps, β, r, τ ) = (5.1, 0.1, 0.51, 1.0)

in dimensionless units.

FIG. 4. (Color online) Sound amplitude of stationary oscillatory

solutions. The dark, bold lines indicate stable oscillatory solutions.

Thinner, lighter lines indicate unstable limit cycles. The lines in the

(α,ω0) plane delimit the region of coexistence of fixed points. On these

lines,
∂g

∂ω
= 0 indicating the occurrence of saddle-node bifurcations

of fixed points. The point where they meet is where a cusp bifurcation

occurs. Parameters used were the same as in Fig 3.

of the amplitude of the oscillations per unit α [computed via 388

Eq. (7)] corresponding to the fixed points displayed in Fig. 3. 389

In the search for signatures of source-tract coupling in the 390

amplitude of the sound generated by the complete system, 391

we compare the previous results to those obtained when the 392

source-filter independence is assumed to hold. In this latter 393

case, fixed points of a occur at (ρ∗ = 1,ω = ω0). Consequently 394

there are no bifurcations leading to coexistence of limit cycles. 395

Moreover, the amplitude of oscillations per unit α does not 396

depend on α. The resulting amplitudes are displayed in the top 397

panel of Fig. 5. In the middle panel of the figure, the squared 398

amplitudes, computed for the same values of parameters for 399

the acoustically coupled system, are displayed together with 400

the cusp lines in the same way we discussed in the previous 401

paragraph. We also included in this panel a dotted line to 402

illustrate another phenomenon originated by the coupling: the 403

shift of phonation threshold. The existence of limit cycles in 404

the coupled system depend on Eq. (8) to be satisfied. For a fixed 405

set of (α,ps,r,τ ), values of ω0 below a certain threshold do not 406

lead to oscillations. These threshold values were computed and 407

plotted as a dotted line on the (α,ω0) plane. The bottom panel 408

of the figure illustrates the qualitative differences between the 409

sound amplitudes coming out of a coupled system and the 410

ones produced in a source-filter sound generator. A value 411

of α is selected, and the squared amplitudes per unit α 412

plotted for both approximations. The coupled system displays 413

coexistence of stable solutions with different amplitude, a shift 414

and enhancement of the resonance peaks, and the introduction 415

of an α-dependent phonation threshold. 416

IV. ACOUSTIC FEATURES OF THE SOLUTIONS 417

Source-tract coupling introduces complexity in the system 418

of equations describing the dynamics of the vocal organ. Even 419

considering simple dynamics for the source, the source-tract 420

coupled system presents a nontrivial bifurcation diagram, 421

including a cusp bifurcation leading to a region of coexistence 422

of periodic solutions. In the previous section, we also found 423
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FIG. 5. (Color online) Amplitudes (squared, per unit α) of sounds

originated in source-filter and source-tract coupled systems. Sounds

coming out of a source-filter system (top panel). Sounds coming out

of a source-tract coupled present coexistence of stable solutions. The

thick, dark lines represent stable solutions, the thinner, lighter lines

indicate unstable solutions. Regions of coexistence of solutions are

indicated by the intersecting lines in the (α,ω0) plane. Phonation

thresholds are indicated by the dotted line in the (α,ω0) plane (middle

panel). Comparison of amplitudes of sounds elicited by both systems

for α = 7.0, as indicated by the arrow in the middle panel (lower

panel). Parameters used were the same as in Fig 3.

dynamical mechanisms leading to phenomena affecting the424

amplitude of the oscillatory solutions, as well as a shift in the425

values of parameters required for a Hopf bifurcation to take426

place.427

Characteristics of the oscillatory solutions depend on428

parameters accounting for physiological variables of the429

system. In this way, the complexity of the solutions, leaving430

their signature in the acoustic properties of the vocalizations 431

produced, can be controlled by simple, coordinated motor 432

gestures in the source-tract system. 433

The activity of the muscle syringealis ventralis vS is 434

directly correlated to the fundamental frequency of the sound 435

produced in the syrinx [23], in a way that leads to the 436

hypothesis that this physiological variable is responsible for 437

the active control of the stiffness of the labia [parameter k 438

in Eq. (1)] [6,19]. In addition, the activity of the vocal tract 439

has been reported to be coordinated with the frequency of 440

the vocalizations [15,24]. Beyond the source-tract separation 441

approximation, vocalizations with nontrivial acoustic features 442

can be generated by simple paths in the space of the parameters 443

accounting for motor gestures controlling the labial tension k, 444

subsyringeal pressure ps and vocal tract length L. 445

Among these vocalizations stand the unilaterally produced 446

frequency jumps. These are syllables in which the fundamental 447

frequency changes abruptly and have been observed in the 448

northern mockingbird [25]. We proposed in a previous work 1449

a mechanism by which the bird exploits the coexistence 450

of periodic solutions to produce them [12]. A region of 451

coexistence in parameter space can be crossed by smoothly 452

varying the parameter accounting for the length of the tract 453

L, hence achieving the frequency jump with a simple motor 454

gesture. 455

The coordination of the vocal tract and the syringeal 456

activity is one of the mechanisms by which birds emphasize 457

the fundamental frequency of the vocalization. By adjusting 458

the length L of the trachea, the frequency of the sound 459

produced by the vibrations of the labia in the syrinx is 460

matched by the resonance of the tube through which the sound 461

is filtered ν = vs/(4L). The introduction of the source-tract 462

coupling in the model predicts, for certain values of the 463

parameters, an enhancement of this effect: Resonant sounds 464

in the source-tract coupled system present higher amplitudes 465

than in the source-filter approximation. In Fig. 2, synthetic 466

sounds were generated with identical systems, one of them 467

coupled, the other uncoupled. For a fixed L, the frequency of 468

the oscillation generated in the labia was varied (by sweeping 469

in the parameter accounting for their stiffness k), and the 470

amplitude of the oscillation was computed. In the source-tract 471

coupled system simulations, resonances occur at a higher 472

fundamental frequency and are stronger. 473

To illustrate the differences in spectral content of vocal- 474

izations produced in both approximations, we synthesize vo- 475

calizations by numerical integration of system (1) and (2). (A 476

modified version of Eq. (1) in which pi = 0 is integrated to pro- 477

duce the source-filter vocalization.) We introduce a very simple 478

pressure pattern, consisting merely of an increase beyond the 479

value at which the folds begin to oscillate and, after a time in- 480

terval, a return to subthreshold. During that time, vocalization 481

takes place. The length of the tract remains fixed, adjusted so 482

that its resonant frequency matches the fundamental frequency 483

of the sound produced by the source alone. The vocalizations 484

are plotted in Fig. 6 (acoustic pressure and sonogram). It is 485

remarkable that the energy of the source-tract coupled system 486

concentrates the energy in the fundamental frequency f0 and 487

in every harmonic (f0,2f0,3f0, . . .). In contrast, the peaks of 488

energy in the source-filter syllable occur as expected in a sound 489

filtered by an open-closed tube with L = vs/(4f0), namely, at 490
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FIG. 6. (Color online) Synthetic vocalizations produced by numerical integration of Eqs. (1) and (2), considering source-filter independence

(left panels) and source-tract interaction (right panels). Sound (top panels) is produced when the system is driven by a simple pressure gesture

(bottom panels). The sonograms (middle panels) show that the spectral content of the vocalizations are qualitatively different. Parameters used

for numerical integration were (γ, β, c, r, α) = (7000π, 0.01, 1 × 10−6, 0.71, 0.0014) in dimensionless units, τ = 1.43 × 10−4 s.

(f0,3f0, . . .). The quadratic term introduced by the feedback491

in the driving part of system (1) is responsible for this effect.492

Experiments have been performed in some species to study493

how the vocal pathway modifies the sound generated in the494

source, in which the ambient where the birds phonated was495

filled with heliox [24,26]. The change of atmosphere carries an496

increase in sound velocity of up to 550 m/s. If the source and497

the tract do not interact, the fundamental frequencies of the498

vocalizations recorded should not be modified as the velocity499

of sound increases. By simulating a heliox experiment with500

synthetic sounds generated by a source-tract coupled system,501

we expect to be able to make quantitative predictions on the502

changes in fundamental frequency and spectral content to be503

observed as the sound velocity is increased.504

With this in mind, we generated a series of synthetic sounds505

with all the parameters of system (1) and (2) fixed except506

for vs , which ranged from 341 to 520 m/s. The fundamental507

frequency of sounds originated in the uncoupled system508

remained constant over the simulated heliox experiment, as509

expected. No shift was observed in the fundamental frequency510

or the higher resonances, but only a change in the ratio of the511

peaks (see Fig. 7, left panels). The sounds synthesized using512

the source-tract coupled system increased in fundamental513

frequency as the sound velocity increased. Furthermore, the514

shift in the amplitude peaks became larger the higher the515

frequency at which they appeared (see Fig. 7, right panels).516

Small shifts in frequencies have been observed when the517

density of the air is reduced by mixing it with heliox [24].518

We showed here that even with a simple description of the519

dynamics of the folds, a shift in frequency is to be expected520

upon a change in the density of the atmosphere; responsible for521

this effect is the delayed feedback introduced by the coupling522

to the tract.523

V. CONCLUSIONS 524

In this work we have studied the dynamics of a simple 525

interacting sound source-tract system. Our model consists of 526

an oscillator coupled to a simple tube. Vocal tracts are actually 527

much more complex and include, for instance, the beak and 528

the oropharyngeal-esophageal cavity, whose activities have 529

been reported to be coordinated with that of the sound source 530

[15,27]. They affect, however, the filtering of the sound; their 531

contributions to the feedback are negligible. We have found 532

that when the frequencies of the sounds generated in the 533

source are close to the resonant frequencies of the tube, a 534

shift and an enhancement of the resonance peaks occur. For 535

some values of the parameters, we also found coexistence 536

of stable periodic solutions. This implies the possibility of 537

having rapid changes in the acoustic output of the system, in 538

both amplitude and frequency, even for smooth changes in the 539

parameters. 540

The parameters accounting for the physiology of the sound 541

source-tract system were set to dimensionless values at which 542

the effects of the coupling were noticeable as qualitative 543

changes in the dynamics. By these means, we were capable 544

of finding bifurcations in the system leading to acoustic 545

phenomena consistent with observations [8]. The difficulties 546

in estimating labial mass, or values for the muscle tensions 547

involved, make it difficult to advance beyond qualitative 548

analysis. 549

The mathematical model proposed to account for the 550

dynamics of the uncoupled sound source presents little 551

complexity, namely, just the possibility of oscillating by going 552

through a Hopf bifurcation. It is then the interaction between 553

the source and the tract that is responsible for the additional 554

phenomena discussed here. 555
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FIG. 7. (Color online) Fundamental frequencies of synthetic vocalizations and power spectrum for varying medium density. Fundamental

frequencies of sounds do not change with the air velocity if the source and the filter do not interact (top left panel). When the source is coupled

to the tract, there is a drift in the fundamental frequency (top right panel). The arrows A and B in the upper panels indicate two different

air densities, at which the power spectra of the synthetic sounds were computed (bottom panels). The power spectrum of the source-filter

synthetic sound changes only the relative values between the resonance peaks when the density of the air is changed (bottom left panel),

whereas a shift is observed in the peaks of the source-filter vocalizations (bottom right panel). Parameters used for numerical integration were

(γ, β, c, r, α) = (7000π, 0.01, 1 × 10−6, 0.71, 0.0014) in dimensionless units, τ = 9.6 cm/vs .

Complexity is introduced in the acoustic features of the556

vocalizations when the interaction of the source and the557

tract is taken into consideration. In our model, the tract558

does not play the role of a passive filter, but it interacts559

with the source, introducing a delayed feedback pi in the560

driving term of the fold oscillations. The delayed feedback561

introduced by the interaction of the tract and the source is562

responsible for quantifiable effects in the acoustic properties563

of the vocalizations, such as the position and relative intensities564

of the resonant peaks when the fundamental frequency of565

the sound produced is close to the frequency associated566

to the tube. The weakly nonlinear approximation made in567

this work pursued the goal of determining the underlying568

dynamical mechanisms leading to these effects, as well as569

proposing ways to quantify the degree of source-tract coupling570

from the observed vocalizations. The use of a minimal571

model pursued the goal of identifying what part of the 572

complexity of the sounds was due to the nonlinearities of 573

the source, and which was due to the interaction with the 574

tract. 575

The complex vocalizations elicited by songbirds come 576

as the result of the interaction of a nervous system and a 577

biomechanical periphery. In this work, we contribute to the 578

task of determining where such complexity is originated. This 579

issue has been addressed in Refs. [1,4,8]. It is hypothesized 580

that complexity in vocalizations might not require complex 581

active neural control, but can be achieved by the driving of 582

a highly nonlinear periphery with simple motor instructions. 583

The mechanism proposed here supports the idea that, in order 584

to understand the complexity of birdsong, it is necessary to 585

study in parallel the central neural control and the dynamics 586

of the periphery. 587
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